几种花口 线艺兰口 片色斑色素组成和

口 绿体超微结构研究

范燕萍,李慧玲,李浩健

(华南农业大学园艺学院,广东广州 510642)

摘要:以墨兰 Cymbidium sinense 3个花叶线艺兰品种金嘴、阳明锦和大石门为材料,分析了叶片色斑区叶绿素和类胡萝卜素的质量分数,对其解剖结构和叶绿体超微结构进行了观察,并同叶片正常绿色区进行了比较.结果表明:线艺兰叶斑的形成与叶绿素和类胡萝卜素的质量分数有直接的关系,叶片绿色区金嘴、阳明锦和大石门叶绿素质量分数分别为 1.680、1.279和 1.584 mg·g-1,类胡萝卜素质量分数分别为 0.185、0.159和 0.195 mg·g-1,绿色区金嘴、阳明锦和大石门类胡萝卜素与叶绿素质量分数的比值分别为 0.110、0.124和 0.123;而在叶片黄色区,金嘴、阳明锦和大石门类胡萝卜素与叶绿素质量分数的比值分别为 0.100、g-1,类胡萝卜素的质量分数分别为 0.145。0.136和 0.164 mg·g-1,类胡萝卜素与叶绿素质量分数的比值分别为 0.209、0.294和 0.304.即黄色区类胡萝卜素相对质量分数较高.绿色区和黄色区的叶绿素 a与比值变化不大,但在 3个品种中都以绿色区稍高.在叶片绿色部分的细胞中,可以明显看到较多的叶绿体,叶绿体中基粒较发达,类囊体膜垛叠较紧密,有较多较大的淀粉粒;而在叶片黄斑部分的细胞中,基本上看不到完整叶绿体,淀粉粒逐渐消失,基质中存在很多嗜锇滴.

中图分类号: s682 文献标识码: A 文章编号: 1001-411X(2006)02-0008-05

关键词:线艺兰;色素;叶绿体;超微结构;墨兰

Pigment Composition and Ultrastructural Difference of Chloroplast

in Three Kinds of Variegation Leaf of Cymbidium sinense

FAN Yah-ping, LI Hui-ling, LI Hao-jian

(College of Horticulture, South China Agric. Univ., Guangzhou 510642, China)

Abstract:The varieties used in this research were Cymbidium sinense cv. Jin-zui, Cymbidium sinense cv. Yang-ming-jin, Cymbidium sinense cv. Da-shi-men. The differences between the green area and yellow area in pigment composition and ultrastructure of chloroplast were significant. In the green area of Jin-zui, Yang-ming-jin and Da-shi-men the mass fraction of chlorophyll were 1. 680, 1. 279 and 1. 584 mg-g-1 and the mass fraction of carotenoid were 0. 185,0. 159 and 0. 195 mg - g-1 respectively, the ratios of mass fraction of carotenoid to chlorophyll were 0. 110,0. 124 and 0. 123; In the yellow area the mass fraction of chlorophyll were 0. 693,0.465 and 0.540 mg · g-1, the mass fraction of carotenoid were 0. 145,0. 136 and 0. 164 mg · g-1, the ratios mass fraction of carotenoid to chlorophyll were 0. 209, 0.292 and 0. 304. Compared with the green area, there were low mass fraction of chlorophyll, high ratio of carotenoid to chlorophyll mass fraction in the yellow area. The differences in the ratio of chlorophyll a to b between green and yellow area in three cultivars were not significant. In the green area, there were more chloroplasts, the grana in the chloroplast were well developed, thylakoid compactly stacked, and numerous big starch grains were found to occur in the stroma, but in the yellow area there were less chloroplasts, the grana in the chloroplast were disintegrated, the starch grains disappeared and more osmiophilic droplets appeared in the stroma.

