锯末基质中氮磷钾施用量与番茄幼苗生长的关系

孙治强,李胜利,张艳玲

(河南农业大学 林学园艺学院,河南 郑州 450002)

摘要:研究了以 V(锯末):V(蛭石):V(煤灰)=6:2:2 为基质培育番茄幼苗时,基质中氮磷钾施用量与幼苗生长的关系.结果表明,氮、磷和氮磷互作对幼苗生长影响较大,在试验范围内,幼苗生长随氮磷施用量的增加而增加,成直线关系,幼苗各指标在尿素 $2.4~kg^*m^{-3}$,过磷酸钙 $29.5~kg^*m^{-3}$ 时达最大值.氮磷互作对幼苗生长也有促进效应,但磷对幼苗生长的效应取决于氮的水平.低氮时,幼苗生长随磷施用量的增加而减弱;高氮时,磷对幼苗生长则有促进作用.钾对幼苗的生长没有影响,所有偏回归系数均不显著.因此,在以该基质培育番茄苗时,可用氮磷复合肥液替代完全营养液.

关键词:锯末:番茄;育苗基质:施肥

中图分类号:S641.2

文献标识码:A

文章编号:1001-411X (2004) 01-0025-04

Relationship between N,P and K application and the growth of tomato seedling sowed in the sawdust-rich substrates

SUN Zhi-qiang, LI Sheng-li, ZHANG Yan-ling (College of Forestry and Horticulture, Henan Agric, Univ., Zhengzhou 450002, China)

Abstract: The relationship between N, P and K application and the growth of tomato seedling sowed in the substrates with V(sawdust): V(vermiculate): V(fly-ash) = 6:2:2 was studied. The results showed that the growth of tomato seedling were greatly affected by N, P and N × P. Within the test levels, all the growth parameters of tomato seedling increased linearly with the increased application of N and P. The maximum values of these parameters were obtained at $CO(NH_2)_2(2.4 \text{ kg} \cdot \text{m}^{-3}) + [Ca(H_2PO_4)_2 \cdot H_2O + CaSO_4 \cdot H_2O]$ (29.5 kg·m⁻³). N × P also promoted the growth of tomato seedling, but the effects of P on tomato seedling growth were based on the level of N application. At low N level, P weakened the growth of tomato seedlings, while at high N level, P promoted the seedlings growth. K had no significant effects on tomato seedlings growth and the partial regression coefficients between them were insignificance. So in this substrates, complete nutrients can be substituted by N and P nutrients.

Key words: sawdust; tomato; seedling substrates; fertilizing

工厂化蔬菜育苗技术研究,对于改变传统育苗方式和加速我国商品化集约育苗体系的发展,具有重要意义.蔬菜营养液育苗的效果及方法已有一些研究与报道^[1,2].但营养液育苗存在成本高、不易操作等缺点.因此,研究简便易行的施肥方法势在必行.有报道认为在以一些性能良好的有机基质为主育苗时,不用营养液灌溉,将一定的肥料直接施入基质混拌均匀,定期追入肥液,以清水灌溉同样能取得较好的育苗效果,同时可大大降低技术难度和生产成

本[3,4]. 崔海信等[5]以 V(草炭): V(蛭石) = 7:3 作为基质,对花椰菜育苗中 N、P、K 的最佳水平进行了研究. 吴凤芝等[6]以 V(珍珠岩): V(河沙) = 3:1 为育苗基质,研究了 N、P 营养对黄瓜幼苗形态指标的影响. 但由于基质不同,其理化性质差异很大,所要求的施肥必然存在很大的差别. 本试验在筛选出以锯末为主的番茄育苗基质基础上,进行施肥量试验,以探讨锯末育苗基质氮磷钾施用量及与番茄幼苗生长的关系,为蔬菜工厂化育苗生产提供理论依据.

