华南野生蔬菜守宫木的毒理学研究

郭巨先,杨 暹,郭兰良 (华南农业大学 园艺学院, 广东 广州 510642)

摘要:试验以华南主要野生蔬菜守宫木为材料、对其毒理学进行了探讨.结果表明:小鼠经口服 LDso大于 10.00 g kg-1;守宫木引起小白鼠的精子畸形率增多;守宫木 30 d喂养对 SD 大白鼠的肝、肾、脾、心、肺、睾丸等器 官有损伤,且组间差异显著,呈一定的剂量反映关系,试验表明 30 d喂养守宫木最大无作用剂量组应小于 2.5 g kg⁻¹. 说明守宫木可能具有蓄积毒性, 不适宜作为蔬菜长期日常食用.

关键词: 华南; 野生蔬菜; 守宫木; 毒理学

中图分类号: S647

文献标识码: A

文章编号: 1001-411X (2005) 04-0010-05

Studies on the toxicology of Sauropus androgynus a wild vegetable in South China

GUO Ju xian YANG Xian GUO Lan liang (College of Horticulture South China Agric Univ., Guangzhou 510642 China)

Abstract The toxicity of Sauropus and rogynus a wild vegetable in South China was investigated in this study. It was shown that the LD₅₀ form ice was higher than 10 00 g· kg⁻¹ and an increase of sperm abnormality was observed in mice. The 30 d feeding test showed that S. androgynus could damage live r kidney spleen heart lung and testis of the mice. The damage became severer with the increase of dose. In 30 d feeding with S and rogynus the maximal inactive dose group was less than 2.5 g· kg⁻¹, indicating that it is possible that S. and rogynus has an accumulative toxicity, and is not suitable for human and animal consumption

Key words South China wild vegetable, Sauropus androgynus toxicology

野生蔬菜由于具有独特的风味而深受人们的欢 迎,然而有关野菜的食品毒理学安全性评价方面的 研究报道尚少. 但有关守宫木可能存在毒性的相关 报道较多,如台湾连续发生因为食用守宫木而引起 中毒事件[1-3],但都没有进行系统的试验,缺少科学 依据. 针对人们对野菜食用安全性的模糊认识,本研 究按照中华人民共和国国家标准《食品安全性毒理 学评价程序和方法》对食品新资源和新资源食品的 规定(GB15193-94)^[4],并参照卫生部规划教材《卫 生毒理学基础》的方法[3,对守宫木进行了急性毒性 试验、小鼠精子畸形试验和 SD 大白鼠 30 d 喂养毒 性试验,并对其食用安全性进行探讨,为守宫木是否 可作为蔬菜食用提供科学依据.

材料与方法

1.1 材料

1.1.1 受试材料 守宫木 Sauropus androgymus L Merr, 别名天绿香、树仔菜、树菜、越南菜、泰国枸杞 菜等, 采自华南农业大学蔬菜基地野生蔬菜资源圃. 于植株的旺盛生长期采集地上可食部分,将样品洗 净晾干后,放入 70 ℃通风式烘箱中干燥至恒质量, 粉碎后过 100目筛,放置干燥器中备用.

1.1.2 受试动物 受试用动物昆明小白鼠和离乳 SD大白鼠为普通级,均由广东省医学实验动物中心

收稿日期: 2005 - 05 - 17 作者简介: 郭巨先(1970-), 女, 硕士, 现在广东省农业科学院蔬菜研究所工作. 通讯作 者: 杨暹(1964-), 男, 教授, Email yx16[@] tom. com.

提供. 试验前观察 1周,健康状况良好.

