The Functional Response and Numerical Response of Amblyseius cucum eris (Acari Phytoseiidae) on Frank linie lla occidentalis (Thysanop tera Thripidae)

ZH I Jum rui 2, REN Shum xiang2

(1 Institute of Entomology, Guizhou University, Guiyang 550025 China, 2 Lab of Biological Control College of Resources and Environment South China Agric, Unix, Guangzhou 510642 China)

Abstract The functional response and numerical response of female predatory mits. Am bly seius cucum eris on first instar lar vae of western flower thrips F rank lin iella occidenta lis were determined on impatiens and ivy geranium leaf disks in the laboratory at 25 $^{\circ}$ C and a 16 h light 8 h dark photoperiod and the numerical response was conducted on impatiens. Prey density ranged from 3 to 30 larvae per leaf disk. The result showed that the functional and numerical response followed Holling II model. The attack rates were 1. 194.7 and 1.044.7 hand ling time (T_h) were 0.057.5 and 0.126.4 direspectively on impatiens and ivy geranium. The numerical response could be expressed as $N_a = 0.275.5 N$. (1+0.183.1 N).

K ey word s Amb lyseius cucum eris Frankliniella occidenta lis functional response num erical response

CLC num ber S436 3

Docum ent code A

Article ID: 1001-411X (2006) 03 0035-04

胡瓜钝绥螨对西花蓟马的功能反应和数值反应

郅军锐12,任顺祥2

(1贵州大学 昆虫研究所,贵州贵阳 550025 2华南农业大学资源环境学院 生物防治研究室,广东广州 510642)

关键词: 胡瓜钝绥螨; 西花蓟马; 功能反应; 数值反应

W estern flower thrips (WFT), Frankliniella occidentalis (Pergande), is the most serious pest and cause tremendous damage and economic in jury in the world. It was first reported in China and caused serious damage in 2003 [1+2]. WFT not only directly damage the flowers and foliages by feeding and oviposition, but also transmit tem ato spotted wilt virus and impatiens necrotic spot virus two serious viruses in vegetable and ornamental crops

It is difficult to controlWFT because it developped

the insecticile resistance and had a large number of hosts [3]. The predatory mite *Am blyseius auam eris* is an effective biological control agent for WFT [47]. Commer cial availability gives a bright future to use the predatory mite. In patiens and ivy geranium are the most economically important flowering or mamental crops. However in patiens and ivy geranium frequently incur serious damages from WFT. The interactions of the predatory mite and WFT on the impatiens and ivy geranium have not been understood tho rough by the functional and nur

Received date 2005-06-08

Biographies ZHI Jun mi(1965), female professor Ph D.; Corresponding author REN Shun xiang(1957), male professor Ph D., E-mail shxren@scau edu en

merical response is one description of the predator and prey relationship and is a basic for effectiveness of using the predator to control WFT. There is little work has been done on functional and numerical response of A anameris on WFT^{8 10}.

A anameris was introduced to China by Fudan university and Institute of Plant Protection the A cademy of Agricultural Sciences of Fu jian Province Academy of Academy of Academy of Academy of Academy of Academy of Britanian Academy of Provinces as a biological control agent of WFT, which can provide useful information of using Academy of China academy of China China

1 Material and methods

1. 1 Material

1.1. 1 Predatory m ite *A auam eris* was bought from koppert biological system **s** Michigan, USA.

ony was obtained from a virus free laboratory colony main tained in the Department of Entomology University of California Davis A colony was subsequently main tained in plastic containers on green bean in laboratories in the Department of Entomology Kansas State University USA. To obtain a uniform aged cohort of first in star larvae of WFT, the bean pods in which the eggs have been laid by adult WFT were collected every day to kept for eclosion. Only first instar larvae which in color of white were used as prey for predatory mites.

1. 2 Methods

The experiment was conducted at 25 °C, Photoperiod 16 h light 8 h dark at growth chamber in the Department of Entomology, Kansas State University USA.