1 材料与方法

采用本地的阔叶锯末,用 Worral^[7]的方法腐熟后使用. 蛭石为郑州东风材料厂生产,褐煤灰为郑州热电厂废弃物. 供试番茄品种为早丰,育苗盘为美国进口的 72 孔穴盘. 供试肥料为尿素[w(全 N) = 46%]、过磷酸钙[w(有效 P) = 24%]、硫酸钾[w(全 K) = 52%,w(有效 K) = 33%]. 以 V(锯末): V(蛭石): V(煤灰) = 6:2:2 作为育苗基质,采用三因子二次通用旋转设计,试验的线性编码和处理水平见表 1.3 种肥料均以一半作基肥,与基质混合均匀后播种,其余一半分别于出苗后第 15 和 25 d 作为追肥施人(先将过磷酸钙溶解,而后混入尿素和硫酸钾,搅拌混匀喷施). 播后35 d(4~5 叶 1 心)育苗结束时,测定幼苗各指标. 基质物理性质测定参照 Byme等^[8]的方法,pH值用上海大谱仪器厂生产的 PHB-5 式 pH 计测定;电导率(κ)用上海电磁仪器厂生产的 DOS-11 电

导仪测定;阳离子代换量(CEC)用中性(NH_4)₂SO₄ 比色法测定;全 N 采用半微量凯氏定氮法,速效 P 采用钼锑抗比色法,速效 K、代换性 Ca、Mg 采用原子吸收分光光度法测定^[9].

表 1 施肥试验线性编码和处理水平

Tab. 1 Linear code and treatment level of fertilizer experiment

编号 number	세 네 쓰느 ㅠ	ρ/(kg·m ⁻³)						
	线性编码 linear code	$CO(NH_2)_2$	$Ca(H2PO4)2 \cdot H2O + CaSO4 \cdot H2O$	K ₂ SO ₄				
1	- 1.682	0.4	2.5	0.4				
2	- 1.000	0.8	8.0	0.8				
3	0	1.4	24.0	1.4				
4	1.000	2.0	24.0	2.0				
5	1.682	2.4	29.5	2.4				

2 结果与分析

原料基质及复合基质的理化特性见表 2. 苗龄 35 d时,测定不同处理番茄幼苗形态指标,结果见表 3.

表 2 原料基质及复合基质的理化特性

Tab. 2 The physical and chemical character of single and mixed substrates

基质	容重 bulk 总孔隙度 density total porosity pH		к/(mS·		w(全 N total N)	w(速效磷 available P)	w(有效钾 available K)	w(代换钙 exchangeable Ca)	w(代换镁 exchangeable Mg)	
substrate	$/(g \cdot m^{-3})$	/%	•	cm ⁻¹)	$/(\text{me} \cdot \text{g}^{-1})$	1%	$/(mg \cdot kg^{-1})$	/(mg·kg-1)	/(mg·kg ⁻¹)	/(mg·kg ⁻¹)
锯末 sawdust	0.19	78.3	6.6	0.43	0.64	1.02	15.09	1 899	9 900	962
煤灰 fly-ash	0.56	43.6	7.2	0.93	0.56	0.03	21.18	215	10 260	158
蛭石 vermiculate	0.47	111.2	6.5	0.20	0.27	0.01	3.00	211	2 610	1 200
复合基质 substrate	s 0.35	71.3	6.4	0.54	0.57	0.30	16.78	222	9 090	566

