由滴灌系统施用鸡粪和花生麸沤腐液

对番茄生长的影响

张承林,杨坤

(华南农业大学资源环境学院,广东广州 510642)

摘要:在温室利用珍珠岩和土壤作栽培介质,以番茄 (品种为红宝石)为供试作物,研究了由滴灌系统施用鸡粪及花生麸 沤腐液的施用效果.与滴施番茄配方的营养液相比,珍珠岩栽培时单独滴施鸡粪和花生麸 沤腐液番茄产量仅为营养液处理的 64.5% 和 82.9%;土壤栽培时,滴施鸡粪和花生麸 沤腐液的产量分别是营养液的 147.0% 和 82.8%; 2种栽培方式处理间果实品质指标 (如单果质量、可溶性固形物、可滴定酸)没有显著差异.鸡粪 沤腐时沉渣率为 3.5%, 沤腐液绝大部分可由滴灌施用.但花生麸 沤腐液沉渣率为 74.0%,不宜滴灌施用. 关键词:鸡粪 沤腐液;花生麸 沤腐液;滴灌;番茄

中图分类号: S141. 4 文献标识码: A 文章编号: 1001-411X(2006)01-0025-04

Effect of Liquid Steeped Chicken Manure and Liquid Steeped Peanut

Cake Applied Through Drip Irrigation on Tomato Growth

ZHANG Cheng-lin, YANG Kun

Abstract: A pot experiment with tomato cv. Hongbaoshi grown on perlite and soil receiving hquid steeped chicken manure and hquid steeped peanut cake applied through drip irrigation system was conducted to find out the feasibility of this new application method of the two manures. As compared with tomato specific nutrient solution, under perlite culture, fruit yield of liquid chicken manure and peanut cake treatments was only 64.5% and 82.9% of that of nutrient solution, respectively. Under soil culture, fruit yield of liquid chicken manure and peanut cake treatments was 147.0% and 82.8% of that of nutrient solution, respectively. No significant difference of single fruit mass, contents of total soluble solids and titratable acids of fruits was observed among treatments. The dregs was 3.5% when chicken manure was steeped and most of the liquid could be injected into drip irrigation system. However, there was much more dregs (accounting for 74.0%) when peanut cake was steeped which made it unsuitable to be used in drip irrigation system.

Key words: liquid steeped chicken manure; liquid steeped peanut cake; drip irrigation; tomato

滴灌施肥可以显著提高水分和养分的利用效率,增加产量,改善品质,在一些国家已得到广泛应用^[1].由于担心有机肥可能导致滴头的堵塞,通过滴灌系统施肥时通常采用完全水溶性的化学肥料^[2-3].通过滴灌系统施用有机肥鲜有报道^[4-5].鸡粪和花生麸是常用的有机肥,其养分含量高,养分全面,施用后可显著改良土壤的不良结构,提高土壤保

水和通气能力^[6],在果园及设施农业栽培中得到广泛应用^[79].华南地区的果园大部分分布在荒山土坡,河滩地头,土壤有机质含量低,施用有机肥成为改良果园土壤的一项常规措施.现在越来越多的果园开始应用滴灌系统.如果在滴灌时能施用处理后的有机肥,不但能为作物提供养分,同时可以节省大量的施肥成本和劳力.本研究以盆栽番茄为供试材

收稿日期:2005-01-21

作者简介:张承林(1965-),男,副教授,博士,E-mail:clzhang@scau.edu.cn

基金项目:"十五"国家攻关项目(201BA508B);广东省科技计划项目(2002A208030201)

料,探讨了由滴灌系统施用鸡粪和花生麸沤腐液的施肥效果,旨在为应用滴灌的果园和温室作物提供新的有机肥施用方法和技术依据.

1 材料与方法

1.1 材料

红宝石番茄 Lycopersicum esculentum Mill. 'Hongbaoshi': 育苗杯育苗, 4 片真叶时移栽. 珍珠岩($d=2.0\sim4.0~\text{mm}$):去离子水冲洗晾干. 土壤:轻壤质水稻土,风干粉碎过 3 mm 筛备用. 主要养分(分析方法见文献[10]):碱解氮 106 mg·kg⁻¹,速效磷 33.1 mg·kg⁻¹,速效钾 54.2 mg·kg⁻¹. 土壤肥力属中低水平.