Key words: variegation leaf; pigment composition; chloroplast; ultrastructure; Cymbidium sinense

兰花是我国的传统名贵花卉,其婀娜多姿的叶 片有很高的观赏价值. 特别是在叶尖、叶缘和叶中部 等处出现白色或黄色斑块的彩斑,在兰界称其为线 艺兰. 由于线艺兰在我国、日本、韩国及东南亚一带 市场很受欢迎,其商品价值根据线艺类型不同成倍 甚至十倍、几十倍地增加, 鉴于兰花叶片彩斑形成对 其商品性的重要意义,因而研究其线艺形成的机理, 对于人工培育线艺兰新品种具有重要的意义. 全世 界约135个属的观赏植物具有彩斑现象[1]. 从观赏 植物的角度看,彩斑的形成,可以极大地提高植物的 观赏价值. 尽管彩斑是自然界一个普遍的现象,但其 形成机理却一直不太清楚[2]. 在彩斑绿色区域的细 胞含有光合色素并具有结构正常的叶绿体,而在白 色区域,质体缺乏光合色素和正常的片层结构[3]. 近年来,国内许多科学家用缺乏叶绿素的突变体为 材料,对其遗传性,突变体与野生型材料在光合色素 的组成、叶绿体结构、功能、蛋白质组分等方面的差 异进行了一系列的研究[4-5]. 但这些研究采用的材料 全叶表现为失绿(或称叶绿素缺乏),而非彩斑植物. 目前,有关兰科植物组织培养技术的报道很多,但对 兰科植物形态结构,尤其是叶片的形态解剖和超微 结构等研究较少[6],对线艺兰的研究更是鲜见报道. 本研究选择墨兰3种不同表现型的花叶品种为材 料,测定了叶片绿色和黄色部分色素含量,并对叶片 的形态解剖和叶绿体超微结构进行了观察,这对了 解兰花叶片线艺形成的生物学机制具有重要的参考 价值.

1 材料与方法

1.1 试验材料

试验所用材料为墨兰,3个品种叶片线艺的表现型不同:金嘴 Cymbidium sinense cv. Jin-zui,叶片为黄色镶边;阳明锦 Cymbidium sinense cv. Yang-ming-jin,叶片中央有一条与叶脉平行的黄斑;大石门 Cymbidium sinense cv. Da-shi-men,叶片上有若干条与叶脉平行的大小不同的黄斑,黄绿相间. 所用材料均由广东兰花协会何清正先生提供.

1.2 试验方法

1.2.1 叶绿素和类胡萝卜素含量的测定 分别切取3种线艺兰叶片的绿色部分和黄色色斑部分,参照范燕萍等^[7]的方法测定叶片叶绿素质量分数,按波钦诺克^[8]的方法测定类胡萝卜素质量分数. 试验重复3次.

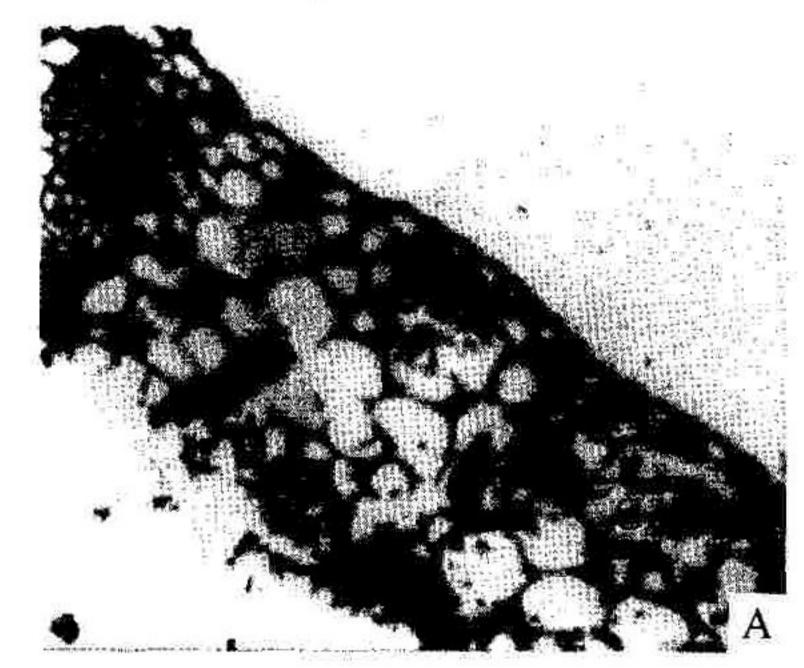
1.2.2 线艺兰叶片解剖结构的观察 取新鲜线艺兰叶片,迅速置于 FAA 固定液中,按常规石蜡切片法制片,切片厚 8 μm,进行 PAS 反应番红-固绿对染,染色过程中,加拿大树胶封片,在 Leica DMLB 光学显微镜下观察并照相.

