一类带功能性捕食者-食饵系统解的渐近性

戴婉仪1、付一平2

(1 华南农业大学 理学院,广东 广州510642; 2 华南理工大学 应用数学系,广东 广州510640)

摘要: 研究了一类带功能性的具有周期系数的捕食者-食饵系统, 系统捕食者和食饵 2 个物种在有界区域 Ω 内的相 互作用. 应用周期上、下解方法讨论系统的解的长时间渐近行为, 得到相应的正解在拟解之间.

关键词:扩散:捕食者-食饵系统:渐近性

中图分类号: 0175.29

文献标识码: A

文章编号: 1001-411X (2004) 04-0114-04

Asymptotic behavior of solution for a functionality predator-prey system

DAI Wan-yi¹ FU Yi-ping²

(1 College of Science, South China Agric, Univ., Guangzhou 510642, China;

2 Dept. of Applied Mathematics, South China Univ. of Tech., Guangzhou 510640, China)

Abstract: A kind of predator-prey system with periodic coefficients and functionality was discussed. In the system, predator and prey interact each other in a bounded domain Ω . An asymptotic behavior of the solution in predator-prey system is presented by applying periodic upper solution and lower solution. And a conclusion was drawn that the corresponding positive solution lies between the two quasisolutions.

Key words: diffusion; predator-prey system; asymptotic behavior

正平衡点和周期解的存在性和稳定性问题是数 学思想对生物种群持久性问题的准确而又科学的反 映,种群的持续生存实际上是生态系统的一种稳定 性. 本文利用单调方法[1] 和周期系统的周期上下解 方法[2],讨论了方程组平衡解的全局稳定性以及方 程组的解关于时间渐近性态,从而得到本文的主要 结果: 定理 1~3. 它对文献[3~5] 中所研究的系统 作了生物学意义下的改进,添加了功能性反应函数.

研究一类带功能性的捕食者-食饵系统:
$$u_{t} - d_{1}(t) \Delta u = u \left[a(x,t) - b(x,t)u - c(x,t) \frac{v}{1 + h(x,t)u} \right],$$

$$x \in \Omega, t > 0$$

$$v_{t} - d_{2}(t) \Delta v = (1)$$

$$v \left[-e(x,t) - f(x,t)v + g(x,t) \frac{u}{1 + h(x,t)u} \right],$$

$$x \in \Omega, t > 0$$

$$Bu(x,t) = Bv(x,t) = 0, x \in \partial\Omega, t > 0,$$

$$u(x,0) = u_{0}(x), v(x,0) = v_{0}(x),$$

$$x \in \Omega$$

式中, u(x, t)和 v(x, t)分别表示食饵和捕食者的种 群密度, Ω 是R " 中具有光滑边界的有界区域, a(x)t)和 e(x, t)分别表示食饵的出生率和捕食者的死亡 率, 系数 d_1 , d_2 , a, b, c, e, f, g 和 h 都是正的、光滑 的和关于时间 t 的 T— 周期函数, 系数的周期性反应 了季节的变化. $u_0(x) \ge 0$, $v_0(x) \ge 0$, 边界算子 **B**u $=a_0\frac{\partial u}{\partial a}+b_0(x)u=0(x\in\partial\Omega), a_0, b_0$ 满足 $a=0, b_0$ =1 或 $a_0=1$, $b_0(x) \ge 0$, $b_0(x) \in C(\partial\Omega)$, n 是 $\partial\Omega$ 的 外法向.

