Software applications for providing comprehensive computing capabilities to problems related to mixed models in animal breeding

MonchaiDAUNGJINDA

(Department of Animal Science Faculty of Agriculture Khon Kaen University Thailand 40002)

Abstract Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University. Thailand, will provide free of charge the new soft ware developed at Khon Kaen University by the author of this paper. The contact for requesting the soft ware is listed moncha@kku ac th

Keywords mixed model computer packages animal breeding CLC number \$813 Document code A Article D 1001—411 X (2005) \$0—0078—10

Recently several computer packages have been developed to accomplish problems related to mixed model in animal breeding. Special soft ware for estimation of variance components and prediction of genetic merits are basically needed for genetic evaluation and selection program. Although there are some packages available on the intemet, however, most of them are commercial or unfriendly to be used. The lists of recent soft ware available on the intemet are shown in Tab 1.

Most software is free license (mostly for academic purpose) with open source code however, UNIX is a main platform. To develop such program to windows platform requires specific compiler. Generally data preparation and writing control file need particular management.

1 BLUPF90-PigPAK

The main objective of BIUPF90-PisPAK is

to utilize models generally used in swine genetic evaluation with a user friendly graphic interface for PC and W indows users. Using powerful features from BIUPPO PigPAK can perform a wide range of genetic evaluation functions. PigPAK can estimate variance components using REML and perform BIUP breeding value analysis from linear mixed models including random animal effects as additive genetic and permanent environment effect

"BIUPP90-PigPack" is run using Microsoft EXCEL. It manages genetic evaluation using a wizard interface which allows you to create a VCE and BIUP report in five steps. Only performance data and pedigrees are required. It will automatically renumber the animals and count the number of effects in the model Mate (or service sire) effects for reproductive evaluations and litter effects for growth evaluation can be included in data file with a Phanumeric format

Biography Monchai DAUNG JNDA Dr., Professor Department of Animal Science Faculty of Agriculture Khon Kaen University Tailand E-mail moncha@kku ac th

^{?1994-2015} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Tah 1	Recent software related	to m ixed model	m an in a l breeding
I G D	K ceart colorare repred	to in prod in od of	an in a l bred ha

nam e	details
ASREML	Statistical software designed for fitting mixed models for large datasets. Contains commented code for univariate and multivariate analysis including longitudinal and spatial analysis. http://uncronopio.org/asreml/homepage
DFREML	Variance component estimation so favare for an imal breeding. Restricted maximum likelihood through a derivate free method was developed by Karin Meyer. http://agbu.une.edu.au/~kmeyer/dfrem.lhtml
BIUPF90 / REMLF90 / G BBSF90	Animal breeding software package useful for animal genetic evaluation. Prediction of beeding value by BLUP and estimation of variance components by REML and Bayesian (Gibbs sampling) are all available. http://nce.ads.uga.edu/~ignacy/programs.html
PGBLUP	BIUP software for genetic selection for swine http://abri une edu au
VCE/PEST	VCE software has been developed by Groeneveld for estimation of variance components. Document related to prediction of breeding value by PEST is also available http://www.tzv.fal.de/~eg/
MIDFREML	Programs were developed by Keith Boldman and Dale Van Vleck. Debugging support have also been provided by Lisa Kriese and Curt Van Tassell http://www.aipl.arsusda.gov/curtvt/mtdfreml.html

After variance component estimation or BLUP a nalysis is performed PigPAK will create a BV report using the original animal D Users can keep data files and program files separately however directories must be specified prior to a nalysis BV reports with accuracy for up to four traits are available

"BIUPPO" and related programs were developed in the lab of Dr Ignacy Misztal with the purpose of providing comprehensive computing capabilities to problems related to mixed models in animal breeding. See http://nce.ads.uga edu/~ ignacy for details and documentation These programs are mostly written in Fortran 90 and have a line-mode interface "PigPAK" is a set of programs branched from "PCPAK" with

dows P & PAK was developed for the specific purpose of pig genetic evaluation and parts of programs in the BLUPPOO family are available which are

BIUPF90 BLUP estimation using PCG m ethod

REMLE90 Variance component estimation using REML by EM algorithm.