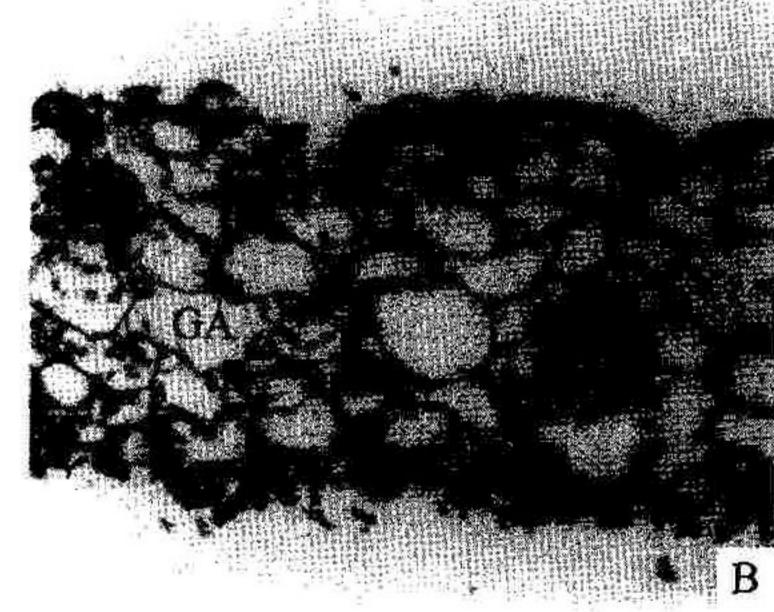
1.2.3 线艺兰叶片叶绿体超微结构的观察 取新鲜线艺兰叶片,用双面刀片将去脉叶片切成 1~2 mm²的小块,然后在 4℃低温下用体积分数 4%的戊二醛进行固定 24 h,用磷酸缓冲液清洗,再用体积分数 1%的锇酸进行后固定,蒸馏水清洗,样品用体积分数分别为 30%、50%、70%、80%、90% 和 100% 乙醇梯度脱水,环氧丙烷过渡.按照 Epon812 的配方配制包埋剂,进行样品渗透、包埋和聚合.用 Leica 切片超薄机切片,并经醋酸铀和柠檬酸铅液双染色,在FEI-Tecnal12 分析型透射电子显微镜下观察和拍照.