表 3 不同处理苗龄 35 d 番茄幼苗的营养生长

Tab. 3 The vegetative growth of tomato seedlings at 35 d of different treatment

									
试验号	X_1	X_2	X_3	茎高	茎粗	鲜质量	干质量	叶面积	壮苗指数
experiment			=	stem	stem	fresh mass	dry mass	leaf area	good seedling
number	(N)	(P)	(K)	height/cm	diameter/mm	/(g·株-1)	/(mg·株-1).	/(cm ² ·株-1)	index1)
1	1.000	1.000	1.000	6.09	2.30	2.03	186.2	11.15	7.023
2	1.000	1.000	- 1.000	5.64	2.30	2.00	186.0	11.14	7.585
3	1.000	- 1.000	1.000	4.94	1.92	1.33	125.0	10.23	4.858
4	1.000	-1.000	- 1.000	4.66	1.88	1.38	133.2	10.30	5.374
5	-1.000	1.000	1.000	3.86	1.45	0.69	64.8	9.33	2.434
6	-1.000	1.000	-1.000	3.35	1.57	0.75	72.4	9.45	3.393
7	-1.000	- 1.000	1.000	3.75	1.70	0.73	71.2	9.40	3.228
8	- 1.000	- 1.000	-1.000	3.51	1.48	0.61	60.0	9.26	2.530
9	1.682	0	0	6.08	2.20	2.01	184.8	11.10	6.687
10	- 1.682	0	0	3.01	1.51	0.47	41.2	8.98	2.067
11	0	1.682	0	4.64	2.04	1.28	126.6	10.29	5.566
12	0	- 1.682	0	5.48	1.87	1.23	121.6	10.18	4.149
13	0	0	1.682	4.81	2.03	1.35	131.2	10.35	5.537
14	0	0	- 1.682	4.76	1.96	1.33	129.8	10.30	5.345
15	0	0	0	4.86	1.92	1.35	130.2	10.31	5.144
16	0	0	0	4.78	1.86	1.29	124.8	10.25	4.856
17	0	0	0	4.96	1.97	1.38	133.4	10.33	5.289
18	0	0	0	4.39	1.79	1.21	117.4	10.16	4.787
19	0	0	0	4.44	1.83	1.17	109.2	10.00	4.501
20	0	0	0	4.68	1.88	1.29	121.6	10.15	4.885

¹⁾壮苗指数=(茎粗/茎高)×植株干质量

2.1 番茄幼苗茎高与氮磷钾的关系

番茄幼苗茎高和氮磷钾施用量有如下关系式: $Y_1 = 4.696 + 0.880X_1 + 0.049X_2 + 0.145X_3 - 0.119X_1^2 + 0.063X_2^2 - 0.034X_3^2 + 0.273X_1X_2 - 0.003X_1X_3 + 0.055X_2X_3$. (1)

方程(1)的 F 检验达到极显著水平,失拟检验不显著. 对各回归系数进行 F 测验,结果除氮的一次项显著外,其他项均不显著. 说明在该基质中,氮是影响番茄幼苗茎高的最主要因素,在试验范围内株高与氮肥的施用量成直线关系.

2.2 番茄幼苗茎粗、叶面积和干质量与氮磷钾的关系 茎粗与氮磷钾施用量有如下关系式:

 $Y_2 = 1.879 + 0.246X_1 + 0.069X_2 + 0.019X_3 - 0.031X_1^2 + 0.004X_2^2 + 0.018X_3^2 + 0.120X_1X_2 - 0.008X_1X_3 - 0.048X_2X_3.$ (2)

叶面积与氮磷钾施用量有如下关系式:

 $Y_3 = 10.205 + 0.658X_1 + 0.173X_2 + 0.006X_3 - 0.090X_1^2 - 0.037X_2^2 + 0.011X_3^2 + 0.210X_1X_2 - 0.015X_1X_3 - 0.018X_2X_3.$ (3)

幼苗干质量与氮磷钾施用量有如下关系式: $Y_4 = 123.095 + 44.191X_1 + 9.403X_2 - 0.150X_3 - 5.599X_1^2 - 1.675X_2^2 + 0.588X_3^2 + 13.500X_1X_2 - 1.450X_1X_3 - 1.300X_2X_3.$ (4)