12 方法

1.2.1 经口急性毒性试验 取干样用蒸馏水调成混悬液. 按 Hom's法 (剂量递增法),设 0(蒸馏水对照)、1.00.2.15、4.64、10.00 g·kg⁻¹4种剂量. 受试动物随机分组,每组 10只昆明小白鼠,雌雄各半.体质量 $18\sim22$ g 试验小鼠接触受试物方式为经口灌胃,灌胃量为 0.02 mL·g⁻¹. 受试前 6 h禁食不禁水,连续观察 7 d

1.2.2 精子畸形试验 取干样用蒸馏水调成混悬液. 设 2.5.5.0 g· kg⁻¹ 2种剂量,另设阴性对照组 (蒸馏水)和阳性对照组 (环磷酰胺 0.04 g· kg⁻¹),共 4个组. 试验动物均选用雄性昆明小白鼠,体质量 $26 \sim 30$ g 小鼠接触受试物方式为经口灌胃,灌胃量 为 0.02 m L· g⁻¹,连续给样 5 d 于首次给予受试物后的第 35 d 颈椎脱臼法处死小鼠.参照文献 [5]的方法取精子,并计算精子畸形率.

1 2 3 30 d喂养 SD大白 鼠毒性试验 将受试物拌入饲料,按饲料中受试物的含量 (w)设低、中、高剂量组,分别为 2 5 5 0、10 0 g·kg⁻¹,另设对照空白组共 4个组,喂养大鼠 30 d 对照组喂基础饲料,受试动物均以自来水作饮用水. 试验动物随机分组,每组20只 SD大白鼠,雌雄各半,体质量 80 g左右.

临床检查:每天观察并记录动物的一般表现行为、中毒症状和死亡情况.每6d称1次体质量并统计饲料摄入量、计算平均摄食量、增质量及饲料利用率.

血液学指标的测定:参照文献 [6 7]的方法,对试验大鼠进行了血液学指标测定. 30 d喂养试验结束时,从 SD大白鼠的眼睛取血约 2 m L,加 EDTA - K2抗凝剂,采用瑞典产的 AC 920EO 型血球计数仪立即检测血液学指标,包括:红细胞计数 (RBC)、红细胞压积 (HCT)、平均红细胞压积 (MCV)、红细胞体

积分布宽度(RDW)、血红蛋白量(HGB)、平均红细胞血红蛋白含量(MCH)、平均红细胞血红蛋白浓度(MCHC)、白细胞计数(WBC),以及白细胞 3项分类中的淋巴细胞(LYM)、中间细胞(MID)、粒细胞(GRA).

血液生化学指标的测定:参照文献[8]的方法,对试验大鼠进行了血液学指标测定. 30 d喂养试验结束时,从 SD大白鼠的眼睛采血约 2 m I, 加肝素抗凝剂,通过离心分离血浆. 取血浆约 0 8 m I, 采用日本产的日立 7020型血液自动生化分析仪进行检测,测定了谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、总蛋白(TP)、白蛋白(ALB)、尿素氮(BUN)、肌酐(CREA)、血糖(GLU)等指标.

器官系数计算与病理组织学检查:于试验结束后,断头处死各组的全部大鼠,对各组动物进行肉眼病理学检查,取主要器官(肝、肾、脾、心、肺、睾丸),分别称质量,计算器官系数(脏体比).器官系数=(某个器官的湿质量体质量)×100%.同时取器官肝、肾、脾、心、肺、睾丸、小肠等用体积分数为10%的甲醛溶液将组织固定,石蜡包埋切片,H.E染色进行病理组织学检查.

2 结果与分析

2 1 小鼠急性毒性试验

在 7 d的观察期内,野菜守宫木的各供试组小白鼠均未出现明显中毒症状和不良反应,也未见动物死亡,小鼠经口服 LD_{50} 大于 $10~00~\mathrm{g}\cdot~\mathrm{kg}^{-1}$.

2 2 守宫木对小鼠精子畸形率的影响

守宫木的精子畸形检出率见表 1 经统计分析,阳性对照组与阴性对照组比较,精子畸形率显著增高. 守宫木的 5 0 g· kg⁻¹剂量组的精子畸形率达到 8 50%,比阴性对照组(2 10%)显著增高,试验结果为阳性.