预备

当 v=0 时,对于方程 $u_{t} - d_{1}(t) \Delta u =$ u[a(x, t) - b(x, t)u], $x \in \Omega, t > 0$ $Bu(x, t) = 0, x \in \partial\Omega, t >$ (3)

有以下结论:

(2)

足

引理 1^[6] 特征值问题

$$\begin{aligned}
\phi_t - d_1(t) \, \Delta \phi - a(x, t) \, \phi &= \sigma \phi, \, x \in \Omega, \, t > 0 \\
\mathbf{B} \phi &= 0, \, x \in \partial \Omega, \, t > 0
\end{aligned}$$

 ϕ 是 T-周期的,有一个主特征值 $\sigma_1(a)$ 和一个正的主特征函数,且 $\sigma_1(a)$ 关于 a 是单调减少和连续的. 满足

- (1)如果 $\sigma_1(a) \ge 0$,则对每个非负初始函数,方程(3)的零解是全局渐近稳定的:
- (2)如果 $\sigma_1(a)$ < 0, 则方程 (3) 有一个正的周期 解 $\theta(x,t)$,且对每个非负的、非平凡的初始函数,它是全局渐近稳定的.

定义 1 若光滑 T一周期函数 (\bar{u}, \bar{v}) 和 $(\underline{u}, \underline{v})$ 满

$$\bar{u}_{t} - d_{1}(t) \Delta \bar{u} = \bar{u} \left[a(x, t) - b(x, t) \bar{u} - c(x, t) \frac{\underline{v}}{1 + h(x, t) \bar{u}} \right],$$

$$x \in \Omega, t > 0$$

$$\bar{v}_{t} - d_{2}(t) \Delta \bar{v} = \bar{v} \left[-e(x, t) - f(x, t) \bar{v} + g(x, t) \frac{\bar{u}}{1 + h(x, t) \bar{u}} \right],$$

$$x \in \Omega, t > 0$$

$$\underline{u}_{t} - d_{1}(t) \Delta \underline{u} = \underline{u} \left[a(x, t) - b(x, t) \underline{u} - c(x, t) \frac{\bar{v}}{1 + h(x, t) \underline{u}} \right],$$

$$x \in \Omega, t > 0$$

$$\underline{v}_{t} - d_{2}(t) \Delta \underline{v} = \underline{v} \left[-e(x, t) - f(x, t) \underline{v} + g(x, t) \frac{\underline{u}}{1 + h(x, t) \underline{u}} \right],$$

$$x \in \Omega, t > 0$$

$$\underline{v}_{t} - d_{2}(t) \Delta \underline{v} = \underline{v} \left[-e(x, t) - f(x, t) \underline{v} + g(x, t) \frac{\underline{u}}{1 + h(x, t) \underline{u}} \right],$$

$$x \in \Omega, t > 0$$

 $\mathbf{B}\,\bar{u} = \mathbf{B}\,\underline{u} = \mathbf{B}\,\bar{v} = \mathbf{B}\,\underline{v} = 0, \ x \in \partial\Omega, \ t > 0$ 则 (\bar{u}, \bar{v}) 和 $(\underline{u}, \underline{v})$ 分别称为系统(1)的 T -周期拟解.

引理 $2^{[2]}$ 若系统 (1)存在一对 T 一周期上、下解 (\tilde{u}, \tilde{v}) 和 (\hat{u}, \hat{v}) ,则系统 (1)存在一对 T -周期拟解 (\bar{u}, \bar{v}) 和 (u, v)满足:

$$\hat{u} \leqslant \underline{u} \leqslant \bar{u} \leqslant \tilde{u},$$

 $\hat{v} \leqslant \hat{v} \leqslant \bar{v} \leqslant \tilde{v},$ $x \in \Omega, t > 0$

且当初始函数满足

$$\hat{u}(x,0) \leqslant u_0(x) \leqslant \tilde{u}(x,0), \\
\hat{v}(x,0) \leqslant v_0(x) \leqslant \tilde{v}(x,0), \\$$

时,方程(1)、(2)相应的解(u,v)满足

$$\begin{cases} \underline{u}(x,t) \leqslant u(x,t) \leqslant \overline{u}(x,t), \\ v(x,t) \leqslant v(x,t) \leqslant \overline{v}(x,t), \end{cases} x \in \Omega, t \to \infty$$

证明可见文献[2].

系统(1)的 T—上、下解的定义,详见文献[2].