方程(2)、(3)和(4)的 F 检验均达极显著水平, 失拟检验不显著,能真实地反应氮磷钾施用量与茎 粗、叶面积和干质量的关系. 对各回归系数进行 F 测验,结果氮的一次项和氮磷互作项极显著,磷的一 次项显著. 这说明,本基质中,氮、磷及其互作对番茄 幼苗茎粗、叶面积和干质量均有较大影响. 在试验范 围内,幼苗茎粗、叶面积和干质量与氮和磷的施用量 呈正相关,且以线性关系为主.分别以氮磷编码值作 为影响因子研究了氮磷互作对幼苗生长参数的效 应,结果表明,番茄幼苗茎粗和干质量均随氮和磷施 用量的增加而增加,在一定范围内可以继续增加施 用量. 氮磷互作对幼苗茎粗、和干质量总体也有正的 效应,但磷对幼苗生长的影响取决于氮的水平(如图 1、2). 低氮时,磷对幼苗茎高、叶面积和干质量有抑 制作用,随磷施用量的增加,茎粗、叶面积和干质量 逐渐降低;而在高氮水平下,三者则随磷施用量的增 加而增加,且对干质量的影响大于茎粗和叶面积. 最 佳组合均出现在编码值为 1.682 时(即尿素 2.4 kg·m⁻³, 过磷酸钙 29.5 kg·m⁻³).

2.3 番茄幼苗鲜质量与氮磷钾的关系

幼苗鲜质量与氮磷钾施用量有如下关系式:

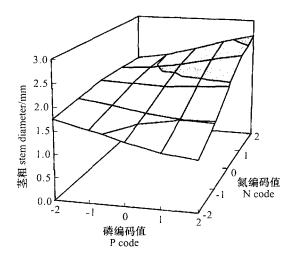


图 1 氮磷互作对幼苗茎粗的影响

Fig. 1 The effects of N×P on seedlings stem diameter

$$Y_5 = 1.285 + 0.480X_1 + 0.110X_2 + 0.005X_3 - 0.033X_1^2 - 0.028X_2^2 + 0.002X_3^2 + 0.153X_1X_2 - 0.010X_1X_3 - 0.013X_2X_3.$$
 (5)

方程(5)的 F 检验达极显著水平,失拟检验不显著. 对各回归系数进行 F 测验,结果氮、磷的一次项及氮磷互作项均极显著,说明氮、磷及其互作对幼苗鲜质量均有很大影响. 在试验范围内,氮、磷与幼苗鲜质量呈直线正相关,在一定范围内可以继续增加其施用量. 对氮磷互作的进一步分析(图 3)可以看出,低氮水平下,磷对植株鲜质量有抑制作用,随磷施用量的增加,植株鲜质量则随磷施用量的增加而增加. 氮编码值1.682(即尿素 2.4 kg/m³)、磷编码值1.682(即过磷酸钙 29.5 kg/m³)时达到最大值.

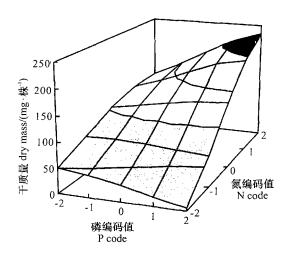


图 2 氮磷互作对幼苗干质量的影响

Fig. 2 The effects of $N \times P$ on the seedlings dry mass

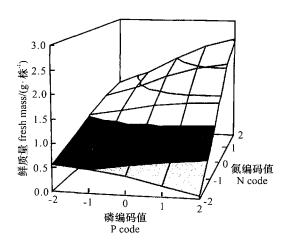


图 3 氮磷互作对幼苗鲜质量的影响 Fig. 3 The effects of N×P on seedilngs fresh mass

2.4 番茄幼苗壮苗指数与氮磷钾的关系

番茄幼苗壮苗指数与氮磷钾施用量有如下关系 式:

 $Y_6 = 4.923 + 1.540X_1 + 0.501X_2 - 0.074X_3 - 0.260X_1^2 - 0.090X_2^2 + 0.116X_3^2 + 0.540X_1X_2 - 0.101X_1X_3 - 0.212X_2X_3.$ (6)

方程(6) F 检验达极显著水平,失拟检验不显著,说明方程(6)能真实地反映壮苗指数与氮磷钾施用量的关系. 对各回归系数进行 F 检验,结果氮的二次项和磷的一次项显著,氮的一次项和氮磷互作极显著. 这说明,氮和磷对壮苗指数有重要的影响,而且壮苗指数与氮的施用量呈二次曲线关系(图 4),高氮时对壮苗指数增加的幅度降低. 壮苗指数与磷的施用量仍呈直线关系. 氮磷互作对幼苗壮苗指数的影响与茎粗、植株鲜质量和于质量等有相同趋势.