表 1 守宫木对小鼠精子畸形率的影响

Tab. 1 Effect of Sauropus androgynus on abnormal rate of sperms in mice

组别	剂量	动物数	受检精子数	畸形数	畸形率	
group	dose ($g \cdot kg^{-1}$)	no of animal	sperms detected	no of teratosperm	abno∎mal na te 1∕⁄₀	
蒸馏水阴性对照 negative control	0.00	5	5 000	105	2 10	
环磷酰胺阳性对照 positive control	0.04	5	5 000	535	10.70	
守宫木 S. androgynus	2 50	5	5 000	230	4 60	
守宫木 S. androgynus	5. 00	5	5 000	425	8 50	

2 3 30 d 喂养毒性试验

231 一般症状表现 本次试验中对照组和低剂量组受试动物一般活动基本正常,中、高剂量组自第

5 d起受试动物开始出现中毒表现,以后继续消瘦. 高剂量组从第 10 d开始出现死亡,至试验结束,只剩下 1只雄性 SD大白鼠,体质量仅 47 g 中毒症状表 现为精神沉郁、运动失调、打堆伏卧、呼吸急促、全身震颤、极度消瘦、反应迟钝.解剖后肉眼观察心、肝、肾、脾和肺未见明显异常,但胃壁增生、发红,胃肠充气明显,呈透明.高、中、低剂量组之间差异显著.

2 3 2 体质量、饲料利用率 大鼠的体质量增长情况见图 1,饲料利用率见表 2 高剂量组的大白鼠至试验结束陆续死亡,所以未能得出饲料利用率. 30 d 喂养期间,各剂量组的大鼠在同时期同性别的体质量及体质量增长率、饲料利用率均显著低于对照,说明守宫木对 SD大白鼠生长有明显的抑制作用,对饲料利用率有显著的降低作用.

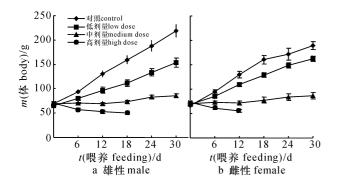


图 1 守宫木 30 d喂养对雌雄 SD大白鼠体质量变化的影响 Fig 1 Effect of 30 d feeding with Sauropus androgynus on body mass of male and female SD white rat

表 2 守宫木 30 d 喂养对 SD 大白鼠的饲料利用率的影响¹⁾
Tab. 2 Effect of 30 d feeding with Sauropus androgynus on feed efficiency of SD white rat

性别	剂 量	总增质量	总摄入量	饲料利用率	
sex	$_{ m dose}$	totalgain/g	total in take/g	feed efficiency \mathcal{V}_0	
	对照	122 90	470. 10	26 14	
雌	低剂量	92 40	377. 80	24. 46	
fem ale	中剂量	17. 30	196. 10	8 82**	
	高剂量	•••			
	对照	149. 00	487. 20	30.58	
雄	低剂量	87. 40	367. 60	23. 78	
male	中剂量	15. 80	194.00	8 14**	
	高剂量	•••			

1)试验动物数均为 10只; 高剂量处理的雌雄大白鼠 全部 死亡, 故没有饲料利用率指标

2 3 3 30 d喂养对 SD大白鼠血液学指标和血液生化指标的影响 血液学检查结果见表 3 雌性大白鼠的 RBC以中剂量组最高,与对照差异显著; M CH以低剂量组最高,与对照差异显著; G RA 随剂量的提高有增加的趋势,且中剂量组与对照达显著水平; 雄性 SD大白鼠的 M ID随着剂量的增加而升高,中、低剂量组与对照比较差异极显著,为炎症反应的表现. 高剂量处理组由于 SD 大白鼠全部中毒死亡,故无法检测血液学指标.

