家蚕中肠与丝腺变态发育的组织切片观察

黄志君 2, 钟仰进 1, 邓小娟 1, 贺湘仁 2, 梁 红 1, 潘 忠 1

(1华南农业大学动物科学学院,广东广州 510642; 2广东省农业良种示范推广中心,广东广州 510520)摘要:通过整蚕 (蛹)石蜡切片甲基绿一派罗宁和孚尔根染色的方法对变态期家蚕中肠、丝腺的形态结构进行显微观察.试验结果表明,家蚕中肠变态过程中肠腔内出现大量无定形细胞团块,这些细胞团块有 2个来源,一是由肠壁再生细胞向内不断分生新的一簇簇细胞,这些成簇的细胞团逐渐与肠壁分离脱落进肠腔形成无定形团块;二是肠壁内折,形成内陷,内陷外围细胞又重新粘合生长成新的肠壁,被包在肠腔内的内陷细胞变成了无定形团块、蛹变态期,随着吐丝的进行,丝腺内部的丝物质逐渐排空,体积不断缩小,外膜褶皱逐渐增加,细胞内空泡不断增多,细胞核由分枝状逐渐变成束状,再浓缩成团状,最后发生溶解、消亡.

关键词:家蚕;变态;中肠;丝腺;形态学

中图分类号: Q965. 9 文献标识码: A 文章编号: 1001-411X(2006)02-0100-04

Observation of the Midgut and Silk Gland in Silkworm

During Pupal-Adult Metamorphosis

HUANG Zhi-jun1 ,ZHONG Yang-jin1, DENG Xiao-juan1, HE Xiang-ren2, LIANG Hong1, PAN Zhong1 (1 College of Animal Science, South China Agric. Univ. ,Guangzhou 510642 ,China; 2 Guangdong Agric.

Well-Bred Demonstration and Popularize Center, Guangzhou 510520, China) Abstract: Using the methods of paraffine-mounted sectioning and staining by methyl green-pyronine and feulgen, the morphology and structure of midgut and silk-gland of silkworm, Borbyx mori, were observed by microscopy during metamorphosis. The experiment showed that there were a lot of amorphous cell-like conglomeration inside the intestine. There were two ways which formed these conglomeration. First, old epithelium of midgut fell off into the intestine gradually while the regenerative cells on the base proliferated and formed into the new epidermic cell of papue. Second, parts of the old epidermis sank into the intestine and became the amorphous cell-like conglomeration, which was the main reason that the midgut shrunk increasingly. During the spinning, the material of silk decreased gradually and the bulk became lessening and thin. When the spin finished, silk gland changed remarkably, and the ectoblast of silk-gland draped. There were increasing vesicles inside the cell of silk gland. Branch-liked nucleus changed into bunchs and then condensed into agglomerates. Finally, it degenerated and died out completely. Key words: silkworm; metamorphosis; midgut; silk-gland; morphology

昆虫在其变态期间各组织都发生了显著的形态学上的变化,幼虫与成虫的组织器官在形态和功能上都存在着明显的不同[1-2].家蚕作为一种经济昆虫,大部分学者都把自己的研究方向定位于如何提高蚕营丝结茧的产量上,但作为模式昆虫,对于家蚕在变态期的组织形态结构是如何消亡和重建的研究却罕见报到.在蛹变态期,家蚕体内同时进行着激烈

的幼虫组织解离和成虫组织发生的 2 种相反的过程^[3-4],许多试验证实了这个过程存在着细胞凋亡机制^[5-7],所以,其成为了研究胚后二次发育和细胞凋亡的理想模式. 家蚕中肠和丝腺是蚕体内最大的 2 个器官,对其进行切片观察在变态学研究上具有重要的代表性. 在蛹变态期家蚕中肠由巨大的长圆筒形变成了短小的陀螺形,其中在熟蚕至蛹 1 d 的变化

最大. 在这变态过程中,离体培养的中肠存在着细胞凋亡机制^[8]. 丝腺是家蚕的泌丝器官,是一对多屈曲的大型管状器官,配置在消化管的腹面两侧. 在吐丝后,中部丝腺显著变小,然后整个丝腺逐渐缩小,化蛹第3d后完全消失^[5]. 在组织器官的重建或消亡过程中,对整蚕进行石蜡切片、核酸特异染色方法可以了解家蚕在蛹变态期组织器官的消亡或重建特点以及观察组织细胞死亡和增殖过程特征. 观察结果可为昆虫变态期细胞凋亡和胎后二次发育研究提供重要理论基础.

