南岭国家级自然保护区广东松群落优势种群

生态位研究

张中峰,张璐,陈北光,谢正生

(华南农业大学林学院,广东广州 510642)

摘要:在广东南岭国家级自然保护区广东松 Pinus kwangtungensi s群落内,通过典型样地调查 (调查面积共7 200 m²),以不同林层作为一维资源位,以个体多度作为计测指标,计测了广东松群落中 10个优势种群的生态位宽度和生态位重叠值.结果显示,在考虑资源利用率和不考虑资源利用率 2种情况下,所得出的生态位宽度值不同,2种情况下优势种群排列顺序有很大差异.结合重要值分析结果,认为在考虑资源利用率情况下所计测的生态位宽度值更具有合理性.群落优势种生态位宽度值大部分较高,各优势种之间能相互适应与互补,整个群落处于稳定状态.广东松与其他优势种之间的生态位重叠值较小,一方面与其生物学和生态学特性有关,另一方面与在不考虑资源利用率情况下其生态位宽度值较小有关.

关键词:广东松;生态位宽度;生态位重叠;资源利用率

中图分类号: S718. 5; Q948. 12 文献标识码: A 文章编号: 1001-411X(2006)02-0074-04

Niche Characteristics of Dominant Populations in Pinus kwangtungensis Forest

in Nanling National Nature Reserve, Guangdong, China

ZHANG Zhong-feng, ZHANG Lu, CHEN Bei-guang, XIE Zheng-sheng (College of Forestry, South China Agric. Univ., Guangzhou 510642, China)

Abstract. Using the classic plot survey method ( survey area is 7 200 m2 ), niche breath and niche overlap values of ten dominant species were calculated, with layer as one-dimension resource state and abundance as index, in the Pinus kwangtungensis community in Nanling National Nature Reserve of Guangdong. The result shows that niche breadth is significantly different between situations when the utilization of resource is considered and not considered. The sequence of the dominant species is obviously different under the two situations. Considering the result of important values of the species, niche breadth is more reasonable under the situation when resource utilization is considered. The niche breadth of dominant species is generally large, and the majority of the main tree populations can be interdependent and mutual beneficial. Thus the whole community is in stable state. The niche overlaps between Pinus kwangtungensis and other dominant species are correspondingly low. The reason on the one hand is related to its biological and ecological characteristics on the other hand is related to its low niche breadth when the utilization of resource is not considered.

Key words: Pinus kwangtungensis; niche breadth; niche overlap; utilization of resource

广东松 Pinus kwangtungensis 又名华南五针松,南、广西、广东和海南等省的局部地区[1]. 广东松属是我国特有树种,属珍稀濒危植物. 主要分布于湖 于阳性树种,生态适应性强,在悬崖陡峭的环境下也

收稿日期:2005-08-30

作者简介:张中峰(1983-),男,硕士研究生;通讯作者:张璐(1973-),女,讲师,博士研究生, E-mail: zhanglu@scau.edu.cn; 谢正生(1965-),男,副教授,E-mail: zsxie@scau.edu.cn

基金项目:中国香港特别行政区嘉道理农场暨植物园资助项目(4400-G04001);广东省环保局资助项目(4400-E03039)

可生长,常成为群落的建群种,但是其天然更新缓慢<sup>[2]</sup>. 古炎坤等<sup>[2]</sup>研究发现,国内保存最为完好的一片广东松原生林是在粤北南岭国家级自然保护区内,其主要分布在海拔1000~1600 m 的阳坡. 目前有关广东松生态位的研究鲜见报道,本文以广东南岭国家级自然保护区广东松林为对象,研究广东松群落优势种群的生态位,探讨各主要树种对环境资源的利用状况及其相互关系,以期为这片原生林的保护、群落演替动态预测和可持续利用提供科学依据.

