几种昆虫生长调节剂及生物制剂

对有益昆虫的安全性测定

周忠实 1,2, 邓国荣 2

(1华南农业大学资源环境学院,广东广州 510642; 2广西大学农学院,广西 南宁 530005) 摘要:几种昆虫生长调节剂 (ICRs)及生物药剂对松毛虫赤眼蜂Ttichogramma dendrolimi、荔枝蝽卵跳小蜂Coencyrtus corbetti、蜜蜂Apis mellifera以及龙眼雌花等的安全性测定结果表明,米满、卡死克、抑太保的安全性优于苦参碱、阿维苏、阿维·鱼酮、新星-等几种生物药剂.以米满最为理想,其 200、100 mg·L-药后 12 h, 松毛虫赤眼蜂成虫存活率达 68. 29%和 74. 74%,与对照 (77. 72%) 差异不显著,且对成蜂生殖力没有影响;药后 24 h, 荔枝蝽卵跳小蜂成虫存活率达 90%以上,蜜蜂成虫存活率达 98. 30%;药后 7d, 龙眼雌花枯萎率为 23. 93%,而对照为 18. 23%,差异不显著.

关键词:龙眼;荔枝;昆虫生长调节剂;生物药剂;安全性

中图分类号: S436. 67; S482. 3 文献标识码: A 文章编号: 1001-411X(2006)03-0030-05

The Safety of Several Insect Growth Regulators and

Biological Agents on Beneficial Insects

ZHOU Zhong-shi1,2, DENG Guo-rong2

(1 College of Resources and Environment, South China Agric. Univ., Guangzhou 510642, China;

2 Agricultural College, Guangxi University, Nanning 530005, China)

Abstract: The safety of several insect growth regulators (ICRs) and biological agents on several species of beneficial insects and longan female flowers were studied. The results showed that the safety of mimic, cascade and chlorfluazuron on Trichogramma dendrolimi, Coencyrtus corbetti, Apis mellifera and longan female flowers were better than several biological agents including matrine, abmamectin. Bt, abmamectin. rotenone and new-1. The survival rate of T. dendrolimi treated by 200 and 100 mg. L-1 solution of mimic in 12 hours were 68.29% and 74.74%, respectively, and these survival rates were not different compared with the rate of CK (77.72%). The survival rates of O. corbetti and A. mellifera were over 90% and 98.30%, respectively. The withered rate of longan female flowers after 7 days was 23.93%, while the withered rate of CK was 18.23%.

Key words: longan; litchi; insect growth regulators; biological agents; safety

卷叶蛾类是近年来兴起的龙眼、荔枝的主要害虫之一^[1].由于大多数害虫种类是从其他植物转害龙眼、荔枝^[2],果园中尚缺乏有利的自然控制因素,尤其是天敌因素对其产生的有效控制作用,因此,化学防治此类害虫仍是当前最主要的措施.而长期不

合理、无选择地使用化学农药,势必杀死、杀伤果园中仅有的或从其他植物上转移过来的少数天敌和其他有益生物,导致果园生态环境的恶性循环,卷叶蛾类抗性增强^[3],最终既有利于卷叶蛾类种群的进一步发展壮大,又不利于龙眼、荔枝果品的提高.因此,

筛选出一种既对害虫有效,又对天敌和其他有益生物安全的药剂,在保护果园仅有的天敌的基础上,减少农药的使用量,乃是当务之急. 周忠实等^[4]认为米满等昆虫生长调节剂对此类卷叶蛾的效果较好. 但要知道一种杀虫剂是否安全,则必须进行安全性测定^[5-16]. 本研究选用当前被公认为对有益生物比较安全、对环境友好的昆虫生长调节剂(IGRs)及生物农药中的几种常见药剂,对松毛虫赤眼蜂等天敌、蜜蜂以及龙眼雌花进行安全性测定,为选出真正适合在生产上推广的安全、有效药剂提供依据,并在害虫综合治理(IPM)中推广应用.

1 材料与方法

1.1 材料

1.1.1 供试药剂 20%虫酰肼(米满)Sc,美国罗门哈斯公司产品;5%氟虫脲(卡死克)Ec,美国氰氨公司产品;5%氟啶脲(抑太保)Ec,日本石原产业株式会社产品;0.5%苦参碱As,南通神雨绿色药业有限公司产品;18%阿维·鱼酮Ec,张家口金赛制药有限公司产品;0.5%强敌-132(阿维苏)WP,上海威敌生化(南昌)有限公司产品;5%新星-IEc,广西大学农学院应用昆虫所研制;2.5%三氟氯氰菊酯(功夫)Ec,江苏红太阳集团产品;90%敌百虫晶体,南宁市化学工业集团产品.