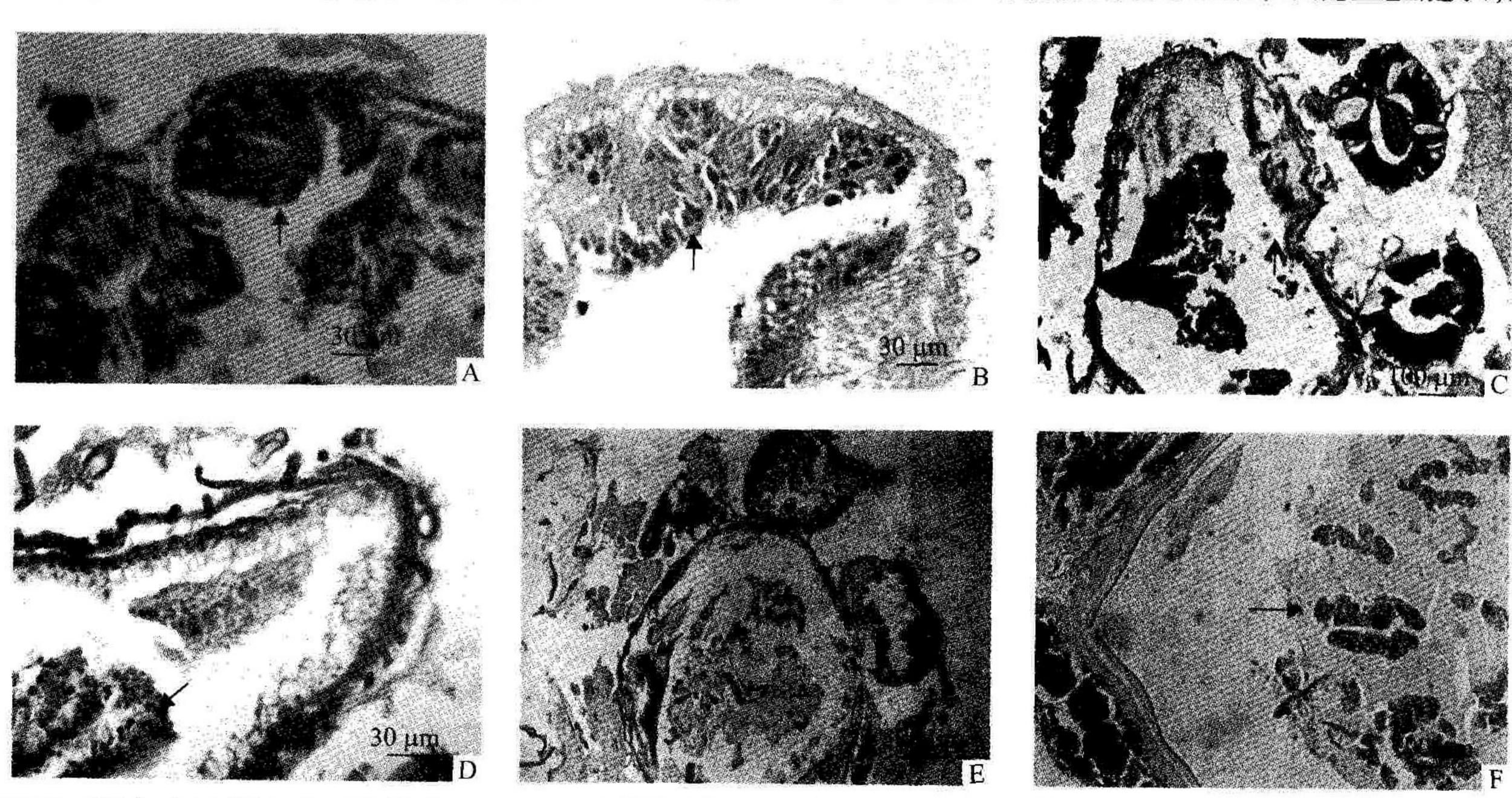
1 材料与方法

1.1 试验材料

供试蚕品种:桑蚕(7532)5 龄 5 日幼虫,由广东省蚕业研究所提供.取材范围是从熟蚕到蛹1 d,频率视家蚕发育情况而定,熟蚕、吐丝中、吐完丝各取样1次,吐完丝后到化蛹1 d 每天早中晚(8:00、13:00、18:00)各取1次.每次选择一批健壮、发育齐一的家蚕(蛹),每天取4~6条.