表 3 30 d喂养守宫木对 SD大白鼠血液学指标的影响

Tab 3 Effects of 30 d feeding with Sauropus androgynus on hacm atologyical indices of SD white rat

性别 sex	剂量 dose	RBC×10 ¹² /(L ⁻¹)	НСТ №	M CV /fL	RDW 1/0	ℓ (HGB) /(g· L ⁻¹)	т (М СН) фв	θ(M CHC) / (g· L -1)	WBC×10 ⁹ /(L ⁻¹)	LYM 🏄	м Ю №	GRA №
	对照	6 83 ±0 21	39 09 ±0. 69	57. 43 ±1 76	21 37 ±1.48	102 14 ±0.63	15 00 ±0.49	262 00 ±3. 79	7 34 ±0.78	82 00 ±1. 48	11. 14 ±0 91	6. 86±0 63
雌	低 剂量	6 53 ±0 15	40 32 ±1. 15	6l. 78 ±0 95	20 07 ±1.05	105 67 ±1. 92	16 22±0 32*	262 78 ±3.74	7 61 ±0. 94	86 22 ±1. 28	8 89 ±0 79	4. 89 ±0 59
female	中剂量	7 44 \pm 0 33 *	42 73 ±1. 95	57. 50 ±0 76	23 25 ±1.53	106 25 ±2 38	14 13 ±0.40	250 63 ±6.76	8 11 ±1.38	78 50 ±1. 91	12. 25 ±1 10	9. $25 \pm 1 03^*$
	高剂量 1)									•••		
	对照	6 66 ±0. 21	37 34 ±2 73	55. 63 ±2 78	21 41 ±0. 97	105.00 ±11.87	14 13 ±0. 41	263 57 ±8 29	7 51 ±0.88	80 50 ±3. 39	10.00 ±1 16	9. 50±2 51
雄	低 剂量	7 10 ±0. 33	40 80 ±2 25	57. 50 ± 1 61	$24\ 31{\pm}1.\ 18$	95. 63 ±2 45	14 13 ±0.42	250 86±2.89	7 66 ±0.79	74 50 ±2 49	14.88 ±1.16	10. 63 ±1 44
m a le	中剂量	6 91 ±0 25	41 12 ±1. 29	59. 67 ±1 38	22 85 ±2 85	103. 67 ±2 04	14 13 ±0.43	252 50 ±3.55	7 32 ±1. 64	73 50±2 29 *	16. 33 \pm 1 02 *	*10. 17 ±1 35
	高剂量 1)					•••				***	•••	

1)高剂量处理的雌雄大白鼠全部死亡,故没有血液学指标

血液生化检查结果见表 4 雌雄性 SD 大白鼠的 TP、ALB 低于对照,且雌性大鼠中剂量组与对照之间差异极显著;雌雄性 SD 大白鼠的中剂量处理组的 AST均大于对照,且雄性大白鼠的 AST、ALP的低剂量处理均显著大于对照;说明守宫木喂养对大鼠的肝、肾有影响. 高剂量处理组由于 SD 大白鼠死亡,无法检测血液生化指标.

2 3 4 30 d 喂养对 SD 大白 鼠器官系数的影响 30 d 喂养对 SD 大白鼠器官系数的影响如表 5 所示. 雌性大鼠的肝体比、肾体比、肺体比随剂量的增加而升高,中剂量组与对照差异极显著. 高剂量组由于试验过程大鼠中途中毒死亡而没有测定器官系数,故无法比较. 而雄性大鼠肾脏的器官系数有增高趋势,中剂量组与对照差异极显著,但雄性大鼠的肝、肺未见有规律变化.

