杉木第2代种子园效果分析

滨1, 胡德活2, 阮梓材2, 黄永权3, 林 军1, 李芬好1

(1乐昌市龙山林场,广东乐昌 512221; 2广东省林业科学研究院,广东广州 510520; 3 广东省林业局,广东广州 510173)

摘要: 调查分析了广东龙山林场杉木第 2 代种子园母树生长、结实情况和种子播种品质及 2 代园子代测定与现实 增益等. 结果显示: 嫁接6~8年,2代园母树保存率74.39%,正冠率87.65%,母树生长正常. 结实株率50.45%,单 株结实指数 1.52 母树结实力中下. 球果出籽率、种子千粒质量、发芽率和发芽势分别为 3.24%、6.554 g、31.74%和 23.16%, 种子播种品质总体上优于同龄初级种子园, 但劣于 1.5 代种 子园, 来自广东、广西的建园亲本, 在结实力 及子代速生性方面均优于来自福建、贵州、湖南的亲本. 4年生子代测定结果表明. 2代园材积现实增益7.58%~ 10.60%, 建设 2 代园提高种子遗传品质的关键目的已实现, 广东龙山 2 代种子园营建基本上是成功的.

关键词: 杉木: 2 代种子园: 母树生长: 母树结实: 种子播种品质: 现实增益

中图分类号: S722 83

文献标识码: A

文章编号: 1001-411X(2003)04-0013-04

杉木[Cunninghamia lanœolata (Lamb.) Hook.] 是 我国特有的重要用材树种,栽培历史悠久,生长快, 材质好,产量高,是广大城乡重要的建筑和家具用 材,通过加工与改性可作装饰材,还可造高档复印 纸. 杉木材是南方林区多数林场和林农的主要经济 支柱,从20世纪70年代起,开展了杉木优树选择、 种源试验、子代测定、杂交育种、无性系选育以及初 级种子园(简称初级园)、1.5 代种子园(简称 1.5 代 园)营建等工作^[1~6].随着改良工作的深入及生产的 需求, 杉木第2代种子园(简称2代园)营建列入国 家林木良种基地建设计划,广东省龙山林场杉木2 代园于 1992 年开始筹建, 现已基本建成, 部分投产. 现对 2 代园的效果进行分析评价.

材料与方法

1.1 2代园基本情况

龙山林场位于广东省乐昌市东北部, 距乐昌城 20 km. 龙山杉木 2 代园面积 20 hm², 其中, 种子生产 区 16.7 hm², 育种区 3.3 hm². 种子生产区分为 5 个 大区,每大区分为4个小区.育种区及种子生产区的 株行距为 4 m×5 m, 1994~1997 年嫁接. 建园材料一 方面使用本省优良组合的优良个体,另一方面引进 邻近省区的 2 代材料, 种子生产区共接入优良组合 的优良个体 133 个, 其中, 广东 33 个, 广西 13 个, 湖 南 16 个, 贵州 31 个, 福建 40 个.

1.2 2代园嫁接株生长状况、结实力调查

2001年7月,对育种区及种子生产区 I 大区 4

个小区所有母树的树高、胸径、正冠情况、结实情况 等进行调查. 其中,结实情况分为4个等级,即多果 (树冠上、中、下部位均有挂果,且球果普遍挂满枝 条)、中果[挂果介于"多果"与"少果"之间,或局部 (如上部或中部或下部)枝条挂满果 少果(局部枝 条有少量 挂果,如上部或中部或下部部分枝条挂 果)、无果(当年不挂果或仍未结实), 各等级的结实 指数值依次为 9、4、1 和 0; 树冠情况分为正冠(主干 偏角≤20°)、偏冠(主干偏角>20°或无主干).

1.3 种子播种品质检测

2001年采种时,对各亲本的球果分别晒种,测定 球果出籽率、种子千粒质量. 2002年4月对各单系种 子测定室内发芽率与发芽势. 以广东小坑林场 1.5 代园的种子作对照.

1.4 2 代园子代测定

为了解2代园种子遗传品质及各亲本的遗传差 异,于1998年在龙山林场营造2块子代测定林,面积 0.8 hm², 采用随机完全区组设计, 4 株小区, 8 次重 复,参试家系28个,并以小坑初级园混合种(CK1)及 小坑 1.5代园混合种(CK2)作对照.2001年12月对 试验林讲行树高、胸径测量.