1.1.2 供试蜂源及龙眼雌花 松毛虫赤眼蜂 Trichogramm dendrolimi Matsumura 成蜂,购自北京市蓝德格林生物防治技术有限公司,寄生卵放于玻璃瓶内,待成蜂羽化后即刻进行测定;荔枝蝽卵跳小蜂 Ooencyrtus corbetti Ferr 成蜂,从果园采集已被此蜂寄生的荔蝽卵块回室内,放于玻璃瓶内,待成蜂羽化后供测试;意大利蜜蜂 Apis mellifera Linnaeus 成虫,购自南宁市养蜂户;龙眼石硖品种的雌花,在广西大学农学院龙眼园内,选取 3 株生长正常,抽花量较大、中等和偏少等为考查对象株.

1.2 方法

1.2.1 对松毛虫赤眼蜂和荔枝蝽卵跳小蜂安全性的测定 采用药膜法进行测定,即将参试的药剂稀释成几个浓度,每个浓度为1个处理,每处理设3个重复,每重复1个玻璃瓶;另设清水对照. 每瓶放3 mL药液,摇均使瓶内壁形成药膜,待药膜晾干后,即将成蜂移入瓶内,松毛虫赤眼蜂每瓶放蜂80头以上,荔枝蝽卵跳小蜂每瓶放蜂20头以上. 松毛虫赤眼蜂在放蜂后6、12 h 各检查1次成蜂死、活情况,荔

枝蝽卵跳小蜂则在放蜂后 6、12 和 24 h 各检查 1 次成蜂死、活数,计算成蜂存活率,并进行差异显著性测验.

1.2.2 对松毛虫赤眼蜂成虫的毒力测定 将参试药剂先经预备试验,以确定正式试验应设的梯度浓度.正式试验时,各药剂稀释成六七个浓度,每浓度为1个处理,每处理设3个重复;另设清水对照.每重复1个玻璃瓶,采用药膜法处理,每瓶放药液3 mL制成药膜后,即将成蜂移入瓶内,每瓶放蜂100头左右,放蜂后12 h检查成蜂的死、活情况,计算其校正死亡率. 把各处理浓度转换成对数值,校正死亡率转换成几率值,用最小二乘法建立各药剂毒力回归方程,经适合性测验符合后,计算出各药剂的 LC₅₀和 LC₉₅,并计算各药剂 LC₅₀的95%置信区间.

,1.2.3 松毛虫赤眼蜂对蚕卵寄生能力的测定 将参试药剂米满稀释成 200、100 mg·L⁻¹,卡死克稀释成 50、25 mg·L⁻¹,各取 3 mL 药液放入玻璃瓶中制成药膜,将刚羽化的成蜂移入瓶内饲养 12 h后. 另将冷藏 7 d 的蓖麻蚕卵洗净、晾干,粘成卵卡,每卡25 粒卵;把卵卡移入口径约 3 cm、长约 153 cm 的试管中,每管放 1 卵卡;按卵粒: 成蜂 = 1:3 的蜂量将成蜂移人试管内;每浓度设 3 个重复,每重复 1 个试管;另以清水处理作对照(CK). 接蜂后 24 h 将卵卡取出,分别移入干净的试管中,待蜂羽化后,考查其寄生率和羽化率.

1.2.4 对蜜蜂安全性和龙眼雌花安全性的测定 蜜蜂安全性测定:将参测的 3 种 IGRs 药剂各设 3 个 浓度,而功夫和敌百虫各设 1 个常规使用浓度,每浓 度为 1 个处理,每处理设 3 个重复;用尼龙纱网制成 小虫笼,每笼装养蜜蜂 20 头,每笼为 1 个重复;另设 清水对照. 用手提喷雾器分别装上药液,并均匀喷于 已养有蜂的小虫笼上,笼内放有沾蜜糖水的小棉团, 以供成蜂吸食. 把处理好的蜂笼置于瓷托盘中,用湿 纱布盖上. 药后 2、24 h 分别检查成蜂存活情况,计 算存活率,并进行差异显著性测验,比较各药剂的安 全程度.