表 4 30 d 喂养守宫木对 SD 大白鼠血液生化指标的影响

Tab. 4 Effects of 30 d feeding with Sauropus androgynus on b in chemical indices of SD white rat

性别	剂量	ALT /	AST /	Θ(TP) /	ρ(ALB) /	A IP /	c(BUN) /	c(CREA) /	c(GLU) /
sex	dose	$(U \cdot L^{-1})$	$(U\!\cdot\ L^{-1})$	$(g L^{-1})$	$(g L^{-1})$	(U· L ⁻¹)	$(mmol L^{-1})$	$(\mu_{\mathrm{mol}}\cdot\ \mathrm{L}^{-1})$	$(mmol L^{-1})$
	对照	45 25±2 32	145 00±13 33	80 55±0 96	42 81 ±0. 67	306 75±33.32	8 03±0 23	53 54±1.87	2 70 ±0 49
雌	低剂量	$36\ 22\pm2\ 78$	$142\ 75\pm\!5\ 46$	78 21 ± 0 87	42 11 ±0. 42	319 56±17.16	7. 71±0 33	50 77 \pm 1. 86	248 ± 031
fem a le	中剂量	45 71 \pm 6 05	$185\ 75\pm\!20\ 27$	71. 66 \pm 1. 19 *	* 38 01 ±0. 95 *	*361.00±30.75	8 41±0 34	$5546\pm\!283$	336 ± 051
	高剂量 ¹⁾								
	对照	53 80±6 07	140 00±10 14	77. 17 ±0 83	41. 10±1. 53	331. 00±41. 77	7. 71±0 40	54 00±2 35	2 50 ±0 39
左 隹	低剂量	57. $38 \pm 8~08$	$203\ 25\pm21\ 59^*$	73 30 \pm 1 97	41. 11 ±2. 38	465 38±30.91	* * 7. 49±0 29	$46\ 60\pm\!2\ 40^*$	289 ± 054
male	中剂量	46 00 ± 8 67	$208\ 80\pm\!44\ 41^*$	72 47 \pm 2 17	39 47 \pm 1.98	293 50±18.94	698 ± 040	$49\ 25\pm 3\ 25$	$2\ 16\pm0\ 31$
	高剂量 1)								

¹⁾高剂量处理的雌雄大白鼠全部死亡,故没有血液生化学指标

表 5 30 d 喂养守宫木对 SD 大白鼠器官系数的影响

Tab. 5 Effect of 30 d feeding with Sauropus androgynus on organ coefficient of SD white rat

%

性别	剂量	肝	肾	脾	心	肺	睾丸
sex	do se	liver	k idney	spleen	heart	lung	testis
	对照	3. 65±0. 18	0.72 ± 0.02	0.32 ± 0.02	0.40 ± 0.02	069 ± 005	•••
雌	低剂量	$4.36\pm0.31^*$	0.74 ± 0.05	0.37 ± 0.03	0.38 ± 0.02	095 ± 013	•••
fem a le	中剂量	4.84±0.32**	1. $08\pm0~08^{**}$	0.34 ± 0.02	0.44 ± 0.04	1 40±0 18**	
	高剂量1)						
	对照	4. 17±0. 37	0.74 ± 0.04	0.31±0.02	0.43 ± 0.04	0 71±0 09	1. $15\pm0~07$
太 隹	低剂量	3. 51±0. 48	0.83 ± 0.09	0.37 ± 0.03	0.40 ± 0.05	064 ± 002	1. $43 \pm 0 \ 10$
m ale	中剂量	3.86±0.44	$0.95\pm0.03^{**}$	0.29 ± 0.02	0.40 ± 0.02	0 94±0 09	1. $05\pm0~22$
	高剂量1)		•••	•••	•••	•••	•••