## 1 研究地与研究方法

### 1.1 研究地自然状况

南岭国家级自然保护区位于广东和湖南交界 处,本次调查研究地——乳阳林区地处粤北南岭山 地中段,地处北纬 24°30′28″~24°48′09″,东经 112° 56′08″~113°04′18″[2]。保护区属南岭山脉中段核心 地带,据考证,这里是冰期以后东亚地区温带和亚热 带植物的发源地,是冰后期物种的扩散中心[3].南 岭国家级自然保护区目前已发现的植物种类达2 292 种[4]. 该区气候为典型的中亚热带湿润性季风气 候,年平均气温 17.7 ℃,年降水量 1705 mm[广东省 林业勘测设计院. 广东南岭国家级自然保护区总体 规划(1999~2010).1999:1-2]. 区内成土母岩主要 有花岗岩、砂页岩、石灰岩等. 水平地带性土壤为红 壤,分布的土壤类型随海拔高度的不同而异:海拔 400 m 以下为红壤;海拔 400~700 m 为山地红壤;海 拔700~900 m 为山地黄红壤;海拔900~1 500 m 为 山地黄壤;海拔1500~1800 m 为山地表潜黄壤;海 拔 1 800 m 以上为山地灌丛草甸土[5-6].

### 1.2 调查方法

在线路踏查基础上,采用典型取样样方调查,在有代表性的广东松林中设置 72 个 10 m×10 m 的样方,调查面积为 7 200 m². 分别在每个样方的四角和中心设 5 个 2 m×2 m 小样方. 在样方内调查测定胸径≥3 cm 的乔木树种的树高、胸径、冠幅、枝下高,在2 m×2 m 的小样方内进行分层频度调查,并记录小样方内所有灌木、草本的种名、株数和覆盖度.

#### 1.3 数据分析

1.3.1 生态位宽度的计测方法 (1)采用 Levens 提出的以 Shanon-Wiener 指数来测定种群的生态位宽度<sup>[7-11]</sup>:

$$B_{(sw)i} = -1/1gS \times \sum_{i=1}^{r} P_{ij} 1gP_{ij}$$

其中, $B_{(sw)i}$ 是树种 i 的生态位宽度,S 为种群数,r 为资源位数; $P_{ij}$ 是树种 i 利用第 j 种资源占其利用全部资源的比例,即:

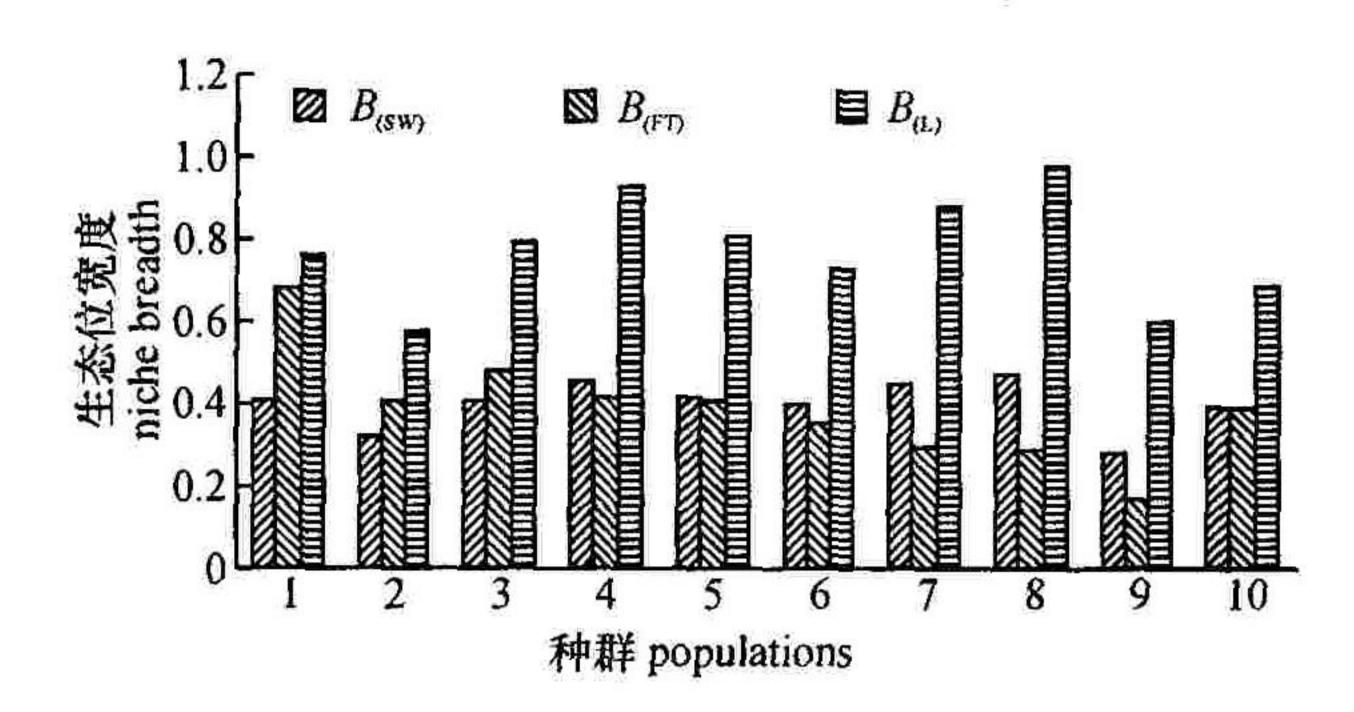
$$P_{ij} = n_{ij}/N_{i}, N_{i} = \sum_{j=1}^{r} n_{hj},$$

其中 $,n_{ij}$ 为树种 i 在第j种资源位的个体多度 $,N_{i}$ 为树种 i 所利用全部资源位的多度之和.

(2) 采用 Smith 提出的种群生态位宽度计测方法<sup>[7,9,12]</sup>:

$$B_{(FT)} = \sum_{i=1}^{r} (P_{ij} \times q_{ij})^{\frac{1}{2}},$$

其中, $B_{(FT)}$ 为在考虑资源利用率情况下的生态位宽度, $P_{ij}$ 同上, $q_{ij}$ 为资源利用率,即每一资源状态下的样地数占总样地的百分率.


1.3.2 生态位重叠的计测方法 生态位重叠计算公式采用:

$$L_{ih} = B_{(L)i} \sum_{j=1}^{r} P_{ij} \times P_{hj}, \quad L_{hi} = B_{(L)h} \sum_{j=1}^{r} P_{ij} \times P_{hj},$$
 $B_{(L)i} = 1/(r \times \sum_{j=1}^{r} P_{ij}^2), \quad B_{(L)h} = 1/(r \times \sum_{j=1}^{r} P_{hj}^2),$ 
其中, $L_{ih}$ 为树种 i 重叠树种 h 的生态位重叠值, $L_{hi}$ 为树种 h 重叠树种 i 的生态位重叠值, $B_{(L)}$ 为 Levins 提出的以 Simpson 多样性指数倒数计测生态位宽度指标<sup>[10]</sup>.  $B_{(L)}$  具有值域  $[1/r,1]$ ,  $L_{ih}$  和  $L_{hi}$  具有值域  $[0,1]^{[8,13-14]}$ .