滴灌系统:加压滴灌,以色列 Plastro 公司产压力

补偿滴头(流量2.2 L·h⁻¹)安装于 d=16 mm PE 管上,每定植袋(装珍珠岩)或塑料桶(装土壤)均布置2个滴头,每滴头连接2个滴箭,4个滴箭均匀插在植株四周.

鸡粪及花生麸沤腐液制备:由于滴灌系统必须用液态肥料,先将干鸡粪(或花生麸)和水按质量比1:4 搅匀后置于100 L 带盖塑料桶内沤腐,每周搅动1次. 当液体呈黑褐色时视为沤腐完成. 取上层清液倒入装有石英砂(d=0.8~3.0 mm)的塑料桶,桶内砂厚度约为70 cm,底部出口处放置孔径为0.2 mm尼龙网,收集滤液备用. 鸡粪及花生麸沤腐液10种养分浓度见表1. 充分搅匀沤腐液,取500g样品用120目尼龙网过滤,称滤液和滤渣质量,滤渣在80℃下烘干后再称质量,计算沤腐液沉渣干质量百分数.

表 1 营养液[11]、鸡粪及花生麸沤腐液的养分组成

Tab. 1 Nutrient composition of nutrient solution, liquid steeped chicken manure and peanut cake $\rho/(mg \cdot L^{-1})$

	A2-11 TO 201-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-									
NH ₄ ⁺ -N	NO_3^N	P	K	Ca	Mg	Fe	Mn	Zn	Cu	В
	126	31	195	100	24	3.5	0.5	0.05	0.02	0.5
230	31	6.2	157	43	17	6.8	0.51	0.15	0.08	0.03
950	29	8.6	24	23	25	0.4	0.12	0.23	0.03	0.03
	230	126 230 31	126 31 230 31 6.2	126 31 195 230 31 6.2 157	126 31 195 100 230 31 6.2 157 43	126 31 195 100 24 230 31 6.2 157 43 17	126 31 195 100 24 3.5 230 31 6.2 157 43 17 6.8	126 31 195 100 24 3.5 0.5 230 31 6.2 157 43 17 6.8 0.51	126 31 195 100 24 3.5 0.5 0.05 230 31 6.2 157 43 17 6.8 0.51 0.15	126 31 195 100 24 3.5 0.5 0.05 0.02 230 31 6.2 157 43 17 6.8 0.51 0.15 0.08

1) 表中数据为 EC = 1.5 mS·cm⁻¹时测得;2) I:营养液, II:鸡粪沤腐液, III:花生麸沤腐液

1.2 方案设计及调查方法

试验于2003年8~12月在华南农业大学植物营养系温室进行. 共设3个处理:1. 滴灌施番茄营养液配方(标准对照)^[11];2. 滴灌施鸡粪沤腐液;3. 滴灌施花生麸沤腐液. 选择珍珠岩和土壤作栽培介质,珍珠岩装满黑色塑料袋(h=32 cm,d=32 cm,V=26 L),土壤装人15 L塑料桶,每桶18 kg. 每袋(或桶)定植1株. 每处理6次重复. 在番茄苗期、营养生长期至初花期、花期至收获期分别施用EC为0.75、1.50和3.00 mS·cm⁻¹的营养液或沤腐液. 施用时以营养液配方的电导率为标准,鸡粪和花生麸沤腐液稀释至与营养液相同的电导率. 滴灌次数和时间依番茄生长和环境温度湿度条件而变化. 珍珠岩栽培时滴至袋底有渗漏液流出为止. 土壤栽培时滴至桶中埋设的张力计读数回零为止(此时达田间持水量).