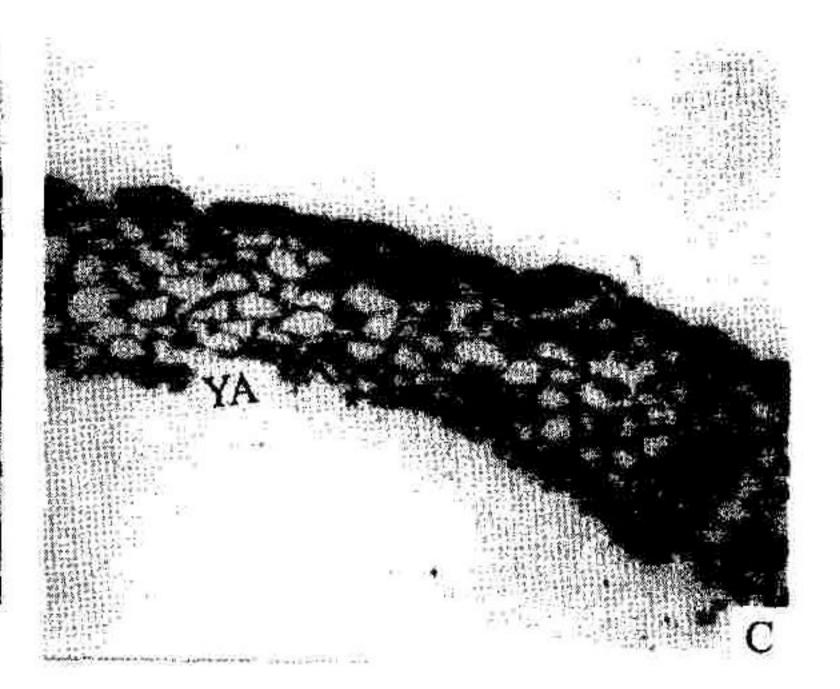
2 结果与分析

2.1 3个线艺兰品种叶片绿区与黄区叶绿素和类胡萝卜素含量分析

从表1可看出,不同品种叶片黄区与绿区色素含量和组成方面都有很大的差别.叶片从绿色转变成黄色时,都伴随叶绿素 a、b含量及叶绿素总量的下降,如大石门、阳明锦和金嘴黄区叶绿素总量分别只有绿区的34.0%、36.4%和41.3%;比较3个品种叶片绿区与黄区叶绿素 a/b 比值都表现为绿区高而黄区略有降低,说明在黄区叶绿素代谢中叶绿素 b更易受到影响.3个品种叶片黄区的类胡萝卜素含量分别只有绿区的84.1%、85.5%和78.4%,但类胡萝卜素/叶绿素比值却显著高于绿区,如大石门、阳明锦和金嘴黄区类胡萝卜素/叶绿素比值分别是绿区的247.2%、235.5%和190.0%,说明在叶片黄色变异区类胡萝卜素的含量相对较高,叶片黄区表现黄色可能与此有关.


2.2 3个线艺兰品种叶片的显微结构


3个不同线艺兰品种叶片栅栏组织不明显,上表皮排列整齐(图1-A~C). 从3个不同线艺兰品种叶片解剖结构可以清楚观察到叶片海绵组织细胞分为明显的2个区:含有叶绿体淀粉粒的绿区(green area,GA)和不含叶绿体淀粉粒的黄区(yellow area,YA)(图1-A~C). 绿区淀粉粒大部分都分布在细胞壁附近;而在叶片的黄区,海绵组织细胞中基本看不到淀粉粒的存在. 3个不同线艺兰品种间差异不明显.