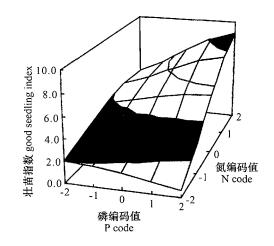


图 4 氮磷互作对幼苗壮苗指数的影响 Fig. 4 The effects of N×P on the good seedlings index

3 结论

在 V(锯末): V(蛭石): V(煤灰) = 6:2:2 基质 中,氮和磷的施用量对番茄幼苗的生长有较大影响. 在试验范围内,幼苗生长随氮磷施用量的增加而增 加,说明该基质氮磷含量较少,需大量补充氮肥和磷 肥,因此,以该基质育苗时,要重视氮和磷的施用.上 述6个方程中,氮的偏回归系数均大于磷和钾的偏 回归系数,钾的所有偏回归系数均不显著,说明氮对 幼苗生长的影响大于磷和钾,钾对幼苗的生长几乎 没有影响,这可能是由于苗期需钾量相对较少,而复 合基质中含有的钾(有效 K 222 mg/kg)基本上可以满 足幼苗的生长需要. V(锯末): V(蛭石): V(煤灰) =6:2:2 混合基质中,氮、磷和氮磷互作对番茄幼苗生 长影响显著. 在试验范围内,幼苗生长随氮和磷施用 量的增加呈直线增加. 氮磷互作对幼苗生长有促进 效应,但氮的水平不同,磷对幼苗生长的影响也有所 不同. 低氮时,磷对幼苗生长有抑制作用,植株生长 随磷的增加而减弱;高氮时,植株生长则随磷的增加 而增加. 钾对该基质中幼苗的生长几乎没有影响,所 有偏回归系数均不显著. 实践中,以其为基质育番茄 苗时,仅施用氮磷复合肥或氮磷复合营养液即可达 到培育壮苗的目的. 本试验在施肥试验时,发现间隔 10 d 时低肥处理有黄化和生长停止趋向,因此在夏 秋季用锯末基质育苗时,施肥间隔期不应超过 10 d.

参考文献:

- [1] 葛晓光. 蔬菜营养液育苗的研究初报[J]. 沈阳农学院 学报,1979,(1):48-59.
- [2] 葛晓光, 李振洲, 郝建军. 蔬菜营养液育苗的研究[J]. 园艺学报,1982,9(3):37-43.
- [3] 陈振德, 黄俊杰, 蔡 葵, 等. 混合基质条件下茄子苗 期施肥量研究[J]. 中国蔬菜,1996,(4):16-18.
- [4] 罗庆熙, 林德清, 刘宝敬. 茄果类蔬菜育苗基质施肥量的研究[J]. 中国蔬菜, 1994,(6):13-15.
- [5] 崔海信,司亚平,陈殿奎,等. 花椰菜机械化育苗最佳营养条件研究[J]. 华北农学报,1988,3(3):91-97.
- [6] 吴凤芝,刘 德.氮、磷对黄瓜幼苗形态指标影响的研究[J]. 北方园艺,1995,(4):23-25.
- [7] WORRAL R. Composting wood wastes for potting mixes[J]. Australian Horticulture, 1985,9(2):34 37.
- [8] BYRNE P J, BCARTY. Development in the measurements of air-filled porosity of peat substrates [J]. Acta Horticulturae, 1989, (366):257 - 264.
- [9] 李西开. 土壤农业常规分析方法[M]. 北京:科学出版 社,1983. 25-68.

【责任编辑 柴 焰】