### 2 结果与分析

### 2.1 广东松群落在不同层次资源空间的主要种群 生态位宽度

生态位宽度是衡量物种对环境资源利用的尺 度,一般而言,种群生态位宽度越大,则它对环境的 适应能力越强[15]. 本文用2种方法计算生态位宽 度,一种是Levins提出的,在不考虑资源利用率下种 群的生态位宽度  $B_{(sw)}$ ; 另一种是 Smith 提出的考虑 资源利用率下种群的生态位宽度  $B_{(FT)}$ . 由图 1 可 见,用2种方法分别计算出的生态位宽度值差异较 大. 不考虑资源利用率下生态位宽度  $B_{(sw)}$  值,表明 广东松群落中10个优势种群生态位从大到小的顺 序为:杨桐 Adinandra millettii、大果马蹄荷 Exbucklandia tonkinensis、甜槠 Castanopsis eyrei、疏齿木荷 Schima remotiserrata、五列木 Pentaphylax euryoides、罗 浮锥 Castanopsis fabri、青冈 Cyclobalanopsis glauca、长 叶木姜 Litsea elongata、广东松和岭南青冈 Cyclobalanopsis championi;而在考虑资源利用率的情况下,  $B_{(FT)}$  值从大到小的顺序为: 五列木、罗浮锥、大果马 蹄荷、广东松、疏齿木荷、长叶木姜、青冈、甜槠、杨桐 和岭南青冈;同样在不考虑资源利用率条件下 $B_{(1)}$ 值与 B(sw) 值基本一致. 重要值是一种综合性指标, 不仅可以表现种群在整个群落中的重要性,而且 可以指出种群对群落的适应性[16],在不考虑资源利



1:五列木 Pentaphylax euryoides; 2:广东松 Pinus kwangtungensis; 3;罗 浮锥 Castanopsis fabri; 4:大果马蹄荷 Exbucklandia tonkinensis; 5:疏齿木荷 Schima remotiserrata; 6:青冈 Cyclobalanopsis glauca; 7:甜槠 Castanopsis eyrei; 8:杨桐 Adinandra millettii; 9:岭南青冈 Cyclobalanopsis championi; 10:长叶木姜 Litsea elongata

图 1 南岭广东松林优势种群在林层资源位上的生态位宽度值 Fig. 1 Niche breadth of dominant populations in different layer resource states of *Pinus kwangtungensis* forest in Nanling

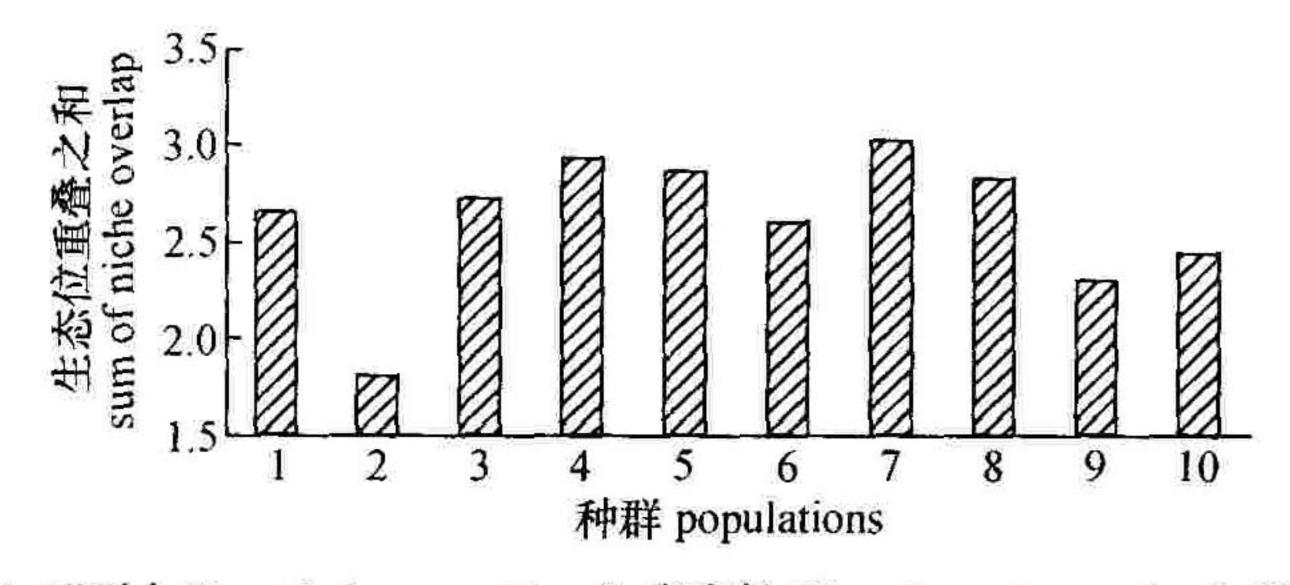
用率的情况下,生态位宽度值与种群重要值排列顺序差异颇大;而在考虑资源利用率的情况下差异较小,所计算的生态位宽度值更具有合理性.无论是否考虑资源利用率,大果马蹄荷、五列木、罗浮锥和疏齿木荷都具有较高的生态位宽度值,这些树种在中亚热带常绿阔叶林中能在林冠下更新,有大量的幼苗出现,而且在所调查的样地中这些种群分布广,数量多,在各个资源位上都有出现,表明这些种群对资源的利用较充分.岭南青冈在群落中出现少,而且在资源位上分布不均,因此无论是否考虑资源利用率,其生态位宽度值都较小.杨桐、甜槠种群在考虑资源利用率时生态位宽度较小,在所调查的样方中仅有个别样方出现这些种;而在所出现的样方

