椰心叶甲取食行为及取食为害量研究

周 荣1,2,曾 玲2,陆永跃2,梁广文2,崔志新1

(1 佛山科学技术学院, 广东 佛山 528000; 2 华南农业大学 昆虫生态研究室, 广东 广州 510642)

摘要: 观察了椰心叶甲 $Brontispa\ longissima\ (Gestro)$ 的取食行为、为害状以及幼虫对几种棕榈植物的取食量. 结果表明, 1.2 龄幼虫取食量少, 取食斑细, 为害较少引起病斑; 3.4.5 龄幼虫取食痕较宽, 被取食叶片形成的病斑大, 易腐烂. 成虫取食线虽然较细, 但深而密, 引起病斑较大, 危害严重. 幼虫期总取食叶面积为 $40^{\sim}48\ cm^2$. 幼虫龄期越大, 取食量越大. 如 1.2.3.4.5 龄幼虫对椰子的取食量分别为 $1.7.3.7.6.9.12.6.22.8\ cm^2$. 在此基础上建立了对几种寄主植物的取食面积与椰心叶甲幼虫龄期之间关系的模型.

关键词: 椰心叶甲; 寄主植物; 取食行为; 取食量中图分类号: 0968 文献标识码: A

文章 编号: 1001-411X (2004) 04-0050-03

Feeding behavior of Brontispa longissima

ZHOU Rong^{1, 2}, ZENG Ling², LU Yong-yue², LIANG Guang-wen², CUI Zhi-xin¹
(1 Foshan Science and Technology College, Foshan 528000, China;
2 Lab of Insect Ecology, South China Agric. Univ., Guangzhou 510642, China)

Abstract: Brontispa longissima (Gestro) was a newly dangerous invasive pest in China. The feeding behavior of *B. longissima* was observed and leaf area of *Cocos nucifera*, Roystonea regia, Chrysalidocarpus lutescens and Caryota ochlandra consumed by the pest larvae was measured in the laboratory. The feeding trace of the early larvae was slender and the damage was light. The feeding trace of late larvae such as 3, 4, 5 instars was wide and the damage caused was serious. For the feeding trace of the adults was slender and deep, the damage caused was also serious. The consumed leaf area by the larvae varied from 40 to 48 cm². The leaves of *C. nucifera*, *R. regia* consumed by the early larvae were more than those of *C. lutescens* and *C. ochlandra*, but leaf area consumed by the late larvae was not significantly different among the four host plants. The models were constructed between the leaf area consumed and the larva instars.

Key words: Brontispa longissima; host plant; feeding behavior; leaf area consumed

椰心叶甲 Brontispa longissima (Gestro)是棕榈科植物的重要害虫,也是新传入我国的重要危险性害虫.该虫原发生于印度尼西亚、巴布亚新几内亚,主要分布于太平洋岛区[1~3],20世纪90年代初香港发现发生危害[4].目前,关于该虫的生物学、生态学特性,入侵后种群发生、发展、扩散传播机制尚不清楚.寄主植物是椰心叶甲赖以生存的物质基础,也是保护对象.研究该虫的取食行为、对不同寄主的危害量是评价寄主适合性的基础.本文研究了椰心叶甲幼

虫、成虫的取食行为、危害状以及对几种主要寄主的 危害量,在此基础上建立了取食面积与椰心叶甲幼虫龄期间关系的模型.

1 材料与方法

1.1 供试虫源及寄主植物

供试虫源:从大王椰子上采集带虫心叶,并装进塑料胶袋带回检疫害虫隔离试验室,将各虫态挑出放在养虫盒中用新鲜干净大王椰子心叶饲养,取卵

备用.

供试植物: 共4种,分别为大王椰子 Roystonea regia、椰子 Cocos nucifera、散尾葵 Chrysalidocarpus lutescens、鱼尾葵 Caryota ochlandra. 取寄主已伸长但未展开的心叶.

1.2 危害习性

1.2.1 取食不同寄主 将刚羽化的雌雄成虫各 20 头、各龄幼虫 20 头分别放入装有椰子、大王椰子、散尾葵、鱼尾葵心叶的保鲜盒中, 观察其取食行为. 同样, 取各龄幼虫 20 头分别接种到温室中上述各寄主盆栽苗中, 观察取食情况.