1. 2. 1 Rearing units Predatory mites reared individually on plastic surface substratum in petri dish. Canada balsam and castor bean oil (V:V=1.5:1.0) was used around the edge as a barrier. To obtain mites for testing female predators selected from colony were placed in petri dishes with first larvae of WFT, and let the female predators lay eggs for 8 h. new ly oviposited eggs were collected and placed in petri dish. after hating individual of larvae was placed in petri dish and fed with enough first larvae of WFT until they reach to adult A pair of new ly emerged female and male were placed in new petri dish and supplied enough larvae of WFT for 2 d. then the WFT were deprived and let the predator hungry for 24 h.

1.2.2 Experimental units The predation trails were conducted on fresh in patiens (cultivar of 'Impulse Or ange') and /or ivy geranium (cultivar of 'Sybil Holmes') beaf disk, the leaf was upside down on the water saturated foam in petri dish. An arena of approximately 12 cm² was bordered by Canada balsam and castor bean oil (V:V=1.5:1.0).

1. 2.3 Functional response The different prey densities offered to a single female predatory mite were 3. 5. 10. 15. 20. 30. To obtain the required initial density of prey, the first instar lawae of WFT were transferred carefully to each leaf desk using a fine brush a single adult female predatory mite which had been deprived food for 24 h was then placed on each leaf disk. After 24 h, the predation areas were examined to record the number of fed upon WFT larvae. Controls (no predators) were set up for each prey density to check the natural mortality. There were 13 replicates per treatment.

1. 2.4 Num er ical response Each leaf was infested with one female predator and WFT at densities of 3 5 10 15 20 or 30 individuals Before experiment the fem ale predators were main tained with conspecific males for 2 d to allow mating and supplied enough first instar larva lW FT, then deprived food for 24 h, and the fe males were transferred to the plastic dishes. The predation areas were examined to record the number of fedupon WFT larvae and eggs laid daily then the fem ale adult predators were removed into new leaf disks. The experiment lasted for 10 d But the data on first three dayswere deleted so the WFT consumed and the eggs laid were average of the data of seven days Controls (no piedators) were set up for each piey density to check the natural mortality. There were 13 replicates per treatment

2 Results

2 1 Functional response

There was not any dead of WFT on control which showed the natural mortality of WFT on in patiens and ivy geran irm was ze ra

The functional response data for the female adult A. cucum eris on first instar larvae was successfully fitted to the Holling II disk equation both on impatiens and ivy geranium (Tab. 1 and Fig. 1). The disc equation was N_a P = aNT $(1 + aT_bN)$. The N_a was the number of successful attacks per predator (P) during the

reda to r hungry for 24. h.

1 d. N was the initial density of the prey offered and a was attack rate. $T_{\rm h}$ was the time required to handle the prey. According to the data on table 1, the $T_{\rm h}$ was 0.057 5 and the a was 1.194 7 on impatiens while $T_{\rm h}$ was 0.126 4 and the a was 1.044 7 on ivy geranium,

so the equation could be expressed as $N_a\!=\!1.194\,\text{TN}$ / (1+0 068 7N) ($R^2\!=\!0.963\,4$) and $N_a\!=\!1.044\,\text{TN}$ / (1+0 132 1N) ($R^2\!=\!0.994\,3$) on impatiens and ivy geranium respectively

Tab. 1 Mean number of the first instar larvae of Frankliniella occidenta lis killed by female adult of A. cucumeris at different Frankliniella occidenta lis densities on impatiens and ivy geranium over 24 h period at 25 °C

item	3	5	10	15	20	30
impatiens	285 ± 010	4. 77±0. 17	8 77±0 39	9 08±0 75	9. 30±0. 53	9. 23±0. 36
ivy geranium	$2\ 23\pm0\ 20$	3.23 ± 0.32	4 31 ±0 51	5 23±0 36	6 15±0 44	6.08 ± 0.45

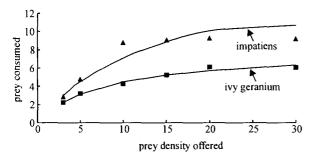


Fig 1 Functional response of female adult of *A. cucum eris* on the first instar larvae of *F mank liniella occidental is* on the impatiens and ivy geranium

2 2 Numerical response

The numerical response of A. a cumeris on in patiens to increasing density reflected a type II response (Tab. 2 Fig 2). The relationship could be expressed as $N_a = 0.275$ 5N /(1+0 183 IN) ($R^2 = 0.929$ 7). Moreover there was a high correlation of eggs laid of A. cucumeris and WFT consumed their relationship could be expressed as y = 0.224 3+0 111 0x ($R^2 = 0.880$ 7). Where x was the mean number of WFT consumed by perfemale predator per day.

