1-(1H-1, 2, 4-三唑基)-1-环(氧)烷基-取代 苯甲醇的合成

张耀谋1,陈 君1,徐汉虹1,金桂玉2

(1 农药与化学生物学教育部重点实验室, 华南农业大学 昆虫毒理研究室, 广东 广州 510642, 2 南开大学 元素有机化学研究所, 元素有机化学国家重点实验室, 天津 300071)

摘要: 用 α -(1H-1, 2, 4-三唑-1-基)取代苯乙酮与二卤化物进行取代关环反应。合成了 8 个新型三唑类化合物,其化学结构经 IR、 ¹H NMR、MS 和元素分析确证. 讨论了化合物的反应性质及波谱性质. 化合物的生测数据表明, 化合物对小麦锈病有良好抑制作用.

关键词: 1,2 4 三唑; 还原反应; 波谱性质; 杀菌活性中图分类号: 0621.3 文献标识码: A

文章编号: 1001-411X (2005) 01-0067-03

Synthesis of 1-(1H-1, 2, 4-triazolyl) -1-cycloalkyl-(sub)phenylmethanol

ZHANG Yao-mou¹, CHEN Jun¹, XU Han-hong¹, JIN Gui-yu²

(1 The Key Lab of Pesticide and Chemical Biology, Ministry of Education, Lab of Insect Toxicology, South China Agric. Univ., Guangzhou 510642, China; 2 Institute of Elemento-Organic Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China)

Abstract: Eight new 1-(1H-1, 2, 4-triazolyl)-1-Cycloalkyl-(Sub)phenylmathanol compounds were synthesized through the reaction of 1-(1H-1, 2, 4-triazolyl)-1-(sub) benzoyl-cycloalkane with KBH4, which were identified by IR, ¹H NMR, MS and elemental analysis. The reactive properties and spectrum data were also discussed. Biological activity data indicated that some of the above compounds had good inhibitory action on *Puccinia recondite* in wheat.

Key words; 1, 2, 4-triazole; reduction; spectrum properties; fungicide

1-取代-1, 2, 4三唑类化合物是一类广谱、高效、低毒、持效长的内吸性杀菌剂 ^{1, 2}. 同时三唑类杀菌剂单一的作用机制使真菌对这类化合物的抗性问题越来越突出. 对三唑类杀菌剂的结构改造、修饰以克服抗性问题成为研究热点 ^{3, 4}. 本文试图对现有杀菌剂三唑酮、三唑醇、多效唑等进行结构修饰,改变分子的立体空间构象及亲脂性. 用脂肪(杂)环取代苯氧基或苄基,设计并合成新的三唑类化合物 II1~8. 通过化合物 II1~8的生物活性的研究,试图说明以柔顺性较好的脂肪(杂)环取代钢性苯环后,对这类化合物活性的影响情况.

1 材料与方法

1.1 实验仪器和设备

¹HNMR用BRUCKER AC-P200Q型核磁共振仪测定,CDCl₃或DMSO为溶剂,TMS作内标;元素分析用Yanaca CHN CDRDER MT-3型自动分析仪测定;IR用Shimadzu-IR435型红外吸收光谱仪测定,KBr压片法或液膜法;MS用VG-7070E型质谱仪测定,熔点用MP-500型熔点仪测定,温度未校正.化学试剂均为CP或AR级.

1.2 方法

1.2.1 合成路线 目标化合物的合成路线如下:

其中, X = H, F, Cl, Br; Y = (CH₂)₄, (CH₂)₅, <math>C₂H₄O C₂H₄.

1.2.2 中间体 1-取代苯甲酰基-1-(1H-1, 2, 4-三唑基)-环(氧)烷 I_{1-8} 的合成(以中间体 I_{1} 为例) 在装备搅拌器、温度计和滴液漏斗的 100 mL 四口瓶中分别加入 0.01 mol α -(1H-1, 2, 4 三唑)-取代苯乙酮, 0.02 mol 无水 K_2CO_3 和 50 mL DMSO, 在 50~60 $^{\circ}$ 条件下,搅拌滴加 0.02 mol 1, 4-二溴丁烷.滴毕,继续在该温度下搅拌 4 h,冷却,混合物倒入 200 mL 水中,用乙酸乙酯 50 mL 萃取 3 次,合并萃取液,用无水硫酸钠干燥,脱溶得黄色油状液体,以乙酸乙酯和石油醚为溶剂,用溶剂梯度减压柱层析法分离,得到白色固体 I_{1} .