AREMLE90 Variance component estima tion using REML by AIA gorithm

RENUMMAT Renumber program for crea ting data file and additive pedigree with animal ID in order number

ACCF90 Approximate accuracy of BLUP solutions for direct maternal and multiple trait models

graphical user interface for simple use in W in. All programs were compiled separately ur ?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net All programs were compiled separately un der Microsoft Windows using Visual Fortran version 5. 1. Users can run all programs separately using MS-DOS prompt or from the menu in Pig-PAK. This allows users to create all parameter files and BIUP reports with a point and click interface written in Visual BASIC for MS-EXCEL

2 Specification

PigPAK requires Windows 95/98/ME/XP/2000 environment to install and Excel 98/2000/XP for running applications. It also requires at least 32 MB of memory and 5 MB of disk space for storing programs.

For BIUP and variance component estimation, BIUPP90 and REMLP90 support single and multiple traitmodels such as an imal model repeatability model maternal dominance and random regression model with missing values accounted for and different models for each trait allowed A REMLP90 may not support some models and some particular data structures. ACCP90 is an approximation that works with repeatability and maternal models

With the PigPAK wizard interface however, the single trait option will support only simple animal and animal with PE model Multiple trait options will support up to four traits Reports with accuracy are available only for single trait and multiple trait models. Variance component estimation by REML or A REML is still a vailable.

3 Model description

The following will provide more details of models that can be used in the analysis.

3.1 Basic animalmodel

Pigpak includes a basic animal model vironment effect as uncorrelated random effect which allows animals in the data and animals in is generally used in genetic evaluation. The 1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

the pedigree to be included in the analysis so that all known relationships can be taken into account. Other effects fixed and random, can be included for comprehensive use of mixed model technology. Fixed effects used in the model can be fitted as cross classified variables and covariates. Combinations of fixed effects such as herd year season can be performed during the analysis, therefore, no additional data preparation is required. Normally, all traits analyzed with Pigpack should be continuous rather than ordinal scale for proper use in the linear mixed model analysis. Models with a single record per animal such as growth traits can be analyzed using the basic animal model as follows.

$$y = X\beta + Za + \varepsilon$$
, and $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} A\sigma_{\alpha}^{2} & 0 \\ 0 & b_{\alpha}^{2} \end{bmatrix}$,

where y is vector of response variable β is vector of fixed effects a is vector of random additive genetic effects ϵ is vector of random residual X and Z are incident matrices related to fixed and random effects A is numerator relationship matrix σ_{α}^2 is additive genetic variance and σ_{ϵ}^2 is residual variance

To perform BLUP Henderson's MME can be written as

$$\begin{bmatrix} XX' & X'Z \\ Z'X & Z'Z + \alpha A^{-1} \end{bmatrix} \begin{bmatrix} \beta \\ \frac{1}{2} \end{bmatrix} =$$

$$\begin{bmatrix} X'Y \\ Z'Y \end{bmatrix}, \quad \text{where}_{\alpha} = \frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}.$$

3 2 Repeatability model

If multiple parity records are available the permanent environment effect due to the animal needs to be taken into account. If mate effect from sire or litter effect for dam is available it will be accounted as random effect as model described by Chen et all Fitting permanent environment effect as uncorrelated random effects is generally used in genetic evaluation. The

model for analysis is

where y is vector of response variable β is vector of fixed effects α is vector of random additive genetic effects c is vector of random permanent environment effects ϵ is vector of random residual X W and Z are incident matrices related to fixed and random effects A is numerator relationship matrix σ_a^2 is additive genetic variance σ_c^2 is random permanent environment variance and σ_e^2 is residual variance

To perform BLUP Henderson's MME can be written as

$$\begin{bmatrix} X'X & X'Z & X'W \\ Z'X & Z'Z + \alpha A^{-1} & Z'W \\ W'X & W'Z & W'W + \nu \end{bmatrix} \begin{bmatrix} \beta \\ a \\ g \end{bmatrix} = \begin{bmatrix} X'Y \\ Z'Y \\ W' \end{bmatrix}, \quad \text{where} \quad \alpha = \frac{\sigma_e^2}{\sigma_\alpha^2} \quad \nu = \frac{\sigma_e^2}{\sigma_c^2}.$$

3. 3 Multi trait model

PigPAK can also perform multi-trait analysis. Estimation of genetic correlations among traits and multivariate BILIP analysis can be accomplished as model used in NSIF² and NSR³. However, for graphic user interface not greater than 4 traits are available. To perform beyond this parameter editing is required and do the analysis from menu BILIP. Use old parameters. Multi-trait analysis can perform model with the same single records or same repeated records, and different model with single and repeated records. The following is bivariate model with the same single record.

