广藿香 2种表皮毛的发育解剖学研究

冯承浩 1,2,吴 鸿 2,赵 晟 2

(1 韶关学院英东生物工程学院,广东 韶关 512005;

2华南农业大学生命科学学院药用植物研究中心,广东广州 510642)

摘要:通过石蜡切片及扫描电镜观察发现:广藿香的茎、叶上密集分布着腺毛和非腺毛 2种表皮毛,二者的外部形态及发育过程明显不同.根据腺毛头部形状可把腺毛分为盾状腺毛和头状腺毛,二者均发生得很早,它们的原始细胞都来源于原表皮,一般在茎尖第 1和第 2片叶原基的原表皮细胞以及茎的 1~ 2节间原表皮细胞中开始发生.其发育过程可分为原始细胞形成期、基细胞形成期、柄细胞形成期和头部的形成 4个阶段.非腺毛的发生晚于腺毛,但发生时期却较长.它一般在第 2对幼叶上开始发生,而且在成熟叶和具初生结构茎上也可发生、发育.原始细胞产生后,开始进行平周分裂,形成基细胞核头部细胞,头部细胞经一次或多次分裂发育形成非腺毛的数个子细胞.

关键词:广藿香;腺毛;非腺毛;发育

中图分类号:Q94 文献标识码:A 文章编号:1001-411X(2006)01-0088-04

The Developmental Anatomy of Two Kinds of Trichomes

in Pogostemon cablin

FENC Cheng-hao1, 2, WU Hong2, ZHAO Sheng2

(1 Yingdong College of Bioengineering, Shaoguan University, Shaoguan 512005, China; 2 Center for Medicinal

Plant Research, College of Life Science, South China Agric. Univ., Guangzhou 510642, China) Abstract: There were flourishing trichomes on the epidermis of Pogostemon cablin's stem and leaf, and they also have distinct difference in shape and development stage. According to the shape of head, the glandular hairs were divided into capitate and peltate glandular hairs. They all occurred very early and their initial cells came from protoderm, which usually originated from the first and second primordium or 1--2 internode of stem. Their developmental process may be divided into four stages, i.e. primitive cell stage, basal cell stage, stalk cell stage and apical cell stage. The origination of non-glandular hairs was later than that of glandular hairs, but lasting origination time in the former was longer than that in the latter. Non-glandular hairs usually started to occur in the secondary immature leaf, and also continue to occur in mature leaves and stems. After initial cells formed, they began to periclinal division to develop into the composing cells of non-glandular hairs.

Key words: Pogostemon cablin ; glandular hairs ; non-glandular hairs ; development

广藿香 Pogostemon cablin (Blanco) Benth. 为唇 化湿、开胃止呕、发表解暑之功效^[1],是著名成药"藿形科刺蕊草属植物,是常用的芳香化湿中药,有芳香 香正气丸(水)"的"君"药,被历代医家视为暑湿时

收稿日期:2005-03-04

作者简介: 冯承浩(1973-), 男, 讲师, 硕士; 通讯作者: 吴鸿(1963-), 男, 教授, 博士, E-mail: wh@ scau. edu. cn

基金项目:广东省中医药管理局基金项目(F01032);广东省科技计划项目(2002C20147)

令之要药,在临床上应用广泛.广藿香原产菲律宾^[2],宋朝时引入我国,在岭南一带引种成功,且普遍种植,是著名的"十大南药"之一,其中尤以广州和高要产者为优^[3].广藿香的茎、叶上密布表皮毛,按表皮毛内能否产生和分泌挥发油,可将表皮毛分为腺毛和非腺毛 2 类(图 1a).对于唇形科(Labiatae)植物茎、叶腺毛的形态、发育研究,已有很多报道^[4-10],但鲜见有对密布于广藿香茎、叶表面的非腺毛的形态发生及其与腺毛形态发生区别的报道.笔者利用常规石蜡切片法和扫描电镜观察法对广藿香2种表皮毛的发生、发育及在该过程中二者的区别做了系统研究,旨在为这一著名南药的开发及生物学特性研究提供理论上的参考.