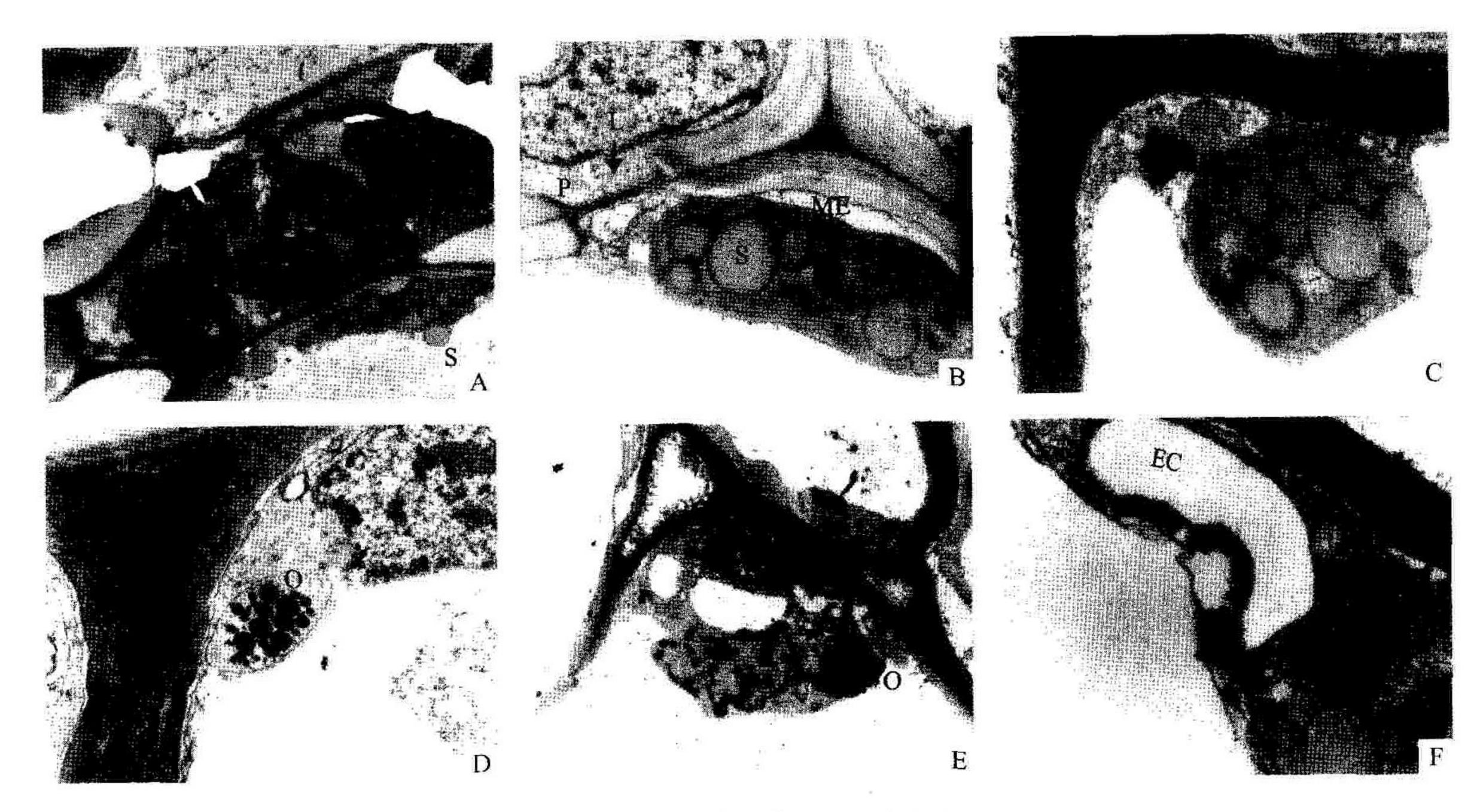

表 1 3 个线艺兰品种叶片绿区与黄区叶绿素和类胡萝卜素含量

Tab. 1 The content of chlorophyll and carotenoids in the green and yellow area in three different varieties of Cymbidium sinense

				" we was all time to this	cicia various or	Cymuuum sinense
品种 varieties	w(叶绿素 a	w(叶绿素 b	w(叶绿素 a + b		w(类胡萝卜素	w(类胡萝卜
	chla)/	chlb)/	chla+b) /	chl a) /w(叶绿素	carotenoids) /	素 caro)/
	$(mg \cdot g^{-1})$	$(mg \cdot g^{-1})$	$(mg \cdot g^{-1})$	b chl b)	$(mg \cdot g^{-1})$	w(叶绿素 chl)
大石门(绿区)	1.135 ± 0.023	0 440 . 0 016	1 501	0 500	0 105 0 010	
Da-shi-men(green)	1. 133 ± 0. 023	0.449 ± 0.016	1.584	2.528	0.195 ± 0.012	0.123
大石门(黄区)						
Da-shi-men(yellow)	0.385 ± 0.019	0.155 ± 0.049	0.540	2.484	0.164 ± 0.014	0.304
阳明锦(绿区)						
Yang-ming-jin(green)	0.932 ± 0.043	0.347 ± 0.035	1.279	2.686	0.159 ± 0.008	0.124
阳明锦(黄区)						
Yang-ming-jin(yellow)	0.331 ± 0.034	0.134 ± 0.014	0.465	2.470	0.136 ± 0.009	0.292
金嘴(绿区)				Factorial Countries Countries		
Jin-zui (green)	1.214 ± 0.062	0.466 ± 0.015	1.680	2.605	0.185 ± 0.013	0.110
金嘴(黄区)				39.75-31		
Jin-zui (yellow)	0.490 ± 0.021	0.203 ± 0.029	0.693	2.414	0.145 ± 0.006	0.209