1.2 试验方法

将每次选取的家蚕(蛹)投入近沸水中将其迅速 杀死.用 Carnoy 固定液[冰醋酸(CH₃COOH)1份+ 三氯甲烷3份+无水乙醇6份]固定24h,更换体积 分数为95%乙醇2~3次后,用体积分数为75%乙醇 保存.按中肠、丝腺在变态期发育情况,前期将蚕体分成3段,到化蛹阶段,将蛹分成2段.将材料依次经过 体积分数为 80%、90%、95% 乙醇, 再经 100% 乙醇 2次各 10 min 脱水. 然后用二甲苯透明, 经透蜡、包埋、修整蜡块, 切片(厚度为 10 μm), 粘贴玻片, 烘片.


用昂纳-帕彭海姆(Unna-Pappenheim)甲基绿-派罗宁(Methyl green-pyronine)染色法^[9][甲基绿提纯液 9 mL,派罗宁提纯液 4 mL,0.2 mol/L 醋酸缓冲液(pH4.8)23 mL,纯甘油 14 mL]进行染色. 切片依次经二甲苯去蜡,再从高到低各体积分数乙醇逐级复水,甲基绿-派罗宁染色液染色,丙酮分化,二甲苯透明,最后中性树胶封片. 将玻片置于 Motic 3.1 数码显微镜下进行观察及拍照.

孚尔根(Feulgen)染色法^[10]. 切片依次经二甲苯去蜡,再从高到低各体积分数乙醇逐级复水,1 mol/L HCl 酸化处理,无色品红染色,漂白液分化,从低到高各体积分数乙醇脱水,二甲苯透明,最后中性树胶封片. 将玻片置于 Motic 3.1 数码显微镜下进行观察及拍照.