1 材料与方法

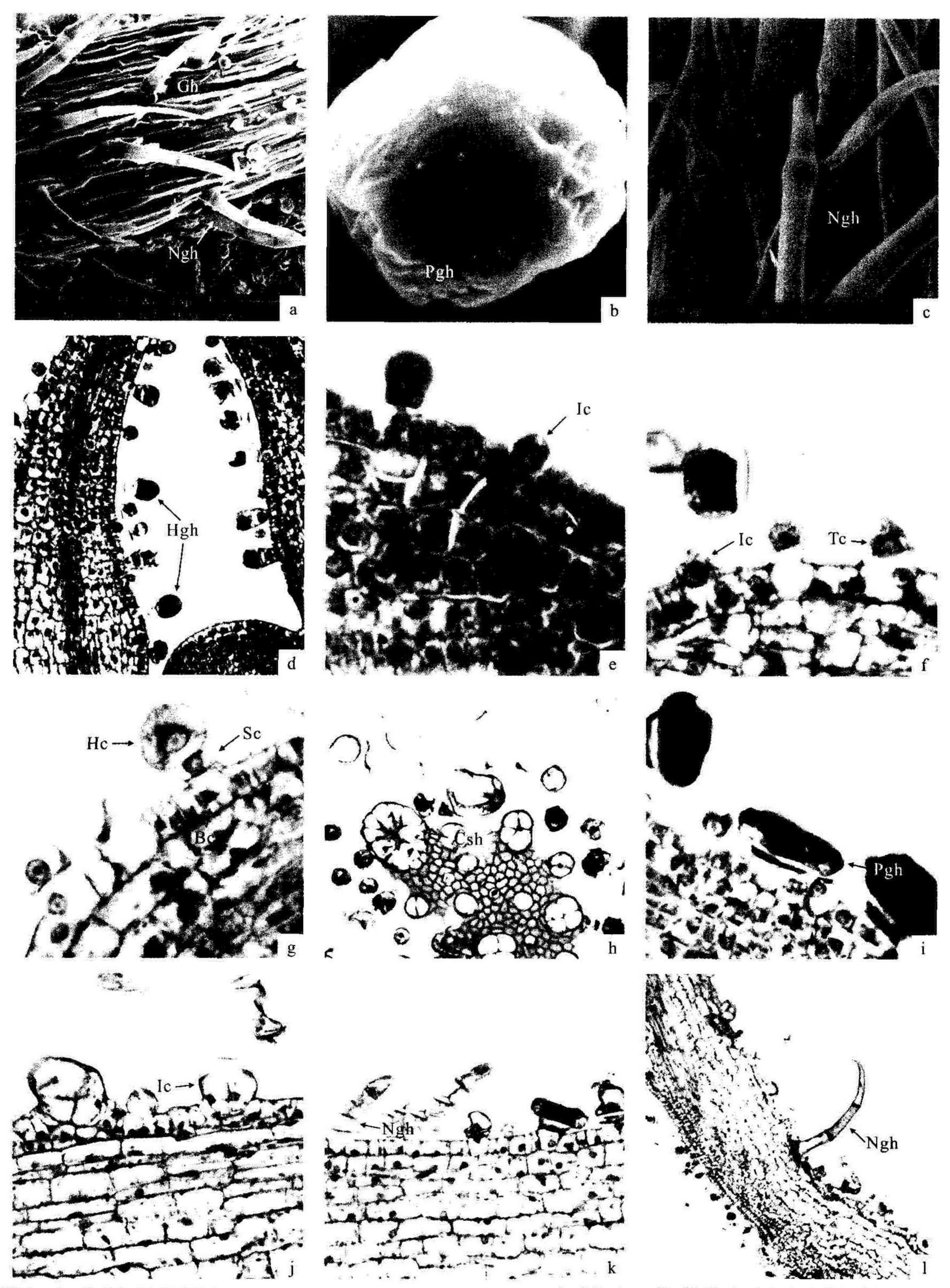
1.1 实验材料

本研究所用材料取自广东省高要市莲塘镇,经 广东药学院罗集鹏教授鉴定为正品. 凭证标本存于 华南农业大学生命科学学院植物标本室.