龙眼雌花安全性测定:将参试的 IGRs 药剂各稀释成3个浓度,而敌百虫设2个常规浓度,每浓度为1个处理,每处理同在一果株上,且每处理设3个重复,每重复处理刚开的雌花20~40朵,用装好药液的手提喷雾器进行喷雾处理. 药后72、168 h 各检查雌花生长情况1次,计算雌花枯萎率,并进行差异显著性测验.

2 结果与分析

2.1 对松毛虫赤眼蜂及荔枝蝽卵跳小蜂成虫的安 全性

药膜法测试结果表明,参试的米满、卡死克、抑 太保、阿维苏、阿维·鱼酮、苦参碱、新星-I等药剂对 松毛虫赤眼蜂成虫和荔枝蝽卵跳小蜂均较安全,药 后 6 h,松毛虫赤眼蜂和荔枝蝽卵跳小蜂成蜂存活均仍达 100%;其中最安全是米满和卡死克,米满 200、100 mg·L⁻¹和卡死克 50、25 mg·L⁻¹对松毛虫赤眼蜂药后 12 h 存活率在 60%以上,对荔枝蝽卵跳小蜂成蜂药后 24 h 存活率仍达 90%以上,均与对照的存活率差异不显著. 赤眼蜂和跳小蜂对功夫最敏感,其次是敌百虫(表 1).

表 1 几种药剂对松毛虫赤眼蜂及荔枝蝽卵跳小蜂成虫的安全性测定结果1)

Tab. 1	The safety	of s	everal	pesticides	to	Trichogramm	dendrolimi	and	Ooencyrtus o	corbetti
			-							
								The second secon		

药剂	-// T-1\	松毛虫赤	眼蜂 T. dendrolimi		荔枝蝽卵跳小蜂 O. corbetti			
pesticides	$\rho/(\text{mg} \cdot \text{L}^{-1})$	6 h	12 h	6 h	12 h	24 h		
米满	200.000	100.00	68.29 ± 8.68a	100.00	$100.00 \pm 0.00a$	94.56 ± 5.16a		
mimic	100.000	100.00	$74.74 \pm 7.37a$	100.00	$100.00 \pm 0.00a$	$95.56 \pm 7.70a$		
	50.000	100.00	$60.28 \pm 4.73a$	100.00	$100.00 \pm 0.00a$	$91.08 \pm 2.21a$		
卡死克	50.000	100.00	$77.13 \pm 5.90a$	100.00	$100.00 \pm 0.00a$	97.87 ± 2.09a		
cascade	25.000	100.00	$67.68 \pm 7.75a$	100.00	$100.00 \pm 0.00a$	$97.35 \pm 2.15a$		
	12.500	100.00	$73.23 \pm 6.41a$	100.00	$100.00 \pm 0.00a$	$97.47 \pm 0.36a$		
抑太保	50.000	100.00	$1.82 \pm 0.43b$	100.00	0e	0e		
chlorfluazuron	25.000	100.00	$2.27 \pm 0.49b$	100.00	$4.39 \pm 0.55e$	0e		
	12.500	100.00	$2.82 \pm 0.63b$	100.00	$10.62 \pm 1.47 de$	$8.33 \pm 0.43e$		
阿维苏	10.000	100.00	$0.00 \pm 0.00b$	100.00	$40.79 \pm 9.77 \text{cd}$	11.88 ± 1.76e		
abmamectin · B	5.000	100.00	$0.00 \pm 0.00b$	100.00	$54.72 \pm 13.91c$	$17.87 \pm 2.08e$		
	3.330	100.00	$0.05 \pm 0.26b$	100.00	$90.28 \pm 2.92ab$	58.06 ± 8.35 cd		
阿维・鱼酮	120.000	100.00	$2.94 \pm 0.80b$	100.00	76.98 ± 11.90b	$32.13 \pm 6.68 de$		
abmamectin ·	90.000	100.00	$4.31 \pm 0.14b$	100.00	$80.37 \pm 2.79 ab$	$46.67 \pm 8.02d$		
otenone	72.000	100.00	$9.45 \pm 1.48b$	100.00	$85.71 \pm 4.54ab$	73.39 ± 10.26 be		
苦参碱	6.250	100.00	$1.56 \pm 0.37b$	100.00	85.09 ± 14.60ab	72.79 ± 13.05 bc		
natrine	5.000	100.00	$2.66 \pm 0.55b$	100.00	91.39 ± 4.02ab	$81.47 \pm 3.54ab$		
	3.330	100.00	$6.93 \pm 1.11b$	100.00	$91.44 \pm 2.17ab$	85.19 ± 2.60 ab		
新星-I	62.500	100.00	$0.20 \pm 0.18b$	100.00	$3.57 \pm 0.18e$	0e		
new-I	31.250	100.00	$2.72 \pm 0.39b$	100.00	$6.70 \pm 0.20e$	0e		
	15.625	100.00	$7.00 \pm 0.18b$	100.00	11.08 ± 1.37 de	$7.41 \pm 2.83e$		
为夫 konful	12.500	0	0 b	0	0e	0e		
放百虫	1 125.000	0	- 0b	44.13	0e	0e		
lipterex	900.000	0	ОЬ	57.72	$29.08 \pm 2.30d$	0e		
青水 water		100.00	$77.72 \pm 5.30a$	100.00	$100.00 \pm 0.00a$	95.61 ± 4.11a		