Tab. 2 The Mean number of eggs laid and the first instar have of Frank liniella occidenta lis (WFT) killed by female adult of A. cucum eris per day at different Frank liniella occidenta lis densities on impatiens

item	3	5	10	15	20	30
WFT consum ed	292 ± 004	4. 60±0. 06	8 02 ±0 30	6 90±0 23	9. 22±0. 25	8 74±0 28
eggs laid	0.55 ± 0.05	0.64 ± 0.06	$1 \ 13 \pm 0 \ 05$	118 ± 006	1. 20±0. 06	1. 13±0. 05

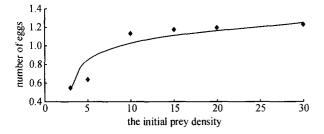


Fig 2 The mean number of eggs laid per predator per day at different Franklin is la occidenta lis densities

3 D iscussion

The functional response exhibited by *A. cucum eris* was reasonably well described by Holling II model. The functional responses of *A. cucum eris* to various stages of *Polyphagotarson on us latus* [11], WFT [8 10] all followed Holling II model. In the present study, the functional response curve reached a plateau at 10 and 6 WFT larvae, which was the maximum number that could be eaten on in patiens and ivy genanium, leaves in 24, horespectively. Ship and Whitfied [8] suggested that a

maximum of 10 and 7 first instarWFT could be eaten on sweet pepper and cucumber leaf disk respectively. The different in the prey consumed among plants suggested that the plant traits influence the prey predator interaction [8 13-14]. For example, the density of trichames on leaf may disrupt the movement of predator and prey. The impatiens leaves are naturally smooth and free of leaf hairs, which maybe benefit the mite activity, while there were many trichames on ivy geranium, this might be the reason the WFT consumed fewer than on in patiens

In the results the attack rate (a) was 1. 194.7 on in patiens and 1. 044.7 on ivy geranium, which were bigger than 0. 967.4 (on cucumber) and 0. 87.0 (on sweet pepper), the handing time T_h was 0. 057.5 on impatiens which was similar to 0. 062 on sweet pepper T_h was 0. 126.4 on ivy geranium which was similar to 0. 124 on cucumber $t_h^{1.8}$. The big attack rate and lower handing time indicated that t_h cucum eris was effective that $t_h^{1.8}$ was effective that $t_h^{1.8}$ and $t_h^{1.8}$ is the patient $t_h^{1.8}$ and $t_h^{1.8}$ in the patient $t_h^{1.8}$ is the patient $t_h^{1.8}$ and $t_h^{1.8}$ in the patient $t_h^{1.8}$ and $t_h^{1.8}$ is the patient $t_h^{1.8}$ in $t_h^{1.8}$ and $t_h^{1.8}$ is the patient $t_h^{1.8}$ in $t_h^{1.8}$

tive predator on impatiens and ivy geranium. What s

more the attack rate was bigger and handing time was lower on impatiens than on ivy geranium indicated that *A. auam eris* was more effective predator on impatiens than ivy geranium.

A cucum eris killed WFT by piercing the larvae and sucking out the body contents. It was the most effective against the small first instar stage. The second instar thrips and thrips adults would attack the predatory mites by striking out with its abdomen. In addition, thrips excreted a wet substance that covers predatory mites, the mites then spend time cleaning themselves instead of attacking thrips [15]. However, it has the advantage of being mass reared in large numbers, which make it suited for inundative release and wide spread used.