2 定理及证明

对于方程(1)(2)显然(0,0)是其下解. 若取常数

$$P > \max \left\{ rac{a_{ ext{M}}}{b_{ ext{m}}}, \parallel u_{0} \parallel_{\infty}
ight\}, \ Q > \max \left\{ rac{-e_{ ext{m}} + g_{ ext{M}}}{f_{ ext{m}}} rac{P}{1 + h_{ ext{m}}P}, \parallel_{V_{0}} \parallel_{\infty}
ight\},$$

其中

$$a_{\mathrm{M}} = \max_{\mathbf{x} \in \Omega, \ t \geqslant 0} \left\{ a(\mathbf{x}, \ t) \right\},$$
 $a_{\mathrm{m}} = \min_{\mathbf{x} \in \Omega, \ t \geqslant 0} \left\{ a(\mathbf{x}, \ t) \right\},$

 $b_{\rm m}$, $e_{\rm m}$, $g_{\rm M}$, $h_{\rm m}$, $f_{\rm m}$ 类似,则(P,Q)是方程(1)(2)的上解. 由文献[2] 中的定理 2.1 可知,方程(1)(2)存在惟一解(u,v),且满足

$$(0,0) \leqslant (u,v) \leqslant (P,Q),$$

$$x \in \Omega, t > 0$$

由引理 1 可知,当 $\sigma_1(a)$ <0 时,方程 (3) 存在正周期解 $\theta_1(x,t)$,而当 $\sigma_1\left(-e+g\frac{\theta_1}{1+h\theta_1}\right)$ <0 时,方

程

$$\begin{cases} v_{t} - d_{2}(t) \Delta v = v \left[-e(x, t) - f(x, t)v + \frac{\theta_{1}}{1 + h(x, t)\theta_{1}} \right], \\ x \in \Omega, t > 0 \\ Bv = 0, x \in \partial\Omega, t > 0 \end{cases}$$

存在正周期解 $\theta_2(x, t)$.

定理 1 若 $\sigma_1(a) \ge 0$, $\sigma_1(-e) \ge 0$ 时,则方程 (1)(2)的解(u, v)满足

$$(u, v) \rightarrow (0, 0), x \in \Omega, t \rightarrow \infty$$

证明 由 u, v 的非负性, 有

$$u_t - d_1(t) \Delta u \leq u[a(x, t) - b(x, t)u].$$

根据比较原理 $u \leq U$, $x \in \Omega$, t > 0, 其中 U 是方

程

$$\begin{cases}
U_{t} - d_{1}(t) \Delta U = U[a(x, t) - b(x, t)U] \\
x \in \Omega, t > 0
\end{cases}$$

$$BU(x, t) = 0, x \in \partial\Omega, t > 0$$

$$U(x, 0) = u_{0}(x)$$
(4)

的解. 根据引理 1, 若 $\sigma_1(a) \ge 0$, 则方程(4)的解有 $U \rightarrow 0$, $x \in \Omega$, $t \rightarrow \infty$

从而

$$y \rightarrow 0$$
, $x \in \Omega$, $t \rightarrow \infty$

对任给 > 0, $\exists T_0 > 0$, 使得 $t > T_0$ 时, 有 $u \le U \le \varepsilon$.

由于
$$\frac{u}{1+h(x,t)u}$$
是单调增加的,因而

$$v_t - d_2(t) \Delta v \leqslant v - e(x, t) - f(x, t)v +$$

$$g(x, t) \frac{\varepsilon}{1 + h(x, t)\varepsilon},$$

$$x \in \Omega, t > T_0$$

根据比较原理, $v \leq V$, $x \in \Omega$, $t > T_0$, 其中 V 是 方程

$$\begin{cases} V_t - d_2(t) \Delta V = V - e(x, t) - f(x, t) V + \\ g(x, t) \frac{\varepsilon}{1 + h(x, t)\varepsilon} , \\ x \in \Omega, t > T_0 \\ BV(x, t) = 0, x \in \partial \Omega, t > T_0 \\ V(x, T_0) = v_0(x, T_0) \end{cases}$$

的解.