2 结果与分析

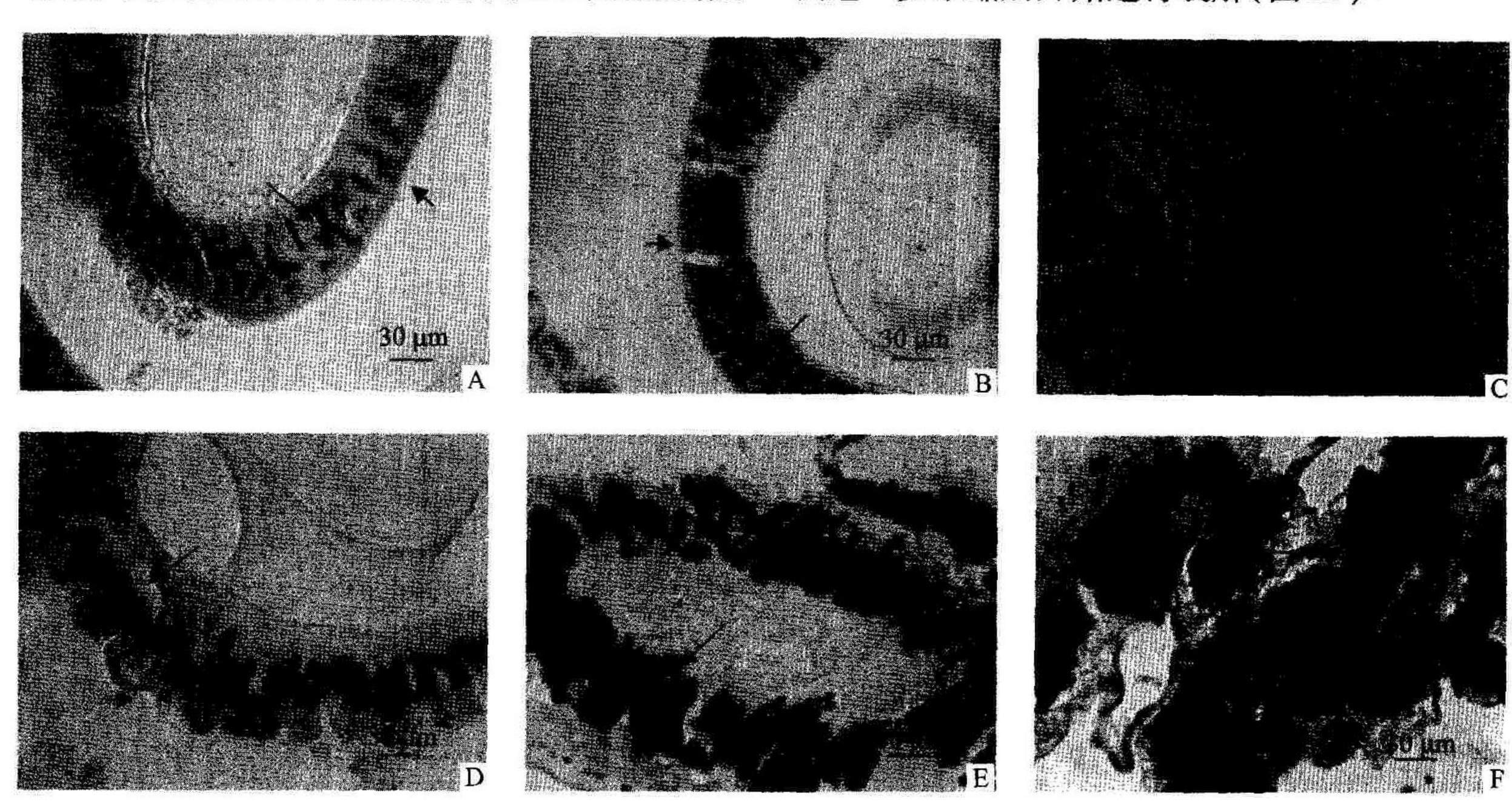
2.1 家蚕变态期的中肠组织

从熟蚕开始,由于家蚕不再吃进食物,中肠就开始进行变态发育.组织切片形态观察表明,从熟蚕到吐丝中时,中部肠壁的再生细胞不断分裂,分裂的新生细胞在旧上皮细胞下生长,旧肠壁细胞形成簇状不断向肠腔伸展,细胞及细胞核变形呈拉长状(图1A,1B).这些成簇的细胞团基部细胞呈空胞状,成簇

A:熟蚕,B:吐丝中,C:吐完丝,D: 吐完丝后 1 d,E:预蛹,F:化蛹 1 d(A、B:箭头所指为拉长的簇状肠壁细胞,C、E:箭头所指为内陷的肠壁,D、F:短箭头所指为中肠内不定形细胞内含物)

A:riped; B:during spinning; C:finished spinning; D:1 day after spinning; E:prepupae; F:pupation 1 day(A,B: arrowhead point to elongated cluster-like cells of epidermis of midgut; C, E: arrowhead point to parts of the old epidermis sank into the intestine; D, F: arrowhead point to the amorphism cell-like conglomeration in the intestine)

图1 熟蚕到化蛹1d中肠组织形态变化(甲基绿-派罗宁染色)


Fig. 1 Morphological changes of silkworm midgut tissue from riped time to pupation 1 day stained by methyl green-pyronin

的细胞团从空泡状细胞处与肠壁分离,随后整个细胞团块脱进肠腔而形成肠腔内无定形内含物(图1D,1F). 吐丝后前部中肠肠壁向内褶皱,褶皱的外围细胞又重新粘合生长成新的肠壁. 内陷的肠壁逐渐与新的肠壁分离成为肠腔内无定形内含物(图1C,1E). 化蛹后,中部中肠逐渐成形,但肠壁细胞继续分化生长和更新,脱落的肠壁细胞在肠腔内形成大量细胞团样内含物,并在肠腔内不断消融(图1F).

2.2 丝腺形态变化

熟蚕时,丝腺组织外部形态比较完整,腺腔内充

满着丝物质,细胞核呈分枝状(图 2A). 到吐丝中时,丝腺组织仍然完整,但细胞内已经出现空泡,细胞核开始浓缩,由分枝状逐渐变成条形(图 2B). 吐丝后,丝腺发生了显著的变化,丝物质基本排空,外膜局部发生褶皱、内陷,细胞内空泡增多,细胞核更加浓缩(图 2C). 预蛹期,丝腺细胞核浓缩至细胞中间,呈内外向整齐的束状形(图 2D). 化蛹后,丝腺细胞核变得更加浓缩,条束状形(图 2E). 化蛹 1 d后,随着丝腺的缩小、变形,管腔内壁逐渐粘合,细胞核进一步浓缩后开始进行裂解(图 2F).