YA:叶片黄区;GA:叶片绿区;A:金嘴叶片解剖结构(×40);B:阳明锦叶片解剖结构(×40);C:大石门叶片解剖结构(×20) YA:leaf in yellow area;GA:leaf in green area;A:transection of Jin-zui leaf(×40);B:transection of Yang-ming-jin leaf(×40);C:transection of Dashi-men leaf(×20)

图 1 3 个线艺兰品种叶片的显微结构


Fig. 1 The leaf microstructure of three different varieties of Cymbidium sinense

2.3 3个线艺兰品种叶片叶绿体的超微结构

线艺兰叶片细胞叶绿体超微结构在绿区和黄区有着明显的差别.在金嘴和阳明锦叶片绿区,叶绿体形状规则呈长纺锤形,结构完整,基质浓厚,基粒片层和基质片层清晰可见,基粒片层沿叶绿体长轴排列.类囊体结构清晰,片层垛叠紧密整齐,基质中分布有一些体积较大的淀粉粒以及少量小的嗜锇滴,这些结构特点与大多数植物叶片中叶绿体结构相类似(图 2-A~B).大石门叶片绿区叶绿体近圆形,基粒片层沿叶绿体边缘排列,基质中分布大量体积较大的淀粉粒(图 2-C).

3个不同线艺兰品种叶片黄区,叶绿体内部结构发生了明显的变化.在金嘴的黄区叶细胞中,叶绿体

被膜表面边缘开始变得模糊,内部结构几乎全部解体,只能见到有外膜轮廓的囊泡状结构,基质内已经不存在类囊体结构,也看不到基粒片层,基质中充满嗜锇滴(图 2-D);阳明锦的叶片中,黄区叶绿体被膜凹凸不平,甚至有的部位已经破裂,叶绿体开始退化,基粒扭曲,类囊体排列混乱,基质中出现大囊泡,囊泡中仍能看见正在解体退化的基粒片层残片,嗜锇滴大量增多,且聚集在一起,基质中无淀粉粒存在(图 2-E).在大石门的黄区叶细胞中,叶绿体内部也存在一些囊泡和退化的基粒残片,基质中基本上看不到基粒结构、类囊体以及片层结构,基质中存在体积较大的嗜锇滴(图 2-F).

GR:基粒;S:淀粉粒;O:嗜锇滴;EC:叶绿体内空化小泡;ME:叶绿体被膜;CW:细胞壁;P:细胞间通道;L:胞间连丝A:金嘴叶片绿区叶绿体超微结构(×2 320);B:阳明锦叶片绿区叶绿体超微结构(×800);C:大石门叶片绿区叶绿体超微结构(×11 200);E:金嘴叶片黄区叶绿体超微结构(×11 200);F:阳明锦叶片黄区叶绿体超微结构(×3 360);G:大石门叶片黄区叶绿体超微结构(×16 000) GR:grain;S:starch grain;O:osmiophilic droplet;EC:empty vesical of chloroplast;ME:membrane envelop of chloroplast;CW:cell wall;P:pathway between cells;L:plasmodesma

A; ultrastructure of chloroplast in green area of Jin-zui leaf(×2 320); B; ultrastructure of chloroplast in green area of Yang-ming-jin leaf(×800); C; ultrastructure of chloroplast in green area of Da-shi-men leaf(×11 200); E; ultrastructure of chloroplast in yellow area of Jin-zui leaf(×11 200); F; ultrastructure of chloroplast in yellow area of Yang-ming-jin leaf(×3 360); G; ultrastructure of chloroplast in yellow area of Da-shi-men leaf(×16 000)