1.2.3 目标化合物 1-(1H-1, 2, 4-三唑基)-1-环(氧) 烷基取代苯甲醇 II_{1-8} 的合成通法(以 II_{1} 为例) 50 mL 反应瓶中加入 0.004 mol 1-苯甲酰基-1-(1H-1, 2, 4-三唑)-4-环戊烷和 15 mL 无水甲醇,冰水浴控温5~10 °C,分批加入 0.006 mol KBH4,继续室温搅拌6 h,然后往反应瓶中继续加入 0.167 g/mL 的NaHCO₃ 水溶液 12 mL,搅拌 2 h,用氯仿萃取,萃取液干燥,脱溶,得到稠状物,放置固化为白色固体,以乙酸乙酯和石油醚为溶剂,用溶剂梯度减压柱层析法分离,得到白色固体 II_{1} .

以上面相同方法合成目标化合物Ⅱ2~8.

2 结果

2.1 目标化合物的物化性质及波谱性质

化合物 II_{1~8}的物理常数及元素分析数据见表 1, 化合物 II_{1~8}的红外光谱及 ¹H NMR 数据见表 2. 化合物 II_{1~8}的红外光谱数据中, 所有目标化合物的特征基团均有明显吸收: 三唑环上的C—H伸缩振动吸收带出现在3 125 cm⁻¹附近, 为强度中等的尖峰; 脂环上亚甲基的C—H伸缩振动吸收带出现在2 960 cm⁻¹左右. 而其剪式振动谱带则在1 450 cm⁻¹附近. 三唑环的骨架振动表现在1 520和14 900 cm⁻¹附近 2 处吸收峰, 其中波数大的吸收峰强度较大.

在化合物的 ¹HNMR 数据中,发现其数据表现出下列性质:化合物分子中三唑环 3,5 位上质子的吸收在 &7.70~8.30)之间,2 个质子不相互偶合,表现为2个吸收单峰;脂肪环的质子表现为2组宽的吸收峰,这是由于环的构象在室温下不断变化,环上质子间的裂分难以表现出来的缘故.

测定了部分化合物的质谱,目标物分子离子峰丰度都很小;脂肪环与环外碳原子C一C的断裂为主要断裂方式;质谱碎片中,存在三唑环及三唑环脱N2后的碎片吸收峰.

2.2 生物活性

取质量浓度为 $500 \, P_{\rm g/mL}$ 的目标化合物,采用活体小株法测试目标化合物对小麦锈病和水稻纹枯病的抑制作用,结果见表 3.

表 1 化合物Ⅱ1~8的物理常数及元素分析数据

Tab. 1 Experimental data of synthesized compounds II_{1-8}

化合物 compound	X	Y	收率	熔点 m.p./ °С -	元素分析数据(计算值)				
			yield		elementary analysis(calcd.)/%				
			/ %	m. p./	С	Н	N		
II 1	Н	$(CH_2)_4$	77. 0	94~95	69.21(69.11)	7.11(7.04)	17.44(17.27)		
II $_2$	F	$(CH_2)_4$	83. 8	108~110	64.20(64.35)	6.11(6.17)	16.04(16.08)		
II 3	C1	$(CH_2)_4$	69. 0	129~130	60.39(60.54)	5.66(5.76)	15.08(15.13)		
II 4	$_{\mathrm{Br}}$	$(CH_2)_4$	76. 1	136~ 137	52. 22(52. 20)	5.00(5.01)	12.99(13.04)		
II 5	F	$(CH_2)_5$	81.0	132~134	65.59(65.44)	6.70(6.59)	15.03(15.26)		
II 6	$_{\mathrm{Br}}$	$(CH_2)_5$	90. 0	151~153	53.64(53.58)	5.55(5.40)	12.31(12.50)		
II $_{7}$	F	$(C_2H_4)_2O$	89. 6	127~128	60.58(60.44)	6. 10(5. 82)	15.05(15.15)		
II 8	\mathbf{Br}	$(C_2H_4)_2O$	82. 3	66~67	49.85(49.70)	4.77(4.83)	12.49(12.42)		