¹⁾ 表中数据均为药后存活率(%);同列数据后具有相同字母者表示在 0.05 水平上差异不显著(DMRT法)

2.2 对松毛虫赤眼蜂成虫的毒力

从各药剂有效成分的 LC₅₀看,阿维苏的 LC₅₀最小,为0.01 mg·L⁻¹;其次是苦参碱,为0.07 mg·L⁻¹; 敌百虫为4.61 mg·L⁻¹;卡死克为158.77 mg·L⁻¹;米满的 LC₅₀最大,为599.41 mg·L⁻¹.由此可知,这几种药剂对松毛虫赤眼蜂成虫的毒力高低依次为阿维苏>苦参碱>敌百虫>卡死克>米满.阿维苏的毒力分别为卡死克及米满毒力的15877和461倍,而苦参碱的毒力分别为卡死克及米满毒力

的 2 268 和 66 倍. 从毒力回归方程的斜率(b)看,各药剂 b 大小依次为阿维苏 > 苦参碱 > 敌百虫 > 卡死克 > 米满,以阿维苏和苦参碱最大,分别为 7.657 2 和 6.205 1,且它们的 LC₉₅与 LC₅₀相比,仅增加了 12 倍和 37 倍(表 2). 而卡死克和米满 b 最小,分别为 3.249 7 和 1.711 2,它们的 LC₉₅与 LC₅₀相比,增加了 116 和 244 倍,说明松毛虫赤眼蜂成虫对阿维苏和苦参碱的敏感性高,而对卡死克和米满极不敏感.

表 2	几种药剂对松毛虫赤眼蜂成虫的毒力测定结果"
-----	-----------------------

Tab. 2	The toxicity	determination	to	Trichogramm	dendrolimi	adults	with	several	pesticides	
--------	--------------	---------------	----	-------------	------------	--------	------	---------	------------	--

药剂 pesticides	毒力回归方程 regression equation	7	χ^2	LC ₅₀ /(mg · L ⁻¹)	LC ₉₅ /(mg·L ⁻¹)
苦参碱 matrine	y = 6.205 1x + 1.043 4	0.9907**	2.363 1	0.07	2.64
阿维苏 abmamectin · Bt	y = 7.657 2x + 1.158 2	0.979 7 * *	1.057 7	0.01	0.13
米满 mimic	$y = 1.711 \ 2x + 1.184 \ 0$	0.955 4**	2.449 9	599.41	146 689.96
卡死克 cascade	y = 3.2497x + 0.7953	0.971 1**	1.1253	158.77	18 575.81
敌百虫 dipterex	y = 4.1509x + 1.2794	0.989 3 * *	2.6682	4.61	88.98

¹⁾ $\chi_{0.05}^2 = 9.49$

2.3 松毛虫赤眼蜂成蜂对蚕卵的寄生效能

试验结果表明,经米满 200、100 mg·L⁻¹和卡死克 50、25 mg·L⁻¹处理 12 h 后存活下来的成蜂对蓖麻蚕卵仍有很高的寄生力,其寄生率分别为82.87%、83.33%和 79.98%、81.33%,被寄生卵

内的成蜂羽化率分别为 95.38%、96.96% 和 93.41%、96.86%,与对照的寄生率(83.61%)及成蜂羽化率(98.33%)的差异均不显著(表3).说明米满和卡死克对松毛虫赤眼蜂成蜂生殖力没有影响.