1.2.2 取食蜜糖及对不同树龄寄主的选择 将刚羽化的雌雄成虫各 10.4、1.1 龄幼虫 10.4、2 龄幼虫 10.4、3.5 龄幼虫 10.4、3.5 龄幼虫 3.5 龄幼虫 3.5 龄幼虫 3.5 验糖水的湿润滤纸上,观察其取食情况。另分别取各龄幼虫及雌雄成虫各 3.50、3.50、3.50、分别接在 3.51、年生、3.51、年生、3.51、年生标榈科苗木的心叶中,苗木置于网室中,每株苗木罩上网罩,用细绳绑紧,观察其活动情况。

1.2.3 取食量测定 分别取各龄幼虫及雌雄成虫各 10头,置于叶片中,每天置换新叶片,用透明坐标纸估算画出来的叶片上的取食面积.

1.2.4 为害状观察 分别取各龄幼虫及雌雄成虫各 10头,置于叶片中,每天置换新叶片,把取食过的叶片用硫酸纸描绘下来,比较各龄幼虫及雌雄成虫取食面积;然后,把取食过的叶片放置 2 d,观察比较各龄幼虫及雌雄成虫取食后引起病斑状.

2 结果与分析

2.1 椰心叶甲的取食行为

椰心叶甲成虫和幼虫均取食心叶表皮薄壁组织,导致叶肉细胞死亡,留下与叶脉平行的狭长、褐

色至灰褐色条斑. 多沿叶脉取食,不穿透叶片,喜取食叶片中部. 在适宜温度下,刚孵化的幼虫一般经过20 h后开始取食,有的需要较长时间. 幼虫取食一般选择较幼嫩部位或靠边有缺口的地方. 5 龄幼虫到停止取食准备化蛹之前有一暴食期,短时间内取食大面积叶片,此时期危害最严重. 五龄幼虫在化蛹前几天停止取食,停止的时间随温度的降低而延长,最长可达15 d以上. 幼虫每次蜕皮前0.5~1.5 d停止取食;各龄幼虫停止取食的时间差别较大,总的趋势是随着虫龄的增大,停止取食的时间也增长. 成虫从羽化到开始取食,室温下大约需2.5~3.0 d. 当食料不新鲜时,成虫和幼虫的取食量都减少或不取食.

2.2 取食量和为害状

1 龄幼虫取食量少,取食斑为细线状,宽度为 0.1 mm 左右,因此为害处较少引起病斑; 1 龄幼虫和 2 龄幼虫的取食面积相差不大,但从 3 龄幼虫开始,取食痕较宽且集中,因此叶片易腐烂.据观察一般 3 龄幼虫开始造成严重危害, 3~5 龄的幼虫取食量很大,取食斑呈 1 mm 左右的粗线状,经过 1 d 后取食痕周围会引起大面积不规则斑,以至造成叶片腐烂或呈现大型褐色坏死条斑.成虫的取食线也相对较细,在 0.5 mm 以下,但较深而密集、取食面积较大,也会引起较大病斑,危害也很严重.

此外,在 4 年生的苗木上,各龄幼虫的成活率在 80%以上;在 3 年树龄的苗木上的存活率只有 20% 左右,而在 1~2 年树龄苗木上则基本不能存活.这说明椰心叶甲适宜在 4 年生以上的苗木上生活.

2.3 椰心叶甲对不同寄主的取食量

椰心叶甲对不同寄主的取食量观察结果见表 1. 表 1 表明幼虫不同龄期对不同寄主植物取食量差异显著. 1 龄幼虫以椰子取食面积最大,为 1. 67 cm²,最小是散尾葵,为0.99 cm²; 2龄幼虫取食量除散尾葵

表 1 椰心叶甲各龄幼虫对不同寄主的取食面积¹⁾ (广东广州, 200108~200205)

Tab. 1 Leaf area of several host plants consumed by the larvae of Brontispa longissima

(Guangzhou, Guangdong) cm²

龄期	大王椰子	椰子	散尾葵	鱼尾葵
instar of larva	Roystonea regia	Cocos nucifera	Chrysalidocarpus lutescens	Caryota ochlandra
1龄 1 st instar lawa	1.38±0.06e B	1.67±0.17e A	0.99±0.04e C	1.07±0.07e C
2 協全 2 nd instar larva	3.30±0.16d A	$3.65\pm0.07\mathrm{d}$ A	2.05±0.10d B	3.30±0.15d A
3 齿 3 rd instar larva	6.23±0.16e A	6.93±0.09c A	6.76±0.95c A	6.31 \pm 0.18c A
4 齿 4 th instar larva	10.76±0.48b B	12.68 \pm 0.17b A	11. 55±0. 46b A	11.64±0.56b A
5龄 5 th instar larva	18.21 \pm 0.71a A	22.87 \pm 0.43a A	20. 28±0. 68a A	$21.90\pm0.47a$ A
总取食量 sum	39.88	47. 80	41.63	44.22

¹⁾ 表中同 →列中数据后具有相同小写英文字母表示在 0.05 水平差异不显著 (DMRT);同 →行中数据后具相同大写字母表示在 0.05 水平差异不显著 (DMRT)

较小外,其他几种植物均较多; $3 \sim 4$ 龄幼虫对 4 种寄主的取食量无明显差异;5 龄时以大王椰子较少,其他3 种较多.幼虫期总取食量在 $40 \sim 48$ cm².