结果与分析

2.1 嫁接株生长与结实状况

2代园育种区及种子生产区 I 大区 4个小区嫁 接6~8年母树生长、结实调查结果,总保存率 74. 39%, 正冠率 87. 65%, 平均树高 5. 69 m, 平均胸

径11. 27 cm. 结实母树比例 50. 45 %, 平均结实指数 1. 52, 结实母树比例偏低, 结实力中下. 选择嫁接年份相同的母树, 进行生长、结实 4 个性状方差分析⁷¹, 结果表明(表 1), 产地(省份)间母树树高、胸径、结实株率、结实指数均存在极显著差异, 产地内无性系间胸径、结实指数也存在极显著或显著差异.

Duncan's 多重比较结果(表 2)显示, 来自广东的无性系4个性状均居首位, 来自广西的无性系除胸径略小于湖南无性系外, 3个性状均高于其余 3个起源的无性系而居第 2. 两广起源的无性系结实能力有显著的优势.

表1 各产地无性系嫁接株生长及结实的方差分析

Tab. 1 Analysis of variance on growth and fruitage of the clonal grafting trees of different origin

亦見求酒	\overline{F}				Pr> F			
变异来源	树高	胸径	结实株率	结实指数	树高	胸径	结实株率	结实指数
variation source	height	DBH	fruit rate	fruit index	height	DBH	fruit rate	fruit index
产地间 origin	11. 65	7. 22	7. 41	65. 94	< 0.0001	< 0.0001	< 0.0001	< 0 0001
产地内无性系间 clone within origin	2 21	1. 28		4. 89	< 0. 0001	0.0256		< 0 0001

表 2 各产地无性系嫁接株生长及结实比较10

Tab 2 Duncan's multiple comparison on growth and fruitage of the clonal grafting trees of different origin

产地	树高	胸径	结实株率	结实指数
origin	height/ m	<i>DBH</i> / cm	fruit rate/ 1/0	fruit index
广东 Guangdong	6 08 a	12 40 a	71. 92 a	2 43 a
广西 Guangxi	5. 85 ab	11. 53 ab	65. 26 a	2 36 a
湖南 Hunan	5. 64 bc	11. 72 a	37. 25 b	0.64 b
福建 Fujian	5. 42 c	10.54 bc	23. 43 b	0.45 b
贵州 Guizhou	5. 1 9 d	9. 95 c	25. 00 b	0. 61 b

1) 表中数据均为平均值; 同列数据后具有相同字母者表示 经 Duncan's 检验在 0.05 水平上差异不显著

对有正常分株 3 株以上的 97 个无性系, 按结实

能力分类(表 3). 未结实的无性系 14 个,占 14.43%. 具有中等以上结实能力的无性系 36 个,占 37.11%,而其中来自广东、广西两地的就有 26 个,占 结实力中等以上无性系的 72.22%. 在结实力强与较强的 18 个无性系中,起源于两广的占了 77.8%. 可见,该 2 代园的种子产量主要是由两广起源的无性系提供.

2.2 种子播种品质

对 2001 年 2 代园种子播种品质进行检测, 并与 1.5 代园、初级园作比较, 结果见表 4, 嫁接 6~8 年的 2 代园种子播种品质总体上优于嫁接 3~9 年的初级 园, 但劣于嫁接 10~11年、3~4年的1.5代种子园.

表 3 无性系结实能力分类

Tab 3 Classification of clones based on the fruitage

 结实能力	结实指数	无性系比例	无性系数量 ¹⁾ number of clone				
fruit ability	fruit index	percentage/ %	广东 Guangdong J	一西 Guangxi	湖南 Hunan	福建 Fujian	贵州 guizhou
强 strongest	7. 00~ 9. 00	1. 03	0	1(5)	0	0	0
较强 strong	2. 00~6.99	17. 53	6 (30)	7(35)	0	3(9.1)	1(10)
中等 moderate	1. 00~ 1. 99	18. 56	7(35)	5(25)	3(21.4)	0	3(30)
较弱 weak	0. 01 ~ 0. 99	48. 45	5(25)	7(35)	11(78.6)	21(63.6)	3(30)
弱 weakest	0	14. 43	2 (10)	0	0	9(27.3)	3(30)

¹⁾ 括号内数据为所占百分比(%)