1.2 实验方法

- 1.2.1 石蜡切片法 取营养茎尖、幼叶、成熟叶片、茎 1-2 节间及成熟茎节间,分割后 FAA 固定,常规 石蜡法制片,切片厚度 6~8 μm,番红、固绿对染,中 性树胶封片,LEICA DMLB 显微镜观察并照相.
- 1.2.2 扫描电镜观察 将带有叶原基的茎尖、幼叶、成熟叶片和中上部的茎皮经 $\varphi = 10\% \, \text{H}_2 \, \text{O}_2$ 漂白 5~10 min, FAA 固定、系列酒精脱水、临界点干燥、喷金后, Philipxl-30-ESEM 扫描电镜观察并照相.

2 结果


2.1 两种表皮毛的形态结构

- 2.1.1 腺毛 根据腺毛头部细胞形状,可将其分为盾状腺毛(图1b,i)和头状腺毛(图1d)2种. 二者均由基细胞、柄细胞和由分泌细胞组成的头部构成,与Amelunxen^[8]报道的胡椒薄荷腺毛的结构基本相同. 盾状腺毛由1个基细胞、1个柄细胞和近盾状的头部组成;头状腺毛由1个基细胞、1~4个柄细胞、头部细胞1个或2~4个,排列成球形、近球形或椭圆形. 二者头部的形状以及组成细胞的数目均有不同.
- 2.1.2 非腺毛 平直或弯曲,最长的可达 600 μm,由 3~6 个细胞组成,壁具疣状突起,部分非腺毛的细胞与细胞间的连接处膨大成"节"(图 1c). 非腺毛

基细胞1~2个,基细胞以上由1~5个细胞构成非腺毛,而且这些细胞由基部到顶部逐渐变小、变细,顶部细胞先端成尖形(图1a,c,l).

2.2 两种表皮毛的发生和发育

- 2.2.1 腺毛 盾状腺毛和头状腺毛均发生得较早,它们的原始细胞都来源于原表皮,一般在茎尖第一或第2片叶原基的原表皮细胞以及茎的1~2节间原表皮细胞中发生(图1d). 其发育过程可归纳为以下4个阶段.
- (1)腺毛原始细胞的形成:在广藿香幼嫩茎、叶的原表皮上,某些细胞的体积膨大,细胞核也增大,细胞质浓厚,液泡小,明显不同于相邻的原表皮细胞,此种细胞即为腺毛的原始细胞(图 1e). 腺毛原始细胞产生后,其外壁向外突起,逐渐呈长椭圆形,细胞核移到突起中. 此时,细胞质变得淡薄,逐渐形成大液泡(图 1f).
- (2)基细胞的形成:腺毛原始细胞进行平周分裂,形成2个子细胞,基部的细胞以后发育为基细胞,基细胞内逐渐形成大液泡,将其细胞质和细胞核推至细胞壁边缘;顶部细胞液泡小,细胞质浓厚(图1f).
- (3)柄细胞的形成:腺毛原始细胞进行平周分裂后,顶部细胞继续进行1次平周分裂,产生2个子细胞,其中,邻近基细胞的子细胞将发育成柄细胞,而顶部的子细胞则继续分裂或不分裂直接发育成头部细胞(图1g).此时,基细胞中具中央液泡,细胞质被挤向四周.2种腺毛在以上早期的发育过程中是相同的.腺毛在发育的3细胞阶段,其柄细胞存在2种状态:一是柄细胞出现后,即纵向伸长,并开始液泡化,即出现细胞分化;二是柄细胞呈扁平状,其细胞核较大,细胞质浓厚,仍保持分生组织状态.
- (4) 柄细胞已分化的腺毛,有的单个头细胞产生后,细胞迅速分化,细胞体积增大并横向扩展,细胞质稀少,出现中央大液泡,发育为头部只有1个分泌细胞的头状腺毛;而有的头细胞也会进行平周或垂周分裂,形成具有多个柄细胞或头部细胞的头状腺毛. 柄细胞保持分生组织状态的腺毛,柄部上方的头细胞进行垂周分裂,从而形成具有8~16个分泌细胞的头部(图1h). 头部最初为圆球形,以后,由于组成头部的分泌细胞横向扩展,从而使头部呈扁平的盾状(图1i).
- 2.2.2 非腺毛 非腺毛的发生晚于腺毛,但发育的空间范围较大.它一般在第2对叶原基或幼茎上开