A:熟蚕,B:吐丝中,C:吐完丝,D:吐完丝后 1 d,E:预蛹,F:化蛹 1 d (短箭头所指为丝腺外膜,从吐完丝后开始皱折. A:长箭头所指为分枝状细胞核, $B\sim E:$ 长箭头所指为束状或块状细胞核,F:长箭头所指为开始溶解细胞核)

A:riped; B:during spinning; C:finished spinning; D:1 day after spinning; E:prepupae; F:pupation 1 day(short arrowhead point to the ectoblast of silk-gland which began wrinkle from finished spin. A:long arrowhead point to branch-liked nucleus, B-E:long arrowhead point to bunch-liked and agglomerate nucleus, F:long arrowhead point to degenerated nucleus)

图2 熟蚕到化蛹1d丝腺组织形态变化(孚尔根染色)

Fig. 2 Morphological changes of silkworm tissue from riped time to pupation 1 day stained by feulgen

3 讨论

本试验是从整体上去观察变态期的家蚕中肠、丝腺的变化过程. 在蛹变态期家蚕中肠由巨大的长圆筒形重造成短小的陀螺形. 熟蚕后,家蚕完全停止摄食,由于功能的改变,中肠的缩小是必然的. 但体内自然条件下中肠如何缩小和前人描绘的肠腔内无定形团块具体是如何形成还有待进一步探讨. Yo-shiaki Tanaka 等^[11] 用蜕皮酮添食 5 龄家蚕时,发现中肠肠壁细胞更换了 2 次,肠壁再生细胞发育成新的杨壁细胞脱落进肠腔^[12]. Waku 等^[12] 曾观察到在预蛹早期中肠肠壁细胞簇状细胞群. 本观察结果表明在家蚕中肠变态过程中肠腔内出现的无定形团块有 2 个来源:一是在熟蚕后,由肠壁再生细胞向内不断分生新的一簇簇的细胞,这些成簇的细胞团逐渐

与肠壁分离脱落进肠腔而形成无定形团块. 二是吐丝后肠壁内折,形成内陷,接下来内陷外围细胞又重新粘合生长成新的肠壁,内陷的肠壁又逐渐与新的肠壁分离成为肠腔内无定形内含物. 旧肠壁细胞不断脱进肠腔,只剩下一些再生细胞和肌肉组织,最后由再生细胞逐渐分化成定型的成虫型细胞. 肠腔内无定形细胞内含物消亡的机制还存在着争议. 因为中肠是消化器官,家蚕停食后,脱落在肠腔内的肠壁细胞能否象桑叶一样被消化还有待研究. 烟草天蛾变态期中肠发生细胞凋亡已被证实[13],据本课题组的研究(待发表),中肠变态过程也存在着细胞凋亡机制. 形态的改变进而促使功能的改变,一些学者用组织化学的方法,确认变态期间的中肠起着广义的排泄功能[14].

蛹变态期,丝腺由熟蚕时体内最大的器官退化到蛹3d时完全消失,整体上表现为体积不断缩小,

外膜褶皱逐渐增加,细胞内空泡不断增多,细胞核由分枝状逐渐变成束状,再浓缩成团状,最后发生溶解. 丝腺是合成和分泌丝物质的器官,在吐完丝后就完成了它所有的使命,剩下的残留物可通过组织消亡分解成可供构建其他成虫器官吸收的营养重新利用. 丝腺的消亡过程存在细胞凋亡机制已被证实^[15]. 丝腺组织外由底膜包裹,在整个丝腺的消亡过程中,未见丝腺底膜的破裂和组织的碎裂,所以其细胞凋亡的方式不能形成典型的凋亡小体而形成一种特殊细胞凋亡形式. 这种特殊细胞凋亡形式还有待深入的研究.

参考文献:

- [1] 王荫长. 昆虫生理生化学[M]. 北京:中国农业出版社, 1998;31-32.
- [2] 钱惠田.蚕的生理生化[M].北京:中国农业出版社, 1995:139-144.
- [3] 彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:北京人民卫生出版社,2000:153-158.
- [4] 和久义夫. 家蚕变态的细胞、组织学研究[J]. 国外农 学——蚕学,1987,1:57-58.
- [5] TRUMAN J W, RIDDIFORD L M. Endocrine insights into the evolution of metamorphosis in insects [J]. Annual Review of Entomology, 2002 (47):467-501.
- [6] LOCKSHIN R A. Programmed cell death [M] // KERKUT G A, GILBERT LI. Comprehensive insect physiology, biochemistry, and pharmacology: Vol 2. Elmsford: Pergamon Press, 1985: 301-317.