因为 σ_1 (-e) > 0,则对充分小的 ε ,必有 $\sigma\left(-e+g\frac{\varepsilon}{1+h\varepsilon}\right) \ge 0$,再根据引理 1,有 $V \to 0$, $x \to \Omega$, $t > T_0$,从而有 $v \to 0$, $x \in \Omega$, $t \to \infty$.

定理 2 若
$$\sigma_1(a) < 0$$
, $\sigma_1 \left(-e + g \frac{\theta_1}{1 + h\theta_1} \right) > 0$,
且 $u_0(x)$ 不恒为零,则方程(1)(2)的解 (u, v) 满足

 $(u, v) \rightarrow (\theta_1, 0), x \in \Omega, t \rightarrow \infty.$

证明 若 $\sigma_1(a)$ <0 时,显然(θ_1 , 0)为方程(1)的 半平凡周期解. 由引理 1 知,此时方程(4)的解 U 满足 $U \rightarrow \theta_1, x \in \Omega, t \rightarrow \infty$.

因而对任给 $\varepsilon > 0$,当 $\exists T_1 > T_0$, $t > T_1$ 时, $u \leqslant U \leqslant \theta_1 + \varepsilon$,于是有

$$v_t - d_2(t) \Delta v \leqslant v \left[-e(x, t) - f(x, t)v + g(x, t) \frac{\theta_1 + \varepsilon}{1 + h(x, t)(\theta_1 + \varepsilon)} \right],$$
 $x \in \Omega, t > T_1$ (5) 当 $\sigma_1 \left[-e + g \frac{\theta_1}{1 + h\theta_1} \right] > 0$ 时,对充分小的正数 ε ,有 $\sigma_1 \left[-e + g \frac{\theta_1 + \varepsilon}{1 + h(\theta_1 + \varepsilon)} \right] \geqslant 0.$

根据比较原理, $v \leqslant V$, $x \in \Omega$, $t > T_1$, 其中 V 是方程

$$\begin{cases} V_{t} - d_{2}(t) \Delta V = V - e(x, t) - f(x, t)V + \\ g(x, t) \frac{\theta_{1} + \varepsilon}{1 + h(x, t)(\theta_{1} + \varepsilon)} , \\ x \in \Omega, t > T_{1} \\ BV(x, t) = 0, x \in \partial\Omega, t > T_{1} \\ V(x, T_{1}) = v(x, T_{1}) \\ 21994 - 2016 \text{ China Academic Journal Electronic Pull} \end{cases}$$
(6)

的解.

由引理 1 有, $V \rightarrow 0$, $t > T_1$, 从而 $v \rightarrow 0$, $x \in \Omega$, $t \rightarrow \infty$. 因而 $\exists T_2 > T_1$, 使得当 $t > T_2$ 时, 有 $v < \varepsilon$, 于是 $u_t - d_1(t) \Delta u \geqslant$

$$u[a(x, t) - b(x, t)u - c(x, t)\varepsilon],$$

由比较原理,有 $u \geqslant U'$, $x \in \Omega$, $t > T_2$, 其中 U'是下列方程

$$\begin{cases} U_t^{\varepsilon} - d_1(t) \Delta U^{\varepsilon} = \\ U^{\varepsilon} [a(x, t) - b(x, t) U^{\varepsilon} - c(x, t) \varepsilon], \\ x \in \Omega, t > T_2 \end{cases}$$

$$BU^{\varepsilon}(x, t) = 0, x \in \partial\Omega, t > T_2$$

$$U^{\varepsilon}(x, T_2) = u(x, T_2)$$

的解.

对充分小 ε , 有 $\sigma_1(a-c\varepsilon) < 0$, 故 $U \to \theta_1$, $x \in \Omega$, $t \to \infty$, 由于 $U \leqslant u \leqslant U$, 根据两边夹准则, 得到 $u \to \theta_1$, $x \in \Omega$, $t \to \infty$.