图 2 3 个线艺兰品种叶片叶绿体的超微结构

The leaf ultrastructure of three different varieties of Cymbidium sinense

3 讨论

3.1 兰花叶片叶绿素与类胡萝卜素的比例决定了 叶片的颜色

兰花叶片光合细胞含叶绿素和类胡萝卜素,但 不同线艺兰品种叶片中两者比例不同. 在正常情况 下,类胡萝卜素的颜色为叶绿素所掩盖,只有在叶绿 素减少时,类胡萝卜素的色泽才会显露出来. 本试验 3个线艺兰品种叶片绿色部分的叶绿素含量较高,类 胡萝卜素含量较低,类胡萝卜素和叶绿素的比值相 对较低,所以叶绿素掩盖了类胡萝卜素的颜色,叶片 呈现出绿色;而叶片黄色叶斑部分叶绿素含量大大 降低,尽管类胡萝卜素含量也下降,但类胡萝卜素和 叶绿素的比值相对较高,类胡萝卜素颜色不被叶绿 素所掩盖,呈现出黄色. 3 个品种黄区的叶绿素 a/b 的比值都比绿区略低,说明在兰花叶片黄色斑形成 时这两种叶绿素的降解基本上是同比例进行的. 这 与缺乏叶绿素的油菜突变体[4]是不同的. 叶绿素减 少,类胡萝卜素与叶绿素比值的提高是兰花叶片色 斑呈现出黄色的主要生理原因.

3.2 质体结构的差异决定了其功能的不同

通过对各品种叶片绿色部分和黄色部分的叶片显微结构及叶绿体超微结构的观察比较得知,绿区和黄斑区有很明显的差异. 金嘴和阳明锦叶片的黄斑部分海绵组织细胞中基本看不到淀粉粒的存在,推测该区域叶绿体的结构和功能都已受到影响. 这种变化与花叶开唇兰叶片在叶脉与上表皮之间细胞叶绿体小而色浅,从而使其叶脉处呈金黄色线条的报道是一致的^[9]. 也与很多其他叶绿体突变材料如甘蔗黄化苗^[10]相似,这些突变体的质体结构不正常,会发生基粒垛叠层数、形状、排列方向的改变或空化及类囊体肿胀等异常现象.

叶绿体中的淀粉粒是细胞碳水化合物存在的主要形式之一,同时还可以为蛋白质的合成提供碳架^[11].从观察结果来看淀粉粒的形态结构与叶绿体的发育和功能是紧密相关的.在叶片的绿色部分,叶绿体发育良好时,淀粉粒数量较多,体积较大,可知绿色部分叶绿体保持着活跃的光合作用功能.而在黄色部分,在发生解体退化的叶绿体中,淀粉粒数量减少、体积减小,甚至消失了.这与韩善华等^[12]的研

究是一致的. 其原因可能是当叶绿体解体退化时,由于类囊体片层的减少,光合效率大大降低,淀粉的合成变慢,但水解速度加快,于是淀粉粒越来越小,直至最终消失.

有报道认为当叶绿体衰老、片层解体时,嗜锇滴增多增大,嗜锇滴的增加是衰老叶片的一般特征,原因是叶绿体中的脂类物质平时是以贮存的方式存在,当膜建成时,它参与并结合于膜中,当膜解体时,它又以游离的方式出现在叶绿体的基质中.有人认为嗜锇滴是叶绿体中脂质合成与膜系统形成之间的代谢作用的不平衡而产生的,随着膜系统的崩解,构成膜的脂质成分与存在于基粒中的类胡萝卜素得以积累[13].在本研究中,可以观察到叶片黄斑部分的片层膜结构解体甚至消失,嗜锇滴大量增加,有的聚集在一起,这种变化与衰老叶片中退化叶绿体的结构特点有相似之处,反映了叶绿体内膜脂代谢的不平衡[12].