初花期在植株中上部采取展开的成熟叶片,每 株取8片叶,制样测定叶片氮、磷、钾、钙、镁、铁、锰、 铜、锌的含量^[10].果实收获后,测定地上部干质量. 珍珠岩栽培时,将整袋根和珍珠岩的混合物倒入大 盆内,珍珠岩浮在水面与根系分离.土壤栽培时,将 桶内土壤倒在60目尼龙网上,用自来水将泥土淋洗 掉.根系洗净后用实物扫描仪扫描存入计算机,再用 根系图像分析软件 WinRHIZO (Regent Instruments Inc., Canada)分析计算根总长和根表面积.扫描后 将根烘干称质量.果实成熟时,累计各次采收的产量 及果实个数. 第2次收获时,每株随机选择4个果制混合样(因非同一天成熟,先采摘的果放入冰箱低温保存),按常规方法测定果肉可滴定酸、可溶性固形物含量.

2 结果与分析

2.1 滴灌施用鸡粪和花生麸沤腐液对番茄产量和 品质的影响

表2表明,在珍珠岩栽培下滴灌施用鸡粪沤腐液果实产量最低,比滴施营养液下降约35%.滴施花生麸沤腐液的果实产量显著低于营养液处理但显著高于鸡粪沤腐液.但在土壤栽培条件下,滴施鸡粪沤腐液产量最高,分别比滴施营养液和花生麸沤腐液增加47.1%和77.6%.对2种栽培方式进行比较,土壤栽培时各个处理的产量都显著高于珍珠岩栽培.土壤栽培时滴施鸡粪沤腐液的番茄产量是珍珠岩栽培的3.4倍.2种栽培方式下,各处理的单果质量没有显著差异.由此可知各处理产量的差异主要是单株果实数量的差异(表2).

在2种栽培方式下,滴施鸡粪沤腐液的果肉可滴定酸度都显著高于营养液和花生麸处理.可溶性固形物也表现出相同的趋势.但两指标在营养液和花生麸处理间没有显著差别.可溶性固形物和可滴定酸的比值表明,各处理在2种栽培方式下比值相差不大.在同一栽培方式下,品尝时各处理间口感没

表 2 2 种栽培方法滴施营养液(I)、鸡粪(II)和花生麸(II)沤腐液后番茄产量和品质的比较¹⁾

Tab. 2 Comparison of tomato yield and quality among treatments of nutrient solution, liquid steeped chicken

manure and steeped peanut cake applied through drip irrigation

n = 6

—————————————————————————————————————	<u></u> 处理	产量	单果质量	w(可溶性固	w(可滴定	w(TSS)/	单株果数
STATE OF THE PARTY OF	150	yield/(g·株 ⁻¹)	fruit mass/g	形物 TSS)/%	酸 TA)/%	w(TA)	fruit no. per plant
珍珠岩栽培	I	2 366 ± 143 a	95.6 ± 5.6a	$4.18 \pm 0.22b$	$1.03 \pm 0.24b$	4.05	28
perlite culture	II	$1\ 526 \pm 157\ c$	$93.2 \pm 6.2a$	$5.70 \pm .25a$	$1.54 \pm 0.32a$	3.70	18
		1 963 ± 129 b	$96.4 \pm 5.8a$	$4.70 \pm 0.41b$	$1.31 \pm 0.37ab$	3.59	21
土壤栽培	I	$3528 \pm 294b$	$102.4 \pm 8.6a$	5.33 ± 0.25 b	$0.74 \pm 0.08b$	7.22	36
soil culture	\mathbf{II}	$5190 \pm 287a$	$98.5 \pm 6.4a$	$6.80 \pm 0.47a$	$0.93 \pm 0.04a$	7.31	50
	Ш	$2922 \pm 269c$	$103.5 \pm 6.9a$	$5.15 \pm 0.19b$	$0.76 \pm 0.03b$	6.78	31

¹⁾ 计算单果质量时患脐腐病的果实未列入; 同一栽培方式同列数据后具相同字母者表示差异不显著(DMRT, P=0.05)

有显著差别. 但比较 2 种栽培方式时,土壤栽培的口感明显比珍珠岩好. 珍珠岩栽培时,各处理均出现果实脐腐病. 花生麸沤腐液发病率最高,出现症状最早. 各处理发病率依次为:营养液 1.2%,鸡粪沤腐液 5.8%,花生麸沤腐液 25.6%. 土壤栽培时没有观察到脐腐病症状.