Bc:基细胞 basal cell; Csh:盾状腺毛头部细胞横切面 cross section of head of peltate glandular hair; Gh:腺毛 glandular hair; Hc:头部细胞 head cells; Hgh:头状腺毛 head glandular hair; Ic: 原始细胞 initial cell; Ngh:非腺毛 non-glandular hair; Pgh: 盾状腺毛 peltate glandular hair; Sc:柄细胞 stalk cell; Tc:两细胞时期 two cells stage

a~c:扫描电镜图片.a:示广藿香叶远轴面上表皮毛的分布,×150;b:示广藿香的盾状腺毛的顶面观,×3 200;c:示广藿香幼叶上密集着生的非腺毛,×400;d:营养茎尖的纵切面,示叶原基上腺毛的分布,×200;e:示腺毛原始细胞的形成,×500;f:示腺毛发育的两细胞阶段,×250;g:示腺毛的柄细胞,×400;h:示盾状腺毛头部的顶面观,×200;i:示盾状腺毛的纵切面观,×200;j:非腺毛原始细胞的形成,×200;k:示非腺毛柄细胞的形成,×200;l:示发育成熟的广藿香非腺毛,×100

a-c:photos of scanning electron microscope. a: showing the distribution of trichomes on leaf abaxial surface, ×150;b:showing the peltate glandular hairs in apical view, ×3 200;c:showing the non-glandular hairs of a young leaf, ×400;d:longitudinal section of vegetative shoot apex, showing the distribution of glandular hairs on leaf primordium, ×200;e:showing the form of initial cell of glandular hair, ×500;f:showing the 2 cells stage a glandular hair, ×250;g:showing the stalk cell of a glandular hair, ×400;h:apical view of heads of glandular hairs, ×200;i:longitudinal section of a peltate glandular hair, ×200;j:showing the form of non-glandular hairs stem cells, ×200;l:showing mature non-glandular hair, ×100

图 1 广藿香 2 种表皮毛发育的光学显微镜和扫描电镜图片

Fig. 1 Photographs of light microscopy and scanning electron microscopy of two kings of trichomes in *Pogostemon cablin*

始发生,而且在成熟叶和具初生结构茎上也可发生、 发育. 非腺毛原始细胞的形成不同于腺毛原始细胞 的形成,在广藿香第 2 对叶原基、幼叶、成熟叶以及 具初生结构茎的表皮上,有些表皮细胞体积膨大,细 胞质变得浓厚,细胞核变大,随后进行不均等的垂周 分裂,产生 2 个大小不等的子细胞,小的将来发育成 表皮细胞,而大的则逐渐长大成为突出于原表皮之 上的非腺毛原始细胞(图 1j). 原始细胞产生后,开 始进行平周分裂,形成 2 个子细胞,基部细胞体积大 于顶部细胞,而后,基部细胞进行分化,而顶部细胞 保持分生状态或进行分化,按照同样的过程,依次分 裂形成非腺毛的数个子细胞(图 1k),分裂完毕后, 各个子细胞再进行发育,形成引长的非腺毛组成细 胞,整个非腺毛组成细胞由基部至顶部呈由大到小 的顺序排列,顶部细胞顶端呈尖形(图 1l).

3 讨论

3.1 2种表皮毛发育过程中的差异

2 种表皮毛的发生发育存在着较大的差异. 腺毛从第1对叶原基就开始发生,而非腺毛从第2 对叶原基或幼嫩的茎叶表皮开始发生;腺毛的发生发育区间较短,仅从第1对叶原基至第1对幼叶,而非腺毛则可从第2 对叶原基一直到初生结构的茎和叶都有发生;腺毛的原始细胞直接膨大,然后进行平周分裂,而非腺毛的原始细胞先进行1次垂周分裂后才进行平周分裂,因此后者有时基细胞看似2个;最为明显的是,前者能分化出合成和分泌挥发油的头部细胞,整个腺毛组成细胞由下至上逐渐变大,而后者则不能合成和分泌挥发油,而且由下至上逐渐变小.