中这些种充分利用了资源位,因此当不考虑资源利用率时生态位宽度值较大.广东松、长叶木姜等种群在不考虑资源利用率时生态位宽度值小,其对林层的适应性较差;但是在所调查的样方中分布较广,对某些资源空间利用较充分,因此在考虑资源利用率的情况下其生态位宽度值较大.

### 2.2 广东松群落优势种群的生态位重叠

生态位重叠种对中有41种对大于0.2,占 45.6%;有43种对大于0.3,占48.8%.说明在南岭 广东松群落中优势种群对林层空间资源的利用有较 大的相似性. 从表 1 可以看出大果马蹄荷、疏齿木 荷、罗浮锥等生态位宽度值较大的种群与其他种群 间的生态位重叠值(Lin)较高;广东松、岭南青冈等生 态位宽度值较小的种群与种群的生态位重叠值( $L_{in}$ ) 相对较小;广东松群落中生态位宽度值较大的种群 其占据的林层资源空间较大,那么与其他种群之间 的重叠几率也就增大;相反,岭南青冈和长叶木姜等 生态位宽度值小,而且仅在少数样方中出现,因此与 其他种之间的重叠几率也就相对较小. 广东松在主 林层和更新层分布较广、数量多,在所调查的样方中 主要出现在这2个林层中,而其他树种在各林层的 数量分配差异相对小. 因此,广东松在考虑资源利用 率的情况下其生态位宽度值相对较大,但广东松与 其他种群之间的  $L_n$ 偏小. 通过表 1 所列生态位重叠 值的分析发现,甜槠-岭南青冈(0.38)、疏齿木荷-岭 南青冈(0.38)、大果马蹄荷-广东松(0.38)、五列木-岭南青冈(0.36)、青冈-岭南青冈(0.36),这些种对 间的生态位重叠值相对高于其他种对的生态位重叠 值. 在实地调查过程中也发现这些种对具有相似的

表 1 南岭广东松林优势种群的生态位重叠值1)


| Tab. 1 | Niche overlan | of dominant | populations in | Pinus kwan | gtungensis for | est in Nanling |
|--------|---------------|-------------|----------------|------------|----------------|----------------|
|--------|---------------|-------------|----------------|------------|----------------|----------------|