2.2 滴灌施用鸡粪花生麸沤腐液对番茄生长的影响

表3表明,各处理间地上部的生长存在显著的差异.在珍珠岩栽培时,滴施花生麸沤腐液生长量最低,其次为鸡粪沤腐液,生长量分别为营养液处理的40%和70%.在土壤栽培条件下,花生麸生长量仍

然最低,但营养液和鸡粪沤腐液处理间没有显著差别. 在珍珠岩栽培时,花生麸沤腐液处理根系生长量最大,比营养液处理增加约40%. 营养液和鸡粪沤腐液处理间没有显著差异. 土壤栽培时,根系生长量显著高于珍珠岩栽培,鸡粪沤腐液和营养液处理的根系干质量是珍珠岩栽培的3倍多. 和珍珠岩栽培时相反,花生麸沤腐液处理根系生长量最小. 总根长与总根表面积的变化趋势和根干质量类似.

2.3 滴灌施用鸡粪花生麸沤腐液对番茄叶片矿质 元素的影响

表 4 表明,珍珠岩栽培时,各处理叶片氮和钾含

表 3 滴施营养液(I)、鸡粪(II)和花生麸(II)沤腐液后番茄生长性状的比较¹⁾

Tab. 3 Comparison of tomato growth parameters after treatments with nutrient

solution, liquid steeped chicken manure and peanut cake

n = 6

栽培方式	处理	地上部干质量	根干质量	总根长	总根表面积
method of culture	treatment	dry mass of shoot/g	dry mass of root/g	total root length/m	total root surface area /m2
珍珠岩栽培	1	146.6 ± 12.6a	$6.5 \pm 0.4 \text{ b}$	$130 \pm 21b$	$0.125 \pm 0.022b$
perlite culture	\mathbf{II}	$102.9 \pm 5.8b$	$5.7 \pm 0.8 b$	$142 \pm 18b$	$0.132 \pm 0.023b$
		$58.7 \pm 5.8 c$	$9.2 \pm 0.5 a$	$185 \pm 23a$	$0.178 \pm 0.020a$
土壤栽培	I	$120.1 \pm 13.3a$	$21.8 \pm 1.4a$	$361.7 \pm 38.6b$	$0.444 \pm 0.065a$
soil culture	\mathbf{II}	$110.2 \pm 7.2a$	$22.0 \pm 1.3a$	$320.6 \pm 30.0a$	$0.461 \pm 0.049a$
	M	$84.9 \pm 2.6b$	$15.8 \pm 0.5b$	$222.7 \pm 34.0c$	$0.332 \pm 0.073b$

¹⁾同一栽培方式同列数据后具相同字母者示差异不显著(DMRT,P=0.05)

表 4 番茄叶片矿质养分含量1)