表 3 经米满、卡死克处理后的松毛虫赤眼蜂对蓖麻蚕卵的寄生情况1)

Tab. 3 The parasitic rate of Trichogramm dendrolimi to Philosamia cyrithia ricini eggs

药剂	ρ/	寄生率	寄生蜂羽化率
pesticides	$(mg \cdot L^{-1})$	parasitic rate/%	eclosion rate/%
米满 mimic	200	82.87 ± 2.51a	95.38 ± 4.55a
	100	$83.33 \pm 4.44a$	$96.96 \pm 2.64a$
卡死克 cascade	50	$79.98 \pm 0.80a$	93.41 ±2.54a
	25	$81.33 \pm 12.86a$	$96.86 \pm 2.78a$
清水 water		$83.61 \pm 3.76a$	98.33 ± 2.89a

¹⁾同列数据后具有相同字母者表示在 0.05 水平上差异不显著(DMRT法);卵:蜂=1:3,药剂处理成蜂时间为 12 h

2.4 对蜜蜂成虫的安全性

蜜蜂成虫对米满、卡死克、抑太保的敏感性有差别,其中对抑太保最敏感,药后 2 h 死亡率达 100%;对米满最不敏感,其 200、100 mg·L⁻¹药后 24 h,成蜂存活率仍达 98%以上,与对照差异不显著,即米满对蜜蜂最安全;其次是卡死克,50、25 mg/L 药后 24 h成蜂存活率为 70.00% 和 88.30%;功夫、敌百虫对蜜蜂均不安全,药后 2 h 全部死亡.因此,在应用上要特别注意(表 4).

2.5 对龙眼雌花的安全性

米满 200 和 100 mg·L⁻¹、卡死克 50 和 25 mg·L⁻¹、 抑太保 50 和 25 mg·L⁻¹对龙眼雌花较安全,药后 7 d雌花枯萎率低的为 14.74%,高的为 28.97%,与 对照的枯萎率(18.23%)差异不显著;敌百虫 1 125、900 mg·L⁻¹药后 7 d,雌花枯萎率达 71.33% 和 61.49%,与 3 种昆虫生长调节剂及对照有明显的差 异(表 5).

表 4 几种药剂对蜜蜂成虫的安全性试验结果1)

Tab. 4 The safety of several pesticides to bee

药剂	ρ/	药后存活率 surviva	I rate after treated/%
pesticides (m	g · L -1)	2 h	24 h
米满	200.0	98.30 ± 0.83a	98.30 ± 0.83a
mimic	100.0	$98.33 \pm 0.26a$	$98.33 \pm 0.26a$
	50.0	$100.00 \pm 0.00a$	$100.00 \pm 0.00a$
卡死克	50.0	$91.70 \pm 2.72a$	$70.00 \pm 3.68b$
cascade	25.0	$95.00 \pm 1.02a$	$88.30 \pm 2.82ab$
	12.5	$100.00 \pm 0.00a$	$95.00 \pm 5.72a$
抑太保	50.0	0 b	0c
chlorfluazuron	25.0	$0\mathbf{b}$	0c
	12.5	0Ъ	0c
功夫 konful	12.5	0 b	0c
敌百虫 dipterex	125.0	Ob	0c
清水 water		$100.00 \pm 0.00a$	$100.00 \pm 0.00a$

1)同列数据后具有相同字母者表示在 0.05 水平上差异不显著(DMRT法)

表 5 几种药剂对龙眼雌花的安全性试验结果¹⁾
Tab. 5 The safety of several pesticides to female flowers of longan

药剂	p/	药后枯萎率					
		withered rate a	fter treated/%				
pesucides	(mg · L ⁻¹)	3 d	7 d				
米满	200.0	22.65 ± 2.28b	$23.93 \pm 2.71b$				
mimic	100.0	$3.71 \pm 0.08b$	$14.74 \pm 0.12b$				
	50.0	$5.56 \pm 0.14b$	$12.22 \pm 0.28b$				
卡死克	50.0	19.85 ± 1.79a	$23.05 \pm 2.01b$				
cascade	25.0	15.21 ± 1.84ab	$21.60 \pm 2.13b$				
	12.5.0	$8.77 \pm 1.23b$	$12.10 \pm 1.26b$				
抑太保	50.0	$21.63 \pm 2.52a$	$28.97 \pm 3.48b$				
chlorfluazuron	25.0	$15.48 \pm 4.27a$	$26.33 \pm 3.87b$				
	12.5	$9.24 \pm 0.82b$	$12.75 \pm 0.98b$				
敌百虫	1 125.0	$15.87 \pm 1.01a$	$71.33 \pm 5.07a$				
dipterex	900.0	$14.72 \pm 2.86ab$	$61.49 \pm 4.89a$				
清水 water		14.98 ± 1.02 ab	$18.23 \pm 1.27b$				