|                                |      |      |      |      |      |      |      |      |      | ASSESSMENT OF THE PERSON NAMED IN COLUMN TWO |
|--------------------------------|------|------|------|------|------|------|------|------|------|----------------------------------------------|
| 种群 <sup>2)</sup><br>population | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10                                           |
| 1                              |      | 0.22 | 0.27 | 0.25 | 0.31 | 0.34 | 0.30 | 0.25 | 0.36 | 0.35                                         |
| 2                              | 0.17 |      | 0.27 | 0.24 | 0.21 | 0.18 | 0.21 | 0.17 | 0.22 | 0.16                                         |
| 3                              | 0.36 | 0.29 |      | 0.30 | 0.31 | 0.29 | 0.30 | 0.25 | 0.34 | 0.28                                         |
| 4                              | 0.35 | 0.38 | 0.31 |      | 0.32 | 0.31 | 0.32 | 0.30 | 0.33 | 0.30                                         |
| 5                              | 0.28 | 0.32 | 0.29 | 0.34 |      | 0.34 | 0.32 | 0.26 | 0.38 | 0.34                                         |
| 6                              | 0.31 | 0.24 | 0.27 | 0.22 | 0.33 |      | 0.29 | 0.24 | 0.36 | 0.34                                         |
| 7                              | 0.35 | 0.35 | 0.31 | 0.33 | 0.32 | 0.35 |      | 0.29 | 0.38 | 0.35                                         |
| 8                              | 0.32 | 0.32 | 0.32 | 0.32 | 0.31 | 0.29 | 0.33 |      | 0.31 | 0.33                                         |
| 9                              | 0.19 | 0.26 | 0.29 | 0.28 | 0.22 | 0.26 | 0.23 | 0.28 |      | 0.29                                         |
| 10                             | 0.34 | 0.23 | 0.28 | 0.32 | 0.29 | 0.22 | 0.25 | 0.19 | 0.32 |                                              |

<sup>1)</sup>表中左下部分的数据为树种 i 重叠树种 h 的生态位重叠值 Lih,右上部分为树种 h 重叠树种 i 的生态位重叠值 Lhi;2) 1 为五列木 Pentaphy-lax euryoides; 2 为广东松 Pinus kwangtungensis; 3 为罗浮锥 Castanopsis fabri; 4 为大果马蹄荷 Exbucklandia tonkinensis; 5 为疏齿木荷 Schima remotiserrata; 6 为青冈 Cyclobalanopsis glauca; 7 为甜楮 Castanopsis eyrei; 8 为杨桐 Adinandra millettii; 9 为岭南青冈 Cyclobalanopsis championi; 10 为长叶木姜 Litsea elongata

生物学特性,对资源位的利用上有很高的相似性,即在林层空间的分布上重叠度较高.而有些种对,如大果马蹄荷-青冈(0.22)、五列木-大果马蹄荷(0.25),这些生态位宽度值较大的种对间生态位重叠值并不是很高,这也说明生态位重叠值的大小不仅决定于生态位宽度值的大小,还与植物种群本身的生物学特性有关,这些种群在不同林层的数量分布有差异,即对不同资源位的利用程度不同,而导致了其生态位重叠值不高.

从图 2 可知,南岭广东松群落中每一个优势种与其他优势种之间的生态位重叠值之和排列从大到小顺序是:甜槠、大果马蹄荷、疏齿木荷、杨桐、罗浮锥、五列木、青冈、长叶木姜、岭南青冈和广东松. 甜槠与其他优势种生态位重叠值之和最高,说明其在资源位的利用上与其他优势种存在共性;而广东松与其他优势种的生态位重叠值之和最低,仅为 1.81,说明广东松与其他优势种在利用林层空间资源位上共性较差.