对于2种形态的腺毛发育过程中的形成原因,笔者支持闫先喜等^[4]和黄建成等^[5]的观点,既由于柄细胞的分化情况不同,从而分别发育成2类腺毛.但对于头状腺毛柄细胞和头细胞的数量,笔者认为没有固定的规律,广藿香头状腺毛的柄细胞1~4个,其头部细胞1~4个不等.而且2种腺毛头部细胞不仅仅进行垂周分裂,偶尔也有平周分裂.盾状腺毛头部细胞的数目也并非象有些报道所描述的那样,为有规律的偶数^[6-7],笔者发现:腺毛头部细胞并非全部为同步地进行垂周分裂,有时为不同步或有的细胞不分裂,所以形成的头部细胞的数目有时为奇数.

3.2 2种表皮毛功能的差异

腺毛和非腺毛都是广藿香茎叶表皮上的附属结构,它们各有自己的功能和作用. 通常认为腺毛是生

物活性次生代谢物的主要合成场所,可保护植物免受热灼伤或病虫侵害或抵御其他植物影响[11-15].广藿香的腺毛在茎尖生长点附近的叶原基和幼叶上分布密度特别大,此时的生长点尚未形成完善的保护组织,而密集着生的、含有刺激性气味挥发油的腺毛,必然可起到保护茎尖生长点免受热灼伤或病虫侵害的作用. 茎叶的初生结构形成后,它们虽有了自己的保护组织,但仍不是很完善,所以仍需要非腺毛来担负一定的保护作用. 茎次生结构的周皮形成后,保护组织已达完善,此时的腺毛和非腺毛都退化或衰亡.

广藿香腺毛起源于原表皮,在叶原基或幼叶上 就已发育完毕. 在幼嫩的的茎、叶表面上, 腺毛丰富, 分泌物排出旺盛,从而有效地保护了幼嫩的生长点. 当叶子展开并逐渐发育成熟后,腺毛的分泌活动下 降并逐渐失去作用,有些植物的腺毛则全部或部分 脱落[16]. 据笔者观察,广藿香成熟叶上腺毛分布稀 疏,并且可见一些腺毛脱落后残存的细胞,因此,笔 者认为广藿香的腺毛在行使完功能后,有脱落的现 象,这与黄建成等[5]报道的薄荷腺毛不同. 广藿香 的非腺毛在具初生结构的茎和叶上的分布密度均大 于腺毛的分布密度,虽然它们不能分泌带有刺激性 气味的挥发油,但由于其子细胞弹性、硬度均大于腺 毛,且密度远大于腺毛,因此一定程度上阻止了病虫 害和热灼伤对广藿香茎叶的侵害,这在更靠近南方 的广东省湛江表现得更加明显,起到了"保护刺毛" 的作用,使得非腺毛浓密的湛江(海南)广藿香的长 势明显的强于肇庆高要和广州的广藿香.

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典[M]. 北京:化学工业出版社,2000:33-34.
- [2] 郝近大,谢宗万. 藿香药用品种的延续与发展[J]. 中药材, 1994,17(8):44-47.
- [3] 罗集鹏,冯毅凡,郭晓玲. 石牌藿香的挥发油成分分析 [J]. 中草药,2001,32(4):299-302.
- [4] 闫先喜,王晓理,胡正海. 薄荷叶两种腺毛的发育解剖学研究[J]. 山东农业大学学报,2000,31(2):157-160.
- [5] 黄建成,董忠民,胡正海. 薄荷腺毛的形态结构和发育的研究[J]. 植物学报,1986,28(4):437-440.
- [6] 郭凤根,王仕玉. 紫苏腺毛的形态结构和发育的研究 [J]. 云南农业大学学报,1997,12(1):55-57.
- [7] 于丽杰,崔继哲,张大维,等. 细叶益母草叶表面腺毛多样性及发育形态学研究[J]. 植物学通报,1999,16 (5);602-605.

(下转第116页)