定理 3 若 $\sigma_1(a-c\theta_2) < 0$, $\sigma_1\left[-e+g\frac{\Phi_1}{1+h\Phi_1}\right] < 0$, 且 $u_0(x)$, $v_0(x)$ 不恒为 0, 则系统 (1)存在一对 T-

周期上、下解 (θ_1, θ_2) 和 (Φ_1, Φ_2) ,且方程(1),(2)的解(u, v)满足

$$(\underline{u},\underline{v}) \leqslant (u,v) \leqslant (\bar{u},\bar{v}),$$

$$x \in \Omega, t \to \infty$$

其中 (\bar{u}, \bar{v}) 和 $(\underline{u}, \underline{v})$ 是方程(1)的一对周期拟解,满足

$$\Phi_{1} \leq \underline{u} \leq \overline{u} \leq \theta_{1},
\Phi_{2} \leq \underline{v} \leq \overline{v} \leq \theta_{2}, \quad x \in \Omega, \ t > 0.$$

证明 当
$$\sigma_1(a-c\theta_2)$$
<0 时,方程
$$\begin{cases} \Phi_{1t}-d_1(t)\Delta\Phi_1 = \\ \Phi_{1[a(x,t)-b(x,t)}\Phi_1-c(x,t)\theta_2] \\ \mathbf{B}\Phi_1 = 0 \end{cases}$$

存在正周期解 $\Phi_1(x, t)$. 由比较原理可知 $\Phi_1 \leq \theta_1$, $x \in \Omega$, $t \geq 0$.

当
$$\sigma_{l}$$
 $\left(-e+g\frac{\Phi_{l}}{1+h\Phi_{l}}\right)$ < 0 时,方程
$$\left\{\Phi_{2t}-d_{2}(t)\Delta\Phi_{2}=\Phi_{2}\left[-e(x,t)-f(x,t)\Phi_{2}+g(x,t)\frac{\Phi_{l}}{1+h(x,t)\Phi_{l}}\right]\right\}$$
 $\mathbf{B}\Phi_{2}=0$

存在正周期解 $\Phi_2(x, t)$. 根据比较原理,有 $\Phi_2 \leqslant \theta_2$, $x \in \Omega$, $t \geqslant 0$.

注意到 (θ_1, θ_2) 和 (Φ_1, Φ_2) 是方程(1)的一对T一周期上、下解。由引理 2,方程(1)存在一对 T

周期拟解(ū,v)和(u,v),满足 iblishing House, All rights reserved, http://www.cnki.ne

$$\Phi_{1} \leqslant \underline{u} \leqslant \overline{u} \leqslant \theta_{1},
\Phi_{2} \leqslant v \leqslant \overline{v} \leqslant \theta_{2}, \quad x \in \Omega, t > 0$$

且当初值满足

$$\Phi_{1}(x,0) \leqslant u_{0}(x) \leqslant \theta_{1}(x,0),
\Phi_{2}(x,0) \leqslant v_{0}(x) \leqslant \theta_{2}(x,0),
x \in \Omega$$

时,方程(1)(2)的解满足

$$\begin{cases} \underline{u}(x,t) \leqslant u(x,t) \leqslant \bar{u}(x,t), \\ \underline{v}(x,t) \leqslant v(x,t) \leqslant \bar{v}(x,t), \end{cases} x \in \Omega, t \to \infty. \quad (7)$$

下面证明对任一非负、非平凡的初值(u_0 , v_0), 方程(1),(2)的解都有式(7)的渐近性质.

由 $\sigma_1(a)$ 关于 a 是单调减少的,当 $\sigma_1(a-c\theta_2)$ <0 时,有 $\sigma_1(a)$ $\leq \sigma_1(a-c\theta_2)$ <0 由定理 2 可知 $\exists T_i$ > T_0 , 当 t> T_1 时,u $\leq U$ $\leq \theta_1 + \varepsilon$,以及式(5)成立,且 v $\leq V$,V 是方程(6)的解,对充分小的 ε ,由于

$$\sigma_1 \left[-e + g \frac{\theta_1 + \varepsilon}{1 + h (\theta_1 + \varepsilon)} \right] < \sigma_1 \left[-e + g \frac{\Phi_1}{1 + h \Phi_1} \right] < 0,$$