- [7] CHINZEI Y. Induct of histolysis by ecdysterone in vitro:
 Degradation of anterior silk gland in silkworm, Bombyx
 mori (Lepidoptera: Bombycidae) [J]. Appl Ent Zool,
 1975, 10:136-138.
- [8] LOEB M J, MARTIN P A W, NEELAM, et al. Control of life, death, and differentiation in cultured midgut cells of the lepidopteran, *Helliothis veredscens*[J]. In Vitro Cellular & Developmental Biology, 2001, 37(6):348-353.
- [9] 李甘地.组织病理技术[M].北京:人民卫生出版社, 2002:1-6.
- [10] 郑国铝. 生物显微技术[M]. 北京:人民教育出版社, 1978:17-113.
- [11] YOSHIAKI TANAKA, FUMIKO YUKUHIRO. Ecdysone has an effect on the regeneration of midgut epithelial cells that is distinct from 20-hydroxyecdysine in the silkworm Bombyx mori[J]. General and Cndodrinology, 1999,116: 382-395.
- [12] WAKU Y, SUMIMOTO K. Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori L) with special regard to the calcium salt deposits in the cytoplasm: I: Light microscopy [J]. Tissue Cell, 1971, 3:127-136.
- [13] HAKIM R S. Does apoptosis play a role in the growth and metamorphosis of the lepidopteran midgut? [J]. In Vitro Cellular & Developmental Bilogy Animal, 2004, 40:41A.
- [14] 长谷川金. 昆虫变态的生理化学[M]. 张义成,陆明贤,译, 北京:农业出版社,1988:28-41.
- [15] 钟仰进,曾林,黄志君,等.家蚕蛹变态期丝腺组织的退化与细胞凋亡特征[J].昆虫学报,2005,48(3):319-324.

【责任编辑 柴 焰】

(上接第77页)

- [3] 林翠新,黄安,陈美谷.南岭国家级自然保护区的森林植被特点及发展策略[J].广西林业科学,2003,32(1):48-50.
- [4] 冯志坚,李镇魁,李秉滔,等. 南岭国家级自然保护区种子植物资源[J]. 华南农业大学学报,1998,19(2):60-63.
- [5] 谢正生,古炎坤,陈北光,等.南岭国家级自然保护区森林群落物种多样性分析[J].华南农业大学学报,1998,19(3):61-66.
- [6] 张金泉.广东省自然保护区[M].广州:广东省旅游出版社,1997:255-258.
- [7] WEIDER L J. Niche breadth and life history variation in a hybrid daphnia complex[J]. Ecology, 1993,74(3):935-943.
- [8] 苏志尧,吴大荣,陈北光.粤北天然林优势种群生态位研究[J].应用生态学报,2003,14(1):25-29.
- [9] 杨效文,马继盛.生态位有关术语的定义及计算公式评述[J].生态学杂志,1992,11(2):44-49.
- [10] 黄英姿. 生态位理论研究中的数学方法[J]. 应用生态学报,1994,5(3):331-337.

- [11] MACARTHUR R H, LEVINS R. The limiting similarity, convergence and divergence of coexisting species [J]. The American Naturalist, 1967, 101;377-385.
- [12] 周丹, 丛沛桐, 于涛, 等. 羊草种群生态位的计算方法 [J]. 东北林业大学学报, 1999, 27(3):48-50.
- [13] 王新功,洪伟,吴承祯,等.武夷山米槠林主要种群生态位研究[J],中南林学院学报,2003,23(3):34-38.
- [14] 赵永华,雷瑞德,何兴元,等. 秦岭锐齿栎林种群生态位 特征研究[J]. 应用生态学报,2004,15(6):913-918.
- [15] 林思祖,黄世国,洪伟,等. 杉阔混交林主要种群多维生态位特征[J]. 生态学报,2002,22(6):963-970.
- [16] 邵彬,邓坤枚.长白山北坡亚高山云冷杉林的植物种类组成及重要值[J].自然资源学报,2000,15(1):66-73.
- [17] 陈睿,洪伟,吴承祯,等. 毛竹混交林主要种群多维生态 位特征[J]. 应用与环境生物学报,2004,10(6):724-728.
- [18] BEALS E W. Vegetational change along altitudinal gradients [J]. Science, 1969,165:981-985.

【责任编辑 李晓卉】