Tab. 4 Nutrient content of tomato leaves

n = 6

		and antimited to the state of the					
	珍珠	k岩栽培 perlite cu	lture	土壤栽培 soil culture			
element)	1	I		Ī	II	III	
$w(N)/(g \cdot kg^{-1})$	43.90 ± 1.36a	$41.00 \pm 2.95a$	$39.60 \pm 0.74a$	53.10 ± 0.66a	$32.10 \pm 2.61c$	$38.50 \pm 0.99b$	
$w(P)/(g \cdot kg^{-1})$	$8.27 \pm 1.23a$	4.76 ± 0.25 b	$5.02 \pm 0.18b$	$8.16 \pm 0.44a$	$4.89 \pm 0.38b$	$7.03 \pm 0.98a$	
$w(K)/(g \cdot kg^{-1})$	$37.19 \pm 1.86a$	$35.06 \pm 2.57a$	$36.01 \pm 3.69a$	$47.31 \pm 2.06a$	$18.57 \pm 1.47c$	$24.13 \pm 3.49b$	
$w(Ca)/(g \cdot kg^{-1})$	$22.73 \pm 0.77a$	$9.84 \pm 0.58c$	$12.51 \pm 0.48b$	$18.65 \pm 0.77b$	$15.84 \pm 3.02c$	$27.73 \pm 2.23a$	
$w(Mg)/(g \cdot kg^{-1})$	$10.23 \pm 0.33a$	$6.36 \pm 0.45 $ b	$0.93 \pm 0.39c$	$7.23 \pm 0.57a$	3.24 ± 0.75 b	$2.85 \pm 0.12b$	
$w(\text{Fe})/(\text{mg} \cdot \text{kg}^{-1})$	$265 \pm 22b$	$260 \pm 32b$	$293 \pm 45a$	$248 \pm 27c$	$330 \pm 85b$	$410 \pm 38a$	
$w(Mn)/(mg \cdot kg^{-1})$	$137 \pm 17a$	$81 \pm 12b$	$75 \pm 8b$	$33 \pm 7b$	$47 \pm 11b$	$105 \pm 15a$	
$w(Cu)/(mg \cdot kg^{-1})$	$8 \pm 2b$	$14 \pm 2a$	$19 \pm 3a$	$24 \pm 5a$	$19 \pm 6a$	$24 \pm 3a$	
$w(\mathrm{Zn})/(\mathrm{mg}\cdot\mathrm{kg}^{-1})$	$76 \pm 3b$	$137 \pm 14a$	$110 \pm 19a$	$50 \pm 5b$	$40 \pm 7b$	$198 \pm 15a$	

¹⁾相同栽培方式中同行数据后具相同字母者示差异不显著(DMRT,P=0.05)

量没有显著差异,鸡粪和花生麸沤腐液处理的叶片磷、钙、镁、锰含量显著低于营养液处理. 但两处理的叶片铜、锌含量又显著高于营养液处理. 特别是花生麸处理叶片镁含量只为营养液和鸡粪沤腐液处理的9.0%和14.6%. 土壤栽培时,营养液处理叶氮含量显著高于鸡粪和花生麸沤腐液. 鸡粪沤腐液的叶片氮、磷、钾、钙含量最低,与花生麸处理间存在显著差别. 花生麸处理叶片镁含量最低,仅为营养液和鸡粪沤腐液处理的39%和88%. 花生麸处理叶片铁、锰和锌含量显著高于营养液和鸡粪处理. 叶片锰含量是营养液和鸡粪沤腐液的3.2和2.2倍,叶锌含量是营养液和鸡粪沤腐液的3.9倍和4.9倍.

3 讨论与结论

通过滴灌系统施用液态有机肥存在2个主要问 题:一是液态有机肥可能造成滴头的堵塞; 二是滴灌 施入的有机肥养分能否满足作物营养的需要. 预备 试验表明,鸡粪和花生麸沤腐后,上层清液经 d 为 0.8~3.0 mm 的石英砂过滤后由滴灌系统施用不会 造成滴头堵塞. 本试验主要解决第2个问题. 珍珠 岩是一种惰性介质,对离子不吸附,保水保肥能力 差[11]. 用珍珠岩栽培可以基本反映鸡粪及花生麸沤 腐液的固有养分对番茄生长的作用. 和营养液处理 相比,滴施花生麸沤腐液番茄长势差,开花后中下部 叶片变黄,叶缘卷曲干枯,上部叶小呈绿色,呈现典 型的缺镁症状[12-13]. 本试验中珍珠岩和土壤栽培下 滴施花生麩沤腐液叶片镁质量分数分别为 0.93 和 2.85 g·kg⁻¹,均显著低于 Sonnevld^[13]等的研究结果 (5.7 g·kg⁻¹). 虽然花生麸沤腐液中镁质量分数和 营养液基本一致,但花生麸沤腐液中氮绝大部分为 铵态氮,而营养液中不含铵态氮. 花生麸沤腐液中过 多的铵态氮可能抑制了镁的吸收. 土壤栽培时,花生 麸沤腐液处理叶镁含量显著增加,但仍处于缺乏范 围. 鸡粪沤腐液处理外观没有观察到典型的缺镁症 状. 在珍珠岩栽培时,果实脐腐病的发病率与溶液中 钙含量呈正相关,花生麸沤腐液含钙最少,故脐腐病 最多. 土壤栽培时,果实没有出现脐腐病,这可能与 根系可以从土壤中吸收足够的钙有关.