0/0

表2 化合物 II 1~8的 ¹H NMR 和 IR 数据

Tab. 2 1 H NMR and IR data of synthesized compounds II $_{1-8}$

化合物	1 H NM R^{1} / \otimes H)	红外数据 IR(υ)/ cm ⁻¹
compound	n nm n / v/n/	红介致指 I N() // (III
\coprod_{1}	1.60~~1.92 (m, 4H, CH2 CH2CH2CH2); 2.08~~2.44 (m, 4H, CH2CH2CH2CH2 CH2); 4.38 (s.4) (m.4) (m	3 398, 3 123, 2 952,
	1H, CH); 4. 84(s, 1H, OH); 6. 72 ~ 7. 26 (m, 5H, C_6H_5); 7. 76, 7. 92 (d, 2H, Tr-H).	1 507, 1 481, 1 451
\coprod_2	1.48~1.92(m, 4H, CH ₂ $\underline{\text{CH}_2\text{CH}_2\text{CH}_2}$; 2.10~2.48(m, 4H, $\underline{\text{CH}_2\text{CH}_2\text{CH}_2}$; 4.56(s	3 222, 3 101, 2 950,
	$1H,\;CH);\;4.\;94(s\;\;1H,\;OH);\;6.\;78\sim7.\;12(m,\;4H,\;4-F-C_6H_4);\;7.\;96,\;8.\;07\;(d,\;2H,\;Tr\cdot H).$	1 506, 1 482, 1 454
\coprod_3	1. $52 \sim 1$. $90(m, 4H, CH_2 CH_2CH_2CH_2)$; 2. $10 \sim 2$. $40(m, 4H, CH_2CH_2CH_2 CH_2)$; 4. $52(s, 1H, CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	3 223, 3 149, 2 946,
	CH); 4.85(s 1H, OH); 6.68 \sim 7.24(m, 4H, 4-Cl-C ₆ H ₄); 7.80, 7.94 (d, 2H, Tr-H).	1 508, 1 484, 1 429
II 4	1.48~1.88(m, 4H, CH_2 $\underline{CH_2CH_2}CH_2$); 2.08~2.36(m, 4H, $\underline{CH_2}CH_2CH_2$ $\underline{CH_2}$); 4.82(s	3 285, 3 147, 2 944,
	$1 \text{ H, CH); 4. } 88 \text{ (s, 1H, OH); 6. } 62 \text{ \sim 7. } 38 \text{ (m, 4H, 4-Br-C}_6\text{H}_4\text{); 7. } 72, 7. \\ 86 \text{ (d, 2H, Tr-H).}$	1 509, 1 485, 1 429
II 5	$1.06 \sim 2.54 \text{(m, 10H, } (\underline{\text{CH}_2})_5); 3.92 \text{(s, 1H, CH)}; 4.68 \text{(s, 1H, OH)}; 6.69 \sim 6.92 \text{(m, 4H, CH)};$	3 216, 3 149, 2 943,
	$4-F-C_6H_4$); 7. 87, 7. 96 (d. 2H, Tr-H).	1 504, 1 481, 1 448
II 6	$1.00 \sim 2.50$ m, 10 H, $(\underline{CH_2})_5$; $4.17(s, 1H, CH)$; $4.64(s, 1H, OH)$; $6.58 \sim 6.89$ (m, 4 H,	3 220, 3 199, 2 979,
	4-Br-C ₆ H ₄); 7. 87, 7. 96 (d. 2H, Tr-H).	1 502, 1 484, 1 447
II 7	1. 96 ~ 2. 39(m, 4H, $\underline{\text{CH}_2}$ CH ₂ OCH ₂ $\underline{\text{CH}_2}$); 3. 02 ~ 3. 81 (m, 4H, CH ₂ $\underline{\text{CH}_2}$ OCH ₂ CH ₂); 4. 56 (s,	3 221, 3 108, 2 989,
	$1H,CH);4.60(s,1H,OH);6.66^{\sim}6.89(m,4H,4F-C_6H_4);7.76,7.88(d,2H,Tr-H).$	1 507, 1 483, 1 424
II 8	2. $02 \sim 2$. 58 (m, 4H, $\underline{\text{CH}}_2$ $\underline{\text{CH}}_2$ $\underline{\text{CH}}_2$); 3. $08 \sim 3$. 92 (m, 4H, $\underline{\text{CH}}_2$ $\underline{\text{CH}}_2$ $\underline{\text{C}}\underline{\text{H}}_2$ $\underline{\text{CH}}_2$); 4. 69 (s,	3 290, 3 134, 2 952,
	1H, CH); 4. 71(s 1H, OH); 6. $65 \sim 7.37$ (m, 4H, $4 \cdot Br \cdot C_6 \cdot H_4$); 8. 00 8. 05 (d, 2H, $Tr \cdot H$).	1 502, 1 483, 1 454