从研究结果来看,各品种叶片中的黄斑部分,其叶绿体都发生了不同程度的退化. 缺乏叶绿素的植物,其叶绿体结构也会发生相似的改变^[14]. 但是到底是缺乏叶绿素引起结构的改变,还是由于结构的改变而使叶绿素减少还没有定论. 此外,光照、温度、过多的有机碳源、脂质的积累等因素都可能引起叶绿体的退化. 有研究表明,一些黄化变种是由于叶绿体细胞与含白色体的细胞混合造成的. 而在叶绿体向有色体转变过程中,也能发现相似的叶绿体退化现象^[15]. 但在本试验中,还不能确定是什么因素使线艺兰产生花叶现象. 在水稻^[16]、小麦^[13]的一些突变体中发现其已经退化的叶绿体结构可以重建,叶片可以复绿. 在本研究采用的阳明锦品种中也存在复绿现象,其机制有待进一步研究.

致谢:对中国兰花协会何清正先生的帮助表示感谢!

参考文献:

- [1] 程金水. 园林植物遗传育种学[M]. 北京: 中国林业出版社,2000:33-44.
- [2] RODERMEL S. Pathways of plastid-to nucleus signaling [J]. Trends in Plant Science, 2001, l6 (10):471-476.

- [3] TILNEY-BASSETT R A E. Genetics of variegated plants [M]//BARKY C W, PERLMAN P S, BYERS T J. Genetics and biogenesis of mitochondria and chloroplasts. London: Cambridge University Press, 1975:13-50.
- [4] 赵云,杜林方,杨胜洪.缺乏叶绿素的油菜突变体的叶绿素组成和结构变化[J].植物学报,2001,43(8):877-880.
- [5] 林宏辉,何军贤,梁厚果,等.叶绿素缺乏大麦突变体光系统色素蛋白复合体的研究[J].生物化学与生物物理学报,1998,30(5):530-532.
- [6] 李爱民,陈功锡,叶秀麟,等.墨兰幼叶和成熟叶不同部位叶绿体超微结构和光合作用[J].热带亚热带植物学报,2000,8(3):70-76.
- [7] 范燕萍,余让才,郭志华. 遮阴对匙叶天南星生长及光合特性的影响[J].园艺学报,1998,25(3):270-274.
- [8] 波钦诺克. 植物生物化学分析方法[M]. 荆家海,译. 北京:科学出版社, 1981;255-259.
- [9] 张振珏,陈裕,林坤瑞,等.花叶开唇兰营养体的结构 [J].云南植物研究,1992,14(1):45-48.
- [10] 孙敬三,朱至清,王敬驹,等.甘蔗黄化突变体质体的发育和超微结构[J].植物学报,1981,23(1):1-5.
- [11] HOSTAK M S, HENSON C A, DUCK S H, et al. Starch-granule distribution between cell types of alfalfa nodules as affected by symbiotic development [J]. Can J Bot, 1986 (65): 1 108-1 115.
- [12] 韩善华,张红,顾素芬,等.沙冬青淀粉粒及其与叶绿体发育的关系[J].西北植物学报,2001,21(1):107-111.
- [13] 苏小静,汪沛洪.小麦突变体返白系返白机理的研究: I返白阶段叶绿体超微结构观察[J].西北农业大学学报,1990,18(2):73-77.
- [14] NIELS C N, ROBET M S, HENNIGSEN K W, et al.

 Composition and function of thylakoid membranes from grana—ich grana—deficient chloroplast mutants of barley

 [J]. Plant Physiol, 1979,63: 174-182.
- [15] 郑湘如,王希善. 植物解剖结构显微图谱[M]. 北京: 农业出版社,1983:5.
- [16] 邵继荣,王玉忠,刘永胜,等.水稻温敏型突变体叶片间 断失绿的超微结构[J].植物学报,1999,41(1):20-24.

【责任编辑 柴 焰】