表 4 不同类型种子园种子播种品质比较

Tab 4 Comparison of sowing quality for seed from different type of seed orchard

种子园 ¹⁾	年龄	出籽率	千粒质量	发芽率	发芽势
seed orchard	age/a	seed rate/ $\frac{9}{10}$	1 000-seed mass/g	germination rate/ 1/0	germination capacity/ ½
2代园 2 nd generation S. O.	6~8	3. 24	6. 554	31. 74	23. 16
1.5 代园 I 1.5 generation S.O. I	10 ~ 11	3. 99	7. 591	37. 38	29. 36
1.5 代园 II 1.5 generation S.O. II	3 ~ 4	4. 27	6 920	33. 00	
初级园 1 st generation S. O.	3~9	3. 25	5. 850	25. 71	

由于本研究中的 2 代园建园材料是根据双亲子代测定的表型选择的,属于 2 代初级园,而表 4 中 10 个初级园实质上是 1 代初级园, 2 代初级园种子播种品质优于 1 代初级园,表明本研究的 2 代园从种子播种品质来说是有进步的. 1.5 代种子园实质上是 1 代改良种子园,使用的建园材料是在遗传型选择的基础上,根据亲本在 1 代初级园的表现,又进行了结实力与种子播种品质及花期同步性选择,而 2 代初级园建园材料,未经结实力与种子播种品质及花期同步性选择,种子播种品质逊于 1.5 代园是很正常的,符合一般规律的.

2.3 后代测定与种子园现实增益

对龙山林场 2 块 4 年生子代测定林生长量数据

方差分析, 结果(表 5)表明, 地点间、家系间的树高、胸径和单株材积生长量均存在极显著差异, 家系与地点存在极显著或较显著互作效应. 表明家系间生长性状存在遗传差异, 在不同地点的生长适应性也有所差异. 2 块子代测定林 28 个家系的平均生长量, 树高、胸径和单株材积分别为 3.95 m、6.27 cm 和 0.009 1 m³, 与对照的比较结果见表 6,2 代园的材积现实增益可达 7.58%~10.60%. 表明 2 代园种子遗传品质必须高于初级园和 1.5 代园的目的已实现, 从营建种子园最关键的目的是提高种子遗传品质方面考虑, 此 2 代园基本上是成功的.

根据子代生长表现及亲本结实指数,27个亲本可分成4类: [类——结实指数大于全园平均值,子

表 5 子代测定林生长性状的方差分析

Tab. 5 Analysis of variance on growth of the progeny tests

亦只求巧		F			Pr> F			
变异来源 variation source	树高	胸径	单株材积	树高	胸径	单株材积		
variation source	height	DBH	single-tree volume	height	DBH	single-tree volume		
地点间 site	21. 96 * *	68. 40 * *	50. 42 * *	< 0.000 1	< 0.000 1	< 0.000 1		
家系间 family	3. 03 * *	2. 66 * *	2. 98 * *	< 0.0001	< 0.000 1	< 0.0001		
地点×家系 site×family	2. 43 * *	1. 70 *	1. 45	< 0.0001	0.0122	0.058 3		

表 6 子代测定林生长性状的现实增益1)

Tab. 6 Practical gains for growth of the progeny test

生长性状	增益 1	增益 2		
growth characteristic	gain 1/ %	gain 2/ %		
树高 height	4. 15	5. 22		
胸径 DBH	5. 55	4. 07		
单株材积 single-tree volume	7. 58	10. 60		

1) 增益1和增益2分别为相对于CK1和CK2的现实增益

代树高或胸径大于对照,广东和广西亲本分别为5和2个; II 类——结实指数小于全园平均值,子代树高、胸径大于对照,广东、广西、湖南和福建亲本分别为1、4、6和1个; III类——结实指数大于全园平均值,子代树高、胸径小于对照,广西和福建分别为2和1个; IV类——结实指数小于全园平均值, 树高、胸径小于对照,广东、湖南和福建分别为2、1和1个. 其中, I 类拟选择作为建园材料推广, II 类适于无性繁殖推广, III类拟继续观察, IV类拟淘汰. I 类的7个亲本全来自广东、广西,这进一步表明,在两广选用建园亲本,不但2代园产量较高,种子造林材积增益也较高.

3 结论与讨论

(1) 广东龙山林场杉木 2 代园母树生长正常, 结实力由下, 来自广东, 广西的亲本的结实能力及嫁接

株生长量均优于福建、贵州、湖南的亲本. 2 代园种子播种品质总体上优于同龄初级园,但劣于 1.5 代园.