1)同列数据后具有相同字母者表示在 0.05 水平上差异不显著(DMRT法)

3 结论

昆虫生长调节剂、生物杀虫剂、信息素等新型农药在现行的 IPM 及未来的 EPM 中占有重要地位.本研究结果表明,IGRs(米满、卡死克、抑太保)对有益生物(松毛虫赤眼蜂、荔枝蝽卵跳小蜂、蜜蜂)及果树雌花的安全性均优于某些生物农药(苦参碱、阿维苏、阿维·鱼酮、新星-I).其中以米满最为理想,其次是卡死克.说明并非所有的生物农药和昆虫生长调节剂对天敌或其他有益生物都安全无害.这一结果也为我们合理地、科学地、辨证地认识农药提供参考.试验结果还表明,米满 200 mg·L⁻¹、卡死克 50 mg·L⁻¹均适宜于龙眼荔枝卷叶蛾类的综合防治,但以米满最为理想,可推广应用.

参考文献:

[1] 邓国荣,杨皇红,陈德扬,等.龙眼荔枝病虫害综合防治图册[M].南宁:广西科学技术出版社,1998:7-24.

- [2] 周忠实,邓国荣. 龙眼荔枝卷叶蛾类寄主植物种类的初步研究[J]. 昆虫知识,2005(6):639-642.
- [3] 周忠实,叶一强,罗淑萍. 龙眼、荔枝树上三角新小卷 蛾对敌百虫敏感性测定[J]. 植物保护,2004,30(1):58-60.
- [4] 周忠实,邓国荣,黄大兴. 防治龙眼卷叶蛾的药剂筛选及毒力测定试验[J]. 广东农业科学,2005(6):67-68.
- [5] 王兴林,杨崇珍,张兴. 燕麦枯对环境生物的安全性评价[J]. 农药科学与管理,1997(1):14-16.
- [6] 杨崇珍,王兴林,张兴,等. 几种农药对瓢虫的安全性评价[J]. 农药科学与管理,1998,68(4):24-26.
- [7] 黄炳球,黄华枝,冯夏,等. 科保对节瓜上的蓟马的防治效果及对天敌的安全性评价[J]. 中国蔬菜,2004(1):15-18.
- [8] 王运浩,万海滨,夏会龙,拟除虫菊酯农药在茶园中应用的安全性评价[J].中国环境科学,1997,17(2):176-179.
- [9] 马惠,姜辉,陶传江,等. 27 种农药对家蚕的毒性评价 研究[J]. 农药学学报,2005,7(2):156-159.
- [10] 杨崇珍,王兴林,张兴,等. 菊酯类杀虫剂对几种赤眼蜂的毒力测定[J]. 西北农业大学学报,1995,23(3):108-110.
- [11] 曾鑫年,韩建勇,魏西成,植物杀虫剂对玉米螟赤眼蜂成蜂的急性毒性[J],华南农业大学学报,2002,23 (1):90-91.
- [12] 马惠,王开运,刘亮,等. 农药对家蚕的毒性及安全性评价研究进展[J]. 农药科学与管理,2005,26(5):15-17.
- [13] 陈芳,王元,贺福德,等. 几种农药对深点食螨瓢虫的安全性评价[J]. 新疆农垦科技,2004(4):35-36.
- [14] 许建军,郭文超,何江,等.催杀对新疆棉田主要捕食性天敌的安全性研究[J]. 新疆农业科学,2005,42(3): 171-174.
- [15] 张有为,杨瑾华,张咏梅,等. 杀虫双等农药对桃、梨、柑桔等果树的安全性试验[J]. 上海农业科技,2005(5): 100-101.
- [16] 王长方,游泳,傅建炜,等.50% 灭杀单 WP 的安全性及 其对美洲斑潜蝇控制作用[J]. 华东昆虫学报,2005, 14(2):179-183.

【责任编辑 周志红】