¹⁾高剂量处理的雌雄大白鼠全部死亡,故没有器官系数指标

2 3 5 病理组织学检查 病理组织学检查表明: 低 剂量组和中剂量组与正常对照组之间,除睾丸组织 病变外,其他组织在组间差异不显著;高剂量处理组 检测器官病变较明显,与其他剂量组比较差异显著, 其中肝、肾显示中毒性病变. 守宫木引起睾丸病变, 于低剂量组开始出现,中剂量组较明显,高剂量组中 病变最明显,且病变具有特异性变化, 高剂量处理组 病理组织学检查结果表明: 肝病变有特征性, 肝细胞 弥漫性坏死,核固缩、碎裂和核缺乏,有代谢性中毒 特征变化: 肾小球肿胀, 肾细管上皮细胞广泛坏死, 细胞核固缩和消失,是中毒性肾病,具有特异性变 化;脾脏瘀血,动脉瘀血、肿胀、闭合;心肌间水肿,心 肌变性,有肌溶现象,是明显的心衰,无炎性细胞,属 中毒性病变;肺部很严重的瘀血,间质出血,散发性 细胞坏死,表现为休克肺,且雌雄性大鼠的个体间差 异明显:睾丸曲精管之间形成明显水肿,低倍镜镜检 管腔细胞排列紊乱,高倍显示一条曲精管,各层生精 细胞核染色质较致密, 具有核的分裂, 表现为曲精管 上皮细胞异常分裂,曲精细管的管腔中出现大量异 常的多倍体细胞;肠绒毛上皮变性脱落,有自溶现

象. 试验中发现肺的损伤,具有雌雄间差异,其他器官病变雌雄间差异不显著.

3 讨论

急性试验结果表明守宫木的急性毒性试验的小鼠经口灌 LD₅₀大于 10 00 g·kg⁻¹,未出现异常及死亡现象,根据国家标准《食品安全毒理学评价程序——急性毒性试验》^[4]的急性毒性剂量分级标准确定为急性实际无毒级. 小鼠精子畸形试验结果表明,守宫木对小鼠的精子畸形率有显著影响,试验结果呈阳性.

30 d喂养 SD大白鼠试验结果显示,守宫木在一定的剂量下出现了明显的毒性作用:症状表现为精神沉郁、运动失调、打堆伏卧、呼吸急促、全身震颤、反应迟钝、极度消瘦、动物陆续死亡,组间差异显著.动物体质量呈下降趋势,体质量增长率和饲料利用率低.血液学指标测定结果表明:雄性 SD大白鼠的MD有升高倾向,中、低剂量组与对照比较差异极显著,呈一定的剂量反应关系,为炎症反应的表现.血液生化学统计结果表明:雌、雄性 SD大白鼠的 TP和

ALB 的量随着喂养剂量的增加而降低, 雄性 SD 大白 鼠中、低剂量组的 AST活性随着喂养剂量的增加而 增加,由此可推断守宫木可能对雌雄性 SD 大白鼠的 肝、肾功能有损伤,蛋白量的降低可能是多种原因引 起的营养不良,或是肝肾受损引起的.守宫木喂养雌 性 SD大白鼠的肝、肾、肺脏和雄性 SD大白鼠肾脏的 器官系数均有升高趋势,中剂量组与对照差异极显 著;因为肝和肾是解毒、排毒的器官,SD大白鼠肝、 肾的变化说明守宫木可能引起 SD 大白鼠的中毒. 综上所述,守宫木 30 d 喂养 SD 大白鼠试验动物的 一般情况观察、体质量增长情况、饲料利用率、血液 学分析、血液生化学检查、器官系数以及病理组织学 检查等一系列的结果表明: 守宫木对 SD 大白鼠有损 伤作用,组间差异显著,呈一定的剂量反应关系. 说 明守宫木可能具有蓄积毒性. 其慢性毒理尚需进一 步进行研究.