The experimental area of the leaf disk in labora to ry was relatively small and only one surface exposed which made it easy for predator to find its prey. Fur thermore in nature various life stages of prey and piedator coexist and several piey as well as predator species may appear sinultaneously on a single leaf and for plant. Therefore these laboratory results may not exactly correspond to the nature situation would be useful for assess the population dynamics and evaluating the predator controlling ability. It would be interesting to investigate how the responses of predators found in laboratory studies with simple single predator single prey systems reflected their responses in nature in which systems are likely to be more complex, and further studies for A. cucum eris and WFT should be conducted under both laboratory and nature conditions

R eferences

- [1] LU Yao bin BEIYawei LINWen cai et al The biology host and damage of western flower thrips Franklin iella occidentalis (Pergande) [J]. Acta Agriculturae Zhejiangensis 2004 16(5): 317-320 [in Chinese]
- [2] WUQing juna ZHANG Your juna XUB ao yuna et al. The biological character damage and management of an invasive insect pest *Franklin iella occidentalis* [J]. Chine se Bull Entomol 2005 42(1): 11-14 [in Chine se]
- [3] TOMMA SINIM G. MANIS Franklin iella occidenta lis and other thrips harm ful to vegetable and omamental crops in Europe[C] //LOOMANSA JM, van LENTERN JC. TOMMA SINIM G. et al. Biological control of thrips Pests Netherlands Wageningen Agric Univ. 1995, 1–42.
- [4] RAMAKERS PM J Population dynamics of the thrips predators Ambly seius cucum erius (A carina, Phytoseiidae)

- on sweet pepper [J]. Neth J Agric Sci 1988 (36): 247-252
- [5] BENN ISON J.A. JA COBSON R. Integrated control of Frankliniella occidentalis in UK cucumber crops evaluation of a controlled realease system of introducing Am blyseius cucum eris [J]. Med Fac Land Rijksunk Gent 1991, 56(2): 251-258
- [6] van HOUTEN Y M. Biological control of western flower thrips on cucumber using the predatory mites Ambly seius cucumeris and A limonicus [J]. O ILB /SROP Bull 1996 19(1): 59-62
- [7] BALON J.D. ROMOS M.R. RANVENSBERG W. Biological pest control in sweet pepper in Spain. Introduction rates of predators of Frankliniella occidentalis. J. O. ILB / SROP Bull 1997. 20(4): 196-201.
- [8] SHIPP J. WHITFIELD G. H. Functional response of the pieda tory mite Am bly seius cucum eris (A cari phy to sei idae) on western flower thrips Frank liniella ccio cciden talis (Thy sanoptera Thripidae) [J]. Environ Entomol 1991, 20(2): 694 699.
- [9] SHIPP J I. WARD K I. GILLESPIE T J. Influence of temperature and vapor pressure deficit on the rate of predation by the predatory mite. Am bly seius cucum eris on Frankliniella occidentalis [J]. Entom of Exp Appl 1996 78(1): 31-38.
- [10] WRIGHT E. WILLIAM SM. D.C. A bioassay technique to determine the functional response of different predators of Frankliniella occidentalis in oman en tall. J. DBC /SPOR Bull 1999, 22(1): 287-290
- [11] LI Jiam in WU Qian hong YANG Yan yun Functional response of female adults of Ambly seius cucumeris to Polyphagotarsonen us latus [J]. Journal of Fudan University Natural Science 2003 42(4): 593 596 [in Chinese]
- [12] ZHANG Yan xuan LN Jian zhen JI Jie controlling Panonychus citris (McGregor) with Amblyseius cucum eris produced in factory [J]. Plant Protection Technology and Extension 2002 22(10): 25-28 [in Chinese]
- [13] BROWN ASS SMMONDSMS J BLANEY WM. Influence of species of host plants on the predation of thrips by Neoseiulus cucum eris Iphiseius degenerans and Orius laeviga tus[J]. En tom of Exp App.l 1999 92(3): 283-288.
- [14] KOVEOS D S BROUFAS G D. Functional response of Euseius fin landicus and Amblyseius and erson i to Panony chus u m i on app le and peach leaves in the laboratory [J].

 Exp Appl A carol 2000 4(4): 247-256
- [15] BAKKER F M, SABELIS M W. How larvae of *Thrips* tabaci reduce the attack success of phytoseiid predators [J]. Enton ol Exp App.l 1989 50(1): 47-51

【责任编辑 周志红】