柠檬酸对高岭石中铝、硅释放的影响

胡华锋 1, 王兴祥 2, 介晓磊 1, 李清曼 3

(1郑州牧业工程高等专科学校,河南郑州450011;2中国科学院南京土壤研

究所,江苏南京 210008; 3中国科学院水生生物研究所,湖北武汉 430072)

摘要:采用间歇法 (batch method)模拟研究柠檬酸对水淋洗下高岭石铝、硅释放的影响.结果表明:柠檬酸能显著促进高岭石 A1和 si的释放,且 AI、 Si的释放能力随柠檬酸浓度的增加而增强;高岭石溶解同步性与柠檬酸浓度有关,随着柠檬酸浓度的提高,其溶解的同步性增强,且反应前期高岭石都表现为 A.的优先释放,而在反应后期 AI、 Si趋于同步释放.柠檬酸对高岭石的溶解速率一般较无机酸高 1个数量级左右,且其溶解速率表现出对柠檬酸浓度的饱合性.

关键词:高岭石;柠檬酸;同步性;溶解速率

中图分类号:S153.4 文献标识码:A 文章编号:1001-411X(2007)02-0009-04

Effect of Citric Acid on Aluminum and Silicon Release from Kaolinite

HU Hua-feng1, WANG Xing-xiang2, JIE Xiao-lei1, LI Qing-man3

(1 Zhengzhou College of Animal Husbandry. Engineering, Zhengzhou 450011, China; 2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 3 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China) Abstract: The experiments was conducted to investigate the effect of citric acid on aluminum and silicon release from water-eluviated kaolinite with batch method. The results showed citric acids enhanced significantly both AI and Si release from kaolinite, and release of A1 and Si from kaolinite increase with concentration of citric acids collapared with deionised water. Dissolution stoichiometry of kaolinite was related to concentration of citric acids, dissolution stoichiometry of kaolinite increase with concentration of citric acids, and preferential AI-release was observed initially but after reaction anaphase, A1 and Si showed stoichiometric release. The rate of kaolinite dissolution obtained in citric acid solution was almost 1 order of magnitude as large as that of inorganic acid, and the dissolution rate behave the character of saturation with the concentration of citric acids.

Key words: kaolinite; citric acid; stoichiometry; dissolution rate

高岭石是热带、亚热带地区酸性土壤中的主要 粘土矿物,研究表明其能在酸性环境中溶解释放出 致酸离子——铝^[1]. 当前,我国南方酸性土壤有进一 步酸化趋势^[2]. 然而,近些年研究发现,土壤中存在 低相对分子质量有机酸^[3],能从高岭石中溶解出铝 及其他阳离子^[4-5],从而有可能导致土壤近一步酸 化. 因此,为进一步认识红壤继续酸化的本质,本文 选用土壤中存在的主要低相对分子质量有机酸之 ——柠檬酸^[6],采用间歇法(batch method)模拟研

究柠檬酸对高岭石铝硅释放的影响.

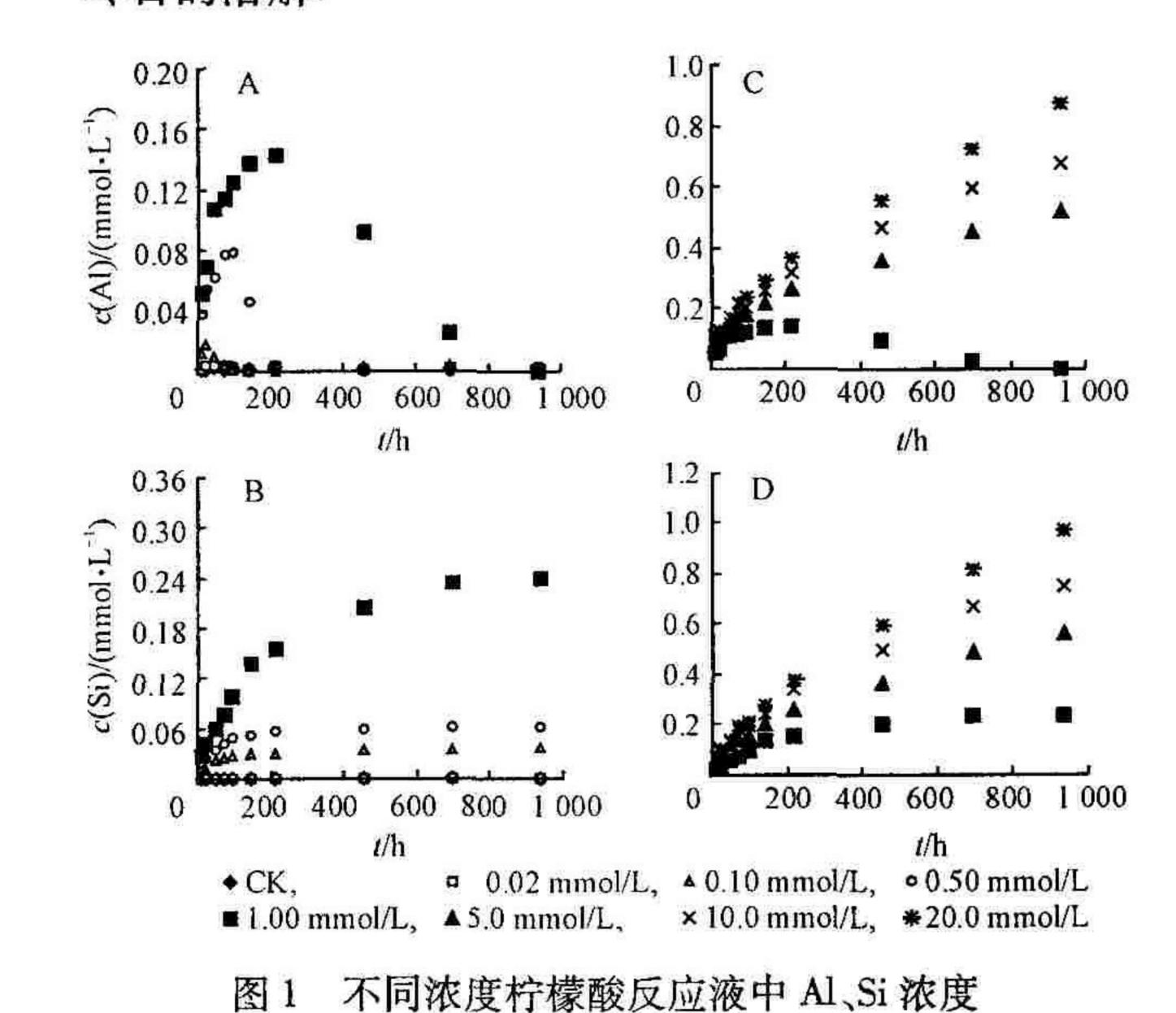
l