¹⁾ Tr= triazolyl

表 3 化合物 II 1~8 对小麦锈病和水稻纹枯病的活性结果

Tab. 3 The funcicidal activities against Puccinia recondite in wheat and Puricularia grisea in rice

	uguiist i uccuitu	reconunc	III WILL	una 1 yr		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
项目 item	II 1	II 2	II 3	II 4	II 5	II ₆	II 7	II 8
小麦锈病 Puccinia recondite in wheat	89	85	81	79	80	89	61	50
水稻纹枯病 Pyricularia grisea in rice	40	39	45	41	50	56	36	53

3 讨论与结论

∞三唑一取代苯乙酮与卤代烃发生取代反应,一般情况下,在碱作缚酸剂,非质子极性溶剂下可顺利进行⁵¹. 中间体I的还原氢化合成目标化合物II. 酮基还原为羟基有氢气还原、异丙醇铝还原、硼氢化物还原等多种方法. 本研究采用 KBH4 为还原剂、甲醇为溶剂进行反应,顺利得到目标化合物,该反应操作简单,反应收率高,是实验室进行这类反应的好方法.

目标化合物对小麦锈病有良好的防治效果,其中,当目标化合物分子结构中的的脂肪环为环戊基或环己基时,杀菌活性相近,均比脂肪环为氧杂环己基的化合物活性高.目标化合物对水稻纹枯病的抑制活性较差.

对现有杀菌剂三唑酮、三唑醇、多效唑等进行结构修饰,改变分子的立体空间构象及亲脂性. 用脂肪(杂)环取代苯氧基或苄基,合成新的三唑类化合物II1~8. 当所合成化合物结构中存在与苯环相似性质

的环戊基、环己基时, 化合物对小麦锈病具有良好的抑制活性, 而用杂环来代替时, 活性明显降低.

参考文献:

- [1] MEISER W, BUCHEL K H, GEWE F, Fungicidal 1-(Phenoxy methyl) triazoles Pl. Ger Offen; Ger2201063, 1973.
- [2] EIBEHL BUCHELKH, LUERSSENK, et al. Azolyl alkenones and alkenols and their use as plant growth regulators and fungicides [P]. Ger Offen: Ger3144670, 1983.
- [3] 丁明武, 宿亚丽, 刘小鹏, 等. 1-(2-咪唑啉酮基)-1H-1, 2. 4-三唑衍生物的合成与杀菌活性[J]. 化学学报, 2002, 60(20): 1.893-1.898.
- [4] 陈文彬, 张耀谋, 金桂玉. α-(1H-1, 2, 4-三唑-1-基)-β-芳硫基取代苯丙醇的合成及其生物活性研究[J]. 化学 学报, 2002, 60(7); 1, 303-1, 310.
- [5] 张耀谋,陈文彬,金桂玉.3,3-二甲基-1-(1H-1,2,4-三 唑-1-基)-2-丁酮及 1-(1H-1,2,4-三唑-1-基)取代苯乙酮与二溴化物的关环反应及产物的生物活性[J].高等学校化学学报,2003,24(3):431-434.

【责任编辑 周志红】