$$\begin{bmatrix} \begin{matrix} y \\ y \end{matrix} = \begin{bmatrix} \begin{matrix} X & 0 \\ 0 & X \end{matrix} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \begin{matrix} Z_1 & 0 \\ 0 & Z \end{matrix} \end{bmatrix} \begin{bmatrix} \begin{matrix} a \\ 1 \\ a \end{matrix} \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix},$$

$$\sqrt{\frac{a}{9}} = \begin{bmatrix} G \otimes A & 0 \\ 0 & R \otimes \end{bmatrix},$$

where is vector of response variable for trait y_1 and y_2 , β_1 , β_2 is vector of fixed effects, α_1 , α_2 is vector of random additive genetic effects, ε_1 , ε_2 is vector of random residual, y_1 , y_2 , and y_3 are incident matrices related to fixed and random effects. A is numerator relationship matrix y_1 is matrix of direct genetic variance covariance for trait y_1 and y_2 . R is matrix of residual variance covariance for trait y_1 and y_2 .

3 4 Sampling variance

If A REML option in PigPAK is performed sampling variance for each variance components can be calculated. Therefore, standard error for heritability can be approximated using Lynch and Walsh^[4] as follows

$$\begin{aligned} \text{Var}(\frac{\sigma_{\alpha}^{2}}{\sigma_{t}^{2}}) &= (\frac{\sigma_{\alpha}^{2}}{\sigma_{t}^{2}})^{2} \\ \left[\frac{\text{Var}(\sigma_{\alpha}^{2})}{(\sigma_{\alpha}^{2})^{2}} + \frac{\text{Var}(\sigma_{t}^{2})}{(\sigma_{t}^{2})^{2}} + \frac{2^{\text{COV}}(\sigma_{\alpha}^{2}, \sigma_{t}^{2})}{(\sigma_{\alpha}^{2})(\sigma_{t}^{2})} \right] \end{aligned}$$
Then, SE(lf') =
$$\sqrt{\text{Var}(\frac{\sigma_{\alpha}^{2}}{\sigma_{t}^{2}})}$$

In addition, for multitrait analysis standard error for genetic correlation can be approximated as follows

$$\begin{split} \text{Var(r)} &= (\ ^{2}\text{f}\) = (\ ^{9}\text{f}\ [\frac{\text{Var}(\sigma_{i}^{2})}{4(\sigma_{i}^{2})^{2}} + \frac{\text{Var}(\sigma_{j}^{2})}{4(\sigma_{j}^{2})^{2}} + \\ & \frac{\text{Var}(\sigma_{ij})}{4(\sigma_{ij})^{2}} + \frac{2\overset{\text{cov}}(\sigma_{i}^{2},\sigma_{j}^{2})}{4(\sigma_{i}^{2})(\sigma_{j}^{2})} + \frac{2\overset{\text{cov}}(\sigma_{i}^{2},\sigma_{ij})}{2(\sigma_{i}^{2})(\sigma_{ij})} + \\ & \frac{2\overset{\text{cov}}{(\sigma_{ij},\sigma_{j}^{2})}}{2(\sigma_{ij})(\sigma_{j}^{2})}] \end{split}$$

Then

$$SE(r) = \sqrt{Var(r)}$$

3.5 How does program function

After installation programs are stored in following is bivariate main or user specified directory i.e. C. /BIUPF record:

90-PP. Two sub-directories of examples and helps are also created Each directory will find the following programs and files Tab 2— Tab 4 Journal Electronic Publishing House. All rights reserved.

Tab , Main directory

I do Z Wat directory			
name	typ e	d esc rip tion	
PigPAK xls	XLS	— Main graphic user interface	
		— Creating BLUP and REML parameter files	
		— Creating BLUP and VCE report in excel format	
		Creating genetic trend	
		— Computing BV and Infortest day model	
BIUPF90 EXE	PROG	— Computing BLUP solutions	
REMLF90 EXE	PROG	— Estimating variance components using REML with EM algorithm	
A REMLF90 EXE	PROG	— Estimating variance components using REML with AI algorithm	
ACCE90 EXE	PROG	 Computing approximate accuracy for BIUP solutions 	
RENUMMAŢ EXE	PROG	— Renumbering animal in data and ped gree file in consecutive order number	