在同等电导率下,鸡粪沤腐液中磷只有营养液的 20%,钙为 43%,镁为 70%,而氮、钾和其他微量元素两者相近.从珍珠岩栽培结果看,单独滴施鸡粪沤腐液植株生物产量和果实产量都显著小于滴施营养液.可能是 NH₄ 过多而致养分比例失调(如 NH₄ /Ca, NH₄ /Mg). 花生麸沤腐液主要以铵态氮为主,其 N: P: K(质量比) = 113.8:1.0:2.8,与营养

液比例相差很大(营养液为4.1:1.0:6.3),其养分不平衡更加突出. 当土壤施用时,单独滴施鸡粪和花生 麸沤腐液番茄可正常生长,果实品质不受影响. 这是 因为土壤对养分的吸附(如过多的铵离子)及本底养 分的补充供应在一定程度上可能缓解了养分不平衡 的程度,使植株能正常生长.

鸡粪沤腐沉渣率为3.5%,沤腐液绝大部分可以由滴灌施用;花生麸沤腐沉渣率达74.0%,只有少部分上清液可供滴灌施用.综合作物反应和沤制过程两方面因素,在土壤种植情况下,鸡粪沤腐液可以在滴灌系统中单独施用,而花生麸沤腐液则不适宜在滴灌系统中施用.

参考文献:

- [1] BAR-YOSEF B. Advances in fertigation[J]. Advances in Agronomy, 1999, 65: 1-3.
- [2] 田有国, MAGEN H. 灌溉施肥技术及其应用[M]. 北京:中国农业出版社,2003:15-17.
- [3] 陈云,关新元,尹飞虎,等. 喷滴灌专用肥研究与应用现状[J]. 新疆农垦科技,2002,2:33-34。
- [4] SCHWANKL L J, MCGROURTY G. Organic fertilizers can be injected through low-volume irrigation system [J]. California Agriculture, 1992, 46(5): 21-23.
- [5] NAKANO A, UEHARAL Y, YAMAUCHI A. Effect of organic and inorganic fertigation on yields, δ¹⁵N values, and δ¹³C values of tomato (*Lycopersicon esculentum* Mill. cv. Saturn) [J]. Plant and Soil, 2003, 255; 343-349.
- [6] 全国农业技术推广服务中心.中国有机肥料资源[M]. 北京:中国农业出版社,1999:19,161.
- [7] 聂磊, 刘鸿先. 有机肥对沙田柚果实品质的影响初探 [J]. 广东农业科学, 2001(2): 31-34.
- [8] 郑光华, 蒋卫杰. 消毒鸡粪在樱桃番茄无土栽培中应用效果[J]. 北方园艺,1994, 4: 28-30.
- [9] FERGUSON J J. Growth and yield of bearing and non-bearing citrus trees fertilized with fresh and processed chicken manure [J]. Proceedings of the Florida State Horticultural Society, 1995, 107: 29-32.
- [10] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000: 257-352.
- [11] 刘士哲. 现代实用无土栽培技术[M]. 北京:中国农业出版社,2001:144-162.
- [12] CHAPMAN H D. 园艺植物营养诊断标准[M]. 庄伊美, 江由, 邵少蕙,译. 上海:上海科学技术出版社, 1986; 116-117.
- [13] SONNEVLD C, VOOGT W. Effects of Ca-stress on blossem-end rot and Mg-deficiency in rockwool grown tomato [J]. Acta Horticulturae, 1991, 294; 81-88.

【责任编辑 周志红】