随着幼虫龄期的增加,取食量逐渐增加.以椰子为例,1龄幼虫取食量 1.7 cm^2 , 2龄时明显增大,为

3.7 cm², 3 龄时增加到 6.9 cm², 4、5 龄迅速增大为 12.6、22.8 cm².

取食面积与椰心叶甲幼虫龄期间存在相关关系,通过分析建立几种寄主植物上它们之间关系的模型(表 2).

表2 不同寄主上椰心叶甲各龄幼虫的取食量模型

Tab. 2 Models between the instar of larvae and the leaf area eaten on different host plants

寄主 host plants	模型 models ¹⁾	相关系数 correlation	t 检验 t-test
大王椰子 Roystonea regia	$Y = 0.347 + 0.694X^2$	0. 997	23. 02 **
椰子 Cocos nucifera	$Y = 3.576 - 2.953X + 1.349X^2$	0. 981	7. 16 **
散尾葵 Chrysalidocarpus lutescens	$Y = -0.612 + 0.813X^2$	0.996	19. 20 **
鱼尾葵 Caryota ochlandra	$Y = -0.520 + 0.851X^2$	0. 991	12. 96 **

1) Y 为取食叶面积 (cm^2) , X 为椰心叶甲幼虫龄期

经检验各个模型均达显著水平.图 1 是大王椰子上实际测量的取食面积与应用模型拟合的值.由图 1 可知模型对取食面积的拟合值与实测值较接近,通过 χ^2 检验,模型的拟合值与实测值无显著差异,说明模型能较好描述取食面积与椰心叶甲幼虫龄期间的数量关系.

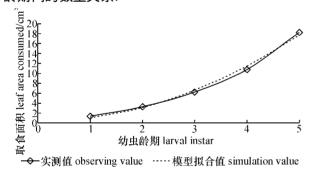


图 1 大王椰子上椰心叶甲幼虫取食叶片面积随龄期变化的模型

Fig. 1 Models between area of leaf to be eaten and Brontispa longissima larval instar

3 结论

食料是限制椰心叶甲扩散分布的重要因素.椰心叶甲取食危害多种棕榈植物,但不同寄主植物危害程度不同.观察结果表明椰心叶甲成虫和幼虫取食为害造成心叶损伤,由于受害部位病变,病斑扩

大,进而导致叶片枯死. 各龄幼虫中以高龄幼虫取食痕较粗,危害量较大. 如1龄幼虫取食痕细线状. 宽度为0.1 mm 左右,3~5龄幼虫取食痕宽达1 mm 左右. 成虫取食线相对较细,在0.5 mm 以下,但较深而密集、取食面积较大. 寄主植物的年龄对幼虫的成活影响较大,4 年生以上的苗木较适宜. 幼虫对不同寄主取食量有差异,一般以椰子取食面积较大,幼虫期总取食量在40~48 cm². 通过分析建立几种寄主植物上取食面积与椰心叶甲幼虫龄期间之间关系的模型.

参考文献:

- [1] MADDISON P A. Coconut hispine beetle[J]. Advisory Leaflet South Pacific Commission, 1983, 4(17): 4-7.
- [2] STAPLEY J H. Insect pests of coconuts in the Pacific region[J]. Outlook on Agriculture, 1973, 7(5); 211—217.
- [3] STAPLEY J H. Coconut leaf beetle (*Brontispa*) in the Solomons [3]. Alafua Agriculture Bulltin, 1980, 5(4): 17—22.
- [4] IAU C S K. Occurrence of Brontispa longissima (Gestro) in Hong Kong[J]. Quarterly Newsletter Asia and Pacific Plant Protection Commission, 1991, 34(3—4): 10.
- [5] 曾 玲,周 荣,崔志新,等.寄主植物对椰心叶甲生长 发育的影响[J].华南农业大学学报(自然科学版), 2003,24(4):37—39.

【责任编辑 周志红】