Tab 3 Examples directory

nam e	ty pe	descripton
LWDAŢ PRN	TXT	— Data file for model analysis with single trait and multi- trait with repeated records
LWPED PRN	TXT	— Pedigree file for analysis with LWDAT
LWDAŢ FMT	TXT	— Describe column number format for LWDAT PRN

Tab 4 Hepls directory

name	type	description
WHOSWHQ TXT	TXT	— Accredit for key persons involved in BIUPF90 family
Manua∔ PP PDF	PDF	— Manual for BLUPF90 PigPAK

When performed the analysis with wizard interface in PigPAK, All parameters entered in the form will be kept in particular Excel sheets. They will be written with corrected format as parameter file for RENUM and BLUPP90 using visual basic. Batch file to call the program with the parameter is also need to be created. VB in Excel has specific function to operate EXE file in this batch without closing the Excel program. Pedigree and solutions from the analysis are read to Excel sheets to join back the original animal D and also genetic trend will be created using chart function if user required

Data and Pedigree files used in PigPack must be ASCII or TEXT file Datamust be in number except for animal ID. Sire Dam and Mate or Litter effect that can be alpha numeric format. If create from Excell save as PRN file (text file delimited with space) is preferable than Tab delimited or comma delimited.

If analyzing data is kept in different director

copied to the data directory for simpler operation. After analysis a few file will be created which can be copied to new name if need

Suppose the original files for the analysis are IWDAT PRN and IWPED PRN, some additional files (Tab 5) after analysis might be useful for later analysis some additional files

The default for convergence is $1\,\mathrm{d}-08$ however, users can choose their own by selecting menu.

4 Conditions of use

BIUPF90-PiPAK is distributed free of charge for academic and scientific use under the condition that it remains copyrighted. The use of any applications and compiled programs from PiPAK must be credited in any publications derived from their usage. For commercial or grant projects, personal communication of further a greements is required with any of the authors. There is no guarantee for correctness and there is

ry of Programs All execute programs will be no service for user purpose However specific ?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

1-43		
name	type	d escription
RELWDAT PRN	TXT	— Renumbered data file
RELWPED PRN	TXT	— Renumbered Pedigree file
RENUM PAR	TXT	— Parameter file for program RENUMMAT
RENUM MSG	TXT	 Log file from renumbering Describe the levels of fixed and random effects after renum.
RENUM PRN	TXT	— The details from renumbering Describe how effects are combined and replications of each effects
BIUP PAR	TXT	— Parameter files for REML and BLUP analysis
SOLUTIONS	TXT	— BLUP solutions file
SOLUTIONS VCE	TXT	— This file keeps variance estimation if performed

questions constructive criticism and debug reports are invited Please email to monchai@ kku ac th or ignacy@ uga edu

BIUPF90-PiPAK has been made available on CD However, the updated version is available at BIUPF90 homepage at KKU http://agserver.kku.ac.th/monchai. The complete package provides program files manuals and examples Online registration is requested for further breeding and genetic group connection and to update version in formation. The registration page for BIUPF90-PiPAK is also available at BIUPF90 homepage.

References

[1] CHEN P. BASST J. Mab ty JW, et al. Genetic

译文

correlations between lean growth and letter traits in US Yoikshire Duro; Hampshire and Landrace Pigg J. J Anim Sci 2003 81: 1700—1705.

- [2] NSIF. Guidelines for Uniform Swine Improvement Programs Mj. Washington, DC USDA, 1997.
 - [3] NSR STAGES National Genetic Evaluation Trait Leader List Mj. National Swine Registry 2000
- [4] LYNCH M. WALSH B. Genetics and Analysis of Quantitative Traits M. CA. Sinauer Association 1998

(Edited by ZHOU Zhi-hong)

动物育种中解决混合模型复杂计算问题的软件应用

Monchai DAUNG INDA

(Department of Animal Science Faculty of Agriculture Khon Kaen University Thailand 40002)

摘要: 在动物育种和遗传选择的改良计划中应用的软件有很多个. 本文描述了其中最常用的软件, 并提出了有关软件的改进建议. 本文作者供职于泰国的 Khon Kaen大学, 可以免费提供其新开发的软件, 需要该软件的请与作者联系: moncha@ kku ac th

关键词: 混合模型; 计算软件; 动物育种

最近,有数个软件包可以用于动物育种的混合 组分估计和遗传性能预测需要特殊的软件. 虽然有模型分析. 对于遗传评估和选择方案来说,进行方差 些可以通过国际互联网下载,可是,多数这样的软件