根据引理 1, 有 $V \rightarrow \theta_2$, $x \in \Omega$, $t \rightarrow \infty$, 因而 $\exists T_2' > T_1$, 当 $t > T_2'$ 时, $v \leqslant V \leqslant \theta_2 + \varepsilon$. 于是

$$u_t - d_1(t) \Delta u \geqslant$$

$$u\left[a(x,t)-b(x,t)u-c(x,t)\frac{\theta_{2}+\varepsilon}{1+h(x,t)u}\right] \geqslant u\left[a(x,t)-b(x,t)u-c(x,t)(\theta_{2}+\varepsilon)\right],$$

$$x \in \Omega, t > 0$$

由比较原理, $u \ge U$, 其中U 是

$$\begin{cases} \underline{U}_{t} - d_{1}(t) \Delta \underline{U} = \underline{U}[a(x, t) - b(x, t) \underline{U} - c(x, t)(\theta_{2} + \varepsilon)], \\ x \in \Omega, t > T_{2}' \\ \underline{B}\underline{U} = 0, x \in \partial\Omega, t > T_{2}' \\ \underline{U}(x, T_{2}') = u(x, T_{2}') \end{cases}$$

的解.

由于 ε 的充分小以及 $\sigma_1(a-c\theta_2) < 0$,根据引理 1 $\underline{U} \rightarrow \Phi_1, x \rightarrow \Omega, t \rightarrow \infty$,因此 $\exists T_3' > T_2'$,当 $t > T_3'$ 时, $u \geqslant U > \Phi_1 - \varepsilon$,于是

$$v_{t} - d_{2}(t) \Delta v \geqslant$$

$$v = e(x, t) - f(x, t)v +$$

$$g(x, t) \frac{\Phi_{l} - \varepsilon}{1 + h(x, t)(\Phi_{l} - \varepsilon)}$$

$$x \in \Omega$$
, $t > T_3'$

由比较原理 $v \ge \underline{V}$, 其中 \underline{V} 是方程

$$\underbrace{V_{t} - d_{2}(t) \Delta \underline{V}}_{t} = \underbrace{V_{t} - e(x, t) - f(x, t) \underline{V}}_{t} + \underbrace{g(x, t) \frac{\Phi_{1} - \varepsilon}{1 + h(\Phi_{1} - \varepsilon)}}_{t} \mathbf{Y}$$

$$x \in \Omega, t > T_{3}'$$

$$\underline{V}(x, T_{3}') = v(x, T_{3}')$$

的解.

综上所述,得到 (θ_1, θ_2) 和 (Φ_1, Φ_2) 是系统(1)的上、下解,即 $\Phi_1 \le u \le \theta_1$, $\Phi_2 \le v \le \theta_2$, $x \in \Omega$, $t > T_4'$,在方程(1)(2)中,若取 T_4' 为初始时间,则可知方程(1)(2)的解具有式(7)的渐近性质.

注: 当 h(x, t) = 0 时, 与文献[3] 结论一致.

参考文献:

- [1] 叶其孝, 李正元. 反应扩散方程引论 M]. 北京: 科学出版社, 1999. 192; 213.
- [2] ZHOU I, FUYP. Existence and stability of periodic quasisolutions in nonlinear parabolic systems with discrete delays [J]. Journal of Mathematical Analysis and Applications 2000, 250: 139—161.
- [3] 付一平,戴婉仪. 一类含捕食者—食饵系统解的渐近性 [J]. 华南理工大学学报(自然科学版), 2003, 31(2): 88 - 90.
- [4] BROWN K I, HESS P. Positive periodic solutions of predatorprey reaction diffusion system [J]. Nonl Anal TMA, 1991, 16: 1147—1158.
- [5] 李大华. 一类捕食者-食饵系统的时间周期解的存在性与稳定性 J. 应用数学学报, 1999, 22(3): 413—421.
- [6] WEI F, XIN L. Asymptotic periodicity in diffusive logistic equations with discrete delays[J]. Nonl Anal TMA, 1996, 26 (2): 171-178.

【责任编辑 李晓卉】