- (2) 2 代园子代在粤北的多点测定结果,起源于广东、广西的家系生长量较大,遗传增益较高. 2 代园种子遗传品质高于初级园和 1.5 代园,建设 2 代园提高种子遗传品质的关键目的已实现,此 2 代园基本上是成功的.
- (3) 根据种子园连续多年球果产量测定结果,年份间、无性系与年份互作效应均存在显著差异^[3] 10],即结实性状年份间波动较大,其稳定性随年龄变化也较大,要较准确评价种子园亲本结实力,仅凭1年的测定数据来判断,明显存在偏差,有时甚至误差很大.对于2代种子园的现实增益,由于参加子代测定的亲本仅有28个,且林龄不长,仅有4年,要准确估测本2代种子园的现实增益,仍需对园内其他亲本进行子代测定,以及对现有的子代测定林继续观测研究.

致谢: 参加试验研究的还有广东龙山林场李荣增、曾繁助、 赖旭恩、刘晓东,华南农业大学林学院黄少伟教授对本文的 撰写作了指导,特此 ─并致谢!

参考文献:

实力中下20来自广东广西的亲本的结实能力及嫁接。information in the control of the control

- 究 A]. 涂忠虞, 沈熙环. 中国林木遗传育种进展[Q]. 北京, 北京科学技术文献出版社, 1993. 158-163.
- [2] 叶志宏, 施季森, 翁玉榛, 等. 杉木十一个亲本双列交配 遗传分析 』. 林业科学研究, 1991, 4(4): 380—385.
- [3] 阮梓材, 胡德活, 徐和运, 等. 杉木第一代改良种子园 [A]. 沈熙环. 种子园优质高产技术[C]. 北京: 中国林业 出版社, 1994. 93—100.
- [4] 陈岳武, 施季森, 刘大林, 等. 杉木种内杂种优势及亲本配合力分析 J. 南京林产工业学院学报, 1982, 6(2):1—20.
- [5] 广东省杉木种源试验协作组(陈建新执笔). 杉木地理种源试验续报[J]. 广东林业科技通讯。1984(4):7—
- [6] 胡德活,林绪平,阮梓材,等. 杉木无性系早一晚龄生长

- 性状的相关性及早期选择的研究[J]. 林业科学研究。2001, 14(2): 168-175.
- [7] 黄少伟, 谢维辉. 实用 SAS 编程与林业试验数据分析 [MI. 广州, 华南理工大学出版社, 2001, 36—63.
- [8] 广东省林业科学研究所,广东省韶关地区林科所,国营曲江林场,等.杉木研究(第一集)——杉木初级种子园的营建技术队,广州,广东省杉木科研协作组,1984.1—10.
- [9] 方乐金. 杉木种子园无性系结实遗传变异及高产稳产技术策略研究[D]. 南京:南京林业大学林学系,1998. 28-37.
- [10] 胡德活, 阮梓材, 陈 仲, 等. 杉木种子园无性系结实遗传与变异研究[J]. 林业科学研究. 1992, 5(5): 606—610.

Study on the Effects in the Second-Generation Orchard of Cunninghamia lanceolata

ZOU Bin¹, HU De-huo², RUAN Zi-cai², HUANG Yong-quan³, LIN Jun¹, LI Fen-hao¹
(1 Longshan Forest Farm, Lechang 512221, Guangdong China; 2 Guangdong Forestry Research Institute, Guangzhou 510520, China; 3 Forestry Department of Guangdong Province, Guangzhou 510173, China)

Abstract: The growth and seeding situation of parental trees, the seed quality of sowing, the performance of progeny and the practical gains for the second-generation orchard were assessed. The results were summarized as follows. In 6 to 8 years after graft, the remaining rate of trees in the second-generation seed orchard was 74.34% and the rate of straight trunk was 87.65%. Trees in the orchard have grown well. Rate of seeding trees was 50.45%, and cone production index was 1.52. The seed rate of cone was 3.24%. The thousand-grain mass was 6.554 gram. The germination rate was 31.74%, and the germination capacity was 23.16%. The quality of sowing of the seed in the second-generation seed orchard was higher than those in the first-generation orchard with the same age, but was lower than those in the 1.5-generation orchard. The parents from Guangdong and Guangxi are better than those from Fujian, Guizhou and Hunan according to their seeding ability. The results from 4-year-old progeny tests indicated that the practical gain of volume in the second-generation seed orchard was 7.58%—10.60%, and the key targets of developing second-generation seed orchard and improving genetic quality of seeds were realized. The establishment of the second-generation seed orchard in Long-shan state-own forest farm was basically successful.

Key words: Cunninghamia lanceolata; second-generation seed orchard; growth of parental tree, seeding of parental tree; seed sowing quality; practical gain

【责任编辑 李晓卉】