守宫木是一种多年生常绿植物,发现于马来西 亚、印度尼西亚和中国大陆西南部. 为马来族普遍食 用绿色叶菜之一,其叶煮后仍相当挺实,幼叶可生食 或煮食, 在印度尼西亚, 叶为食品着色料[9]. 因守宫 木营养丰富, 口感极佳, 味道鲜美, 近年来在我国也 出现了守宫木热[1011]. 自 1994年以来,台湾妇女将 这种野菜作为减肥食品,相当受欢迎,一些人开始有 规律性地食用守宫木. 从 1995年 6~11月,有 156 名食用这种蔬菜的人来医院接受肺功能的检查,这 些病人患有慢性呼吸困难、严重的肺功能障碍[]. 此后连续报道因为食用守宫木而引起中毒的事件, 且都表现为肺部中毒[2 12],症状随着消费总量的增 加而加重. 据报道, 守宫木消化后引起呼吸困难或坏 死,有 54人在停止食用后 34~35 d还有呼吸困难症 状. 健康组织已考虑禁止出售这种蔬菜和使用它作 为药用,同时教育公众认识它的潜在毒性[13]. 杨暹 等[1]报道,守宫木对镉有较强的富集作用,经过检 测,守宫木含镉量达到 1.55 mg· kg⁻¹,超过国家标 准 4倍多. 也有报道认为毒性与有毒生物碱婴粟碱 有关,但认为这种化合物未达到如此大的毒性[13]. 本次试验进一步证实了这一点,同时还证明守宫木 对肝、肾、心脏、睾丸等也有明显的损害作用.

本试验表明, 守宫木长期安全食用的剂量应小于 $2.5~\mathrm{g}\cdot\mathrm{kg}^{-1}$, 按大鼠每日食量占体质量的 10%计算, 如果按安全系数的个体差异取 10倍,种间差异取 10倍计算 14,则推算到 $60~\mathrm{kg}$ 体质量的人体, $1~\mathrm{d}$

允许摄入守宫木干样的量应小于 1 5 g(相当于鲜样 11 g),因此守宫木作为蔬菜长期大量食用是不适宜的. 试验结果也表明,在未进行安全性试验之前,不宜盲目大量开发野生蔬菜.

参考文献:

- [1] HSIJETR CHENKW, CHENCW, et al. Irreversible obstructive lung disease induced by taking vegetable Sauropus and nogynus as weight reducing diet [J]. ChinMed J, 1996 57 248
- [2] LAIRS Bronchiolitis ob literans syndrom e a ssociated with consumption of Sauropus androgynus An outbreak in Tai wan[J]. Chin Med J. 1996 57: 247.
- [3] H SIJE T R. GUO Y L. CHEN K W., et al. Dos response relationship and irreversible obstructive ventilatory defect in patients with consumption of *Sauropus androgynus*[J].

 Chest 1998—113(1): 71 76
- [4] 中国预防医学科学院标准处. 食品卫生国家标准汇编 [M]. 北京:中国标准出版社, 1994 26 82
- [5] 刘毓谷. 卫生毒理学基础 [M]. 第 2版. 北京: 人民卫生出版社, 1998 84-89
- [6] 陶元鋆. 血液学及血液学检验 [M]. 北京: 人民卫生出版社, 1997.1-207
- [7] 朱立华. 临床基础检验学实验指导[M]. 北京: 人民卫生出版社, 1999 33-37
- [8] 蒋秉坤, 范钦信. 临床生物化学及生物化学检验[M]. 北京: 人民卫生出版社, 1998 1 - 162
- [9] MARTN L Sauropus and nogynus a common perennial vegetable in Bomeo about to become an export crop[J]. A cta Horticulturae 1992 318 143 – 144
- [10] 饶璐璐.守宫木[]].蔬菜,2000 5 32 33.
- [11] 杨 暹, 郭巨先. 华南主要野生蔬菜的基本营养成分及营养价值评价[J]. 食品科学, 2002 23(11): 121 125
- [12] WANG JS TSENG H H LAIRS et al Sauropus an droynus constrictive obliterative bronch it is /bronch io litis—histopa tho logical study of pneum onec tomy and bipsy specimens with emphasis on the inflammatory process and disease progression [J]. Histopa tho bgy 2000 37(5): 402-410
- [13] LNT J LUCG CHENKW, et al How dowe sense about the *Sauropus androgynus* posionings from the poison control center of J. ChinMed J 1996 57: 246

【责任编辑 柴 焰】