1:五列木 Pentaphylax euryoides; 2:广东松 Pinus kwangtungensis; 3:罗 浮锥 Castanopsis fabri; 4:大果马蹄荷 Exbucklandia tonkinensis; 5:疏齿木荷 Schima remotiserrata; 6:青冈 Cyclobalanopsis glauca; 7:甜槠 Castanopsis eyrei; 8:杨桐 Adinandra millettii; 9:岭南青冈 Cyclobalanopsis championi; 10:长叶木姜 Litsea elongata

图 2 南岭广东松群落优势种种对间生态位重叠值之和 Fig. 2 Sum of niche overlap between dominant populations in Pinus kwangtungensis forest in Nanling

# 3 讨论

本文计测南岭广东松群落优势种群的生态位宽度和生态位重叠值仅是以不同林层作为一维资源位,同时用2种不同的方法计算了优势种群的生态位宽度,即考虑资源利用率和不考虑资源利用率2种情况,但对不同海拔空间资源位的情况未作测算.群落的优势种群生态位宽度值的大小顺序在考虑资源利用率条件下与不考虑资源利用率时并不相同,前者的大小顺序排列为:杨桐〉大果马蹄荷〉甜槠〉疏齿木荷〉五列木〉罗浮锥〉青冈〉长叶木姜〉广东松〉岭南青冈;而后者为:五列木〉罗浮锥〉大果马蹄荷〉广东松〉疏齿木荷〉长叶木姜〉青冈〉甜槠〉杨桐〉岭南青冈.由于植物种群对资源的利用量

并不都是该资源可利用率的线性函数,更多的是单 峰曲线或高斯曲线,因此,在实际研究中应尽可能地 考虑种群在多个资源空间的利用率以免获得错误的 结果[17-18]. 2种方法得出的结果差异较大,说明在利 用空间资源的范围上,种群之间的生态学特性差异 明显. 在考虑资源利用率情况下,优势种排列顺序更 接近重要值的排列顺序,更符合实际调查情况,表明 在考虑资源利用率下计算生态位宽度更具有合理 性. 广东松与其他优势种相比生态位宽度不算高,这 可能与其生物学和生态学特性有很大关系,也可能 与调查样地的选择有关. 调查样地选在广东松集中 分布的南岭石坑尾,在所调查的72个样方中广东松 占有的资源空间不均匀,导致生态位宽度值差异,而 且生态位重叠值明显低于其他优势种. 海拔空间资 源位上广东松群落生态位宽度和生态位重叠值还有 待进一步研究.

南岭广东松群落优势种群生态位宽度值总体相对较高,说明优势种之间互补性强,能相互适应,整个群落处于较稳定状态,优势种在利用林层空间资源上有很大的相似性和共性.生态位重叠种对两两间的生态位重叠值表现的规律,基本上呈现为生态位宽度值大的树种与生态位宽度值小的树种与生态位宽度值大的树种,其生态位重叠值则小.如:甜槠、岭南青冈的生态位宽度值分别为 0.45、0.28,甜槠-岭南青冈生态位重叠值为 0.38,而岭南青冈-甜槠则为 0.23;疏齿木荷、岭南青冈的生态位宽度值分别为 0.42、0.28,疏齿木荷-岭南青冈为 0.38,岭南青冈-疏齿木荷为 0.22.但也不尽然,如:五列木、长叶木姜的生态位宽度值分别为 0.41、0.39,五列木-长叶木姜生态位重叠值为 0.35,而长叶木姜-五列木为 0.34.

致谢:感谢中国香港特别行政区嘉道理农场暨植物园、广东省环保局对本项研究的资助和南岭国家级自然保护区对外业调查的大力协助! 本文承蒙苏志尧教授审阅;华南农业大学林学院李镇魁副教授,研究生杨加志、杨沅志、夏杰、吴华荣,乳阳林业局八宝山管理站游章平、杨辉等参加了外业部分调查工作,谨向以上单位和个人表示谢意!

#### 参考文献:

- [1] 中国植物志编撰委员会.中国植物志:第7卷[M].北京:科学技术出版社,1978:231.
- [2] 古炎坤,肖绵韵,林书宁.广东乳阳山地广东松、长苞铁杉原生林的结构特征和动态分析[J].华南农业大学学报,1993,14(2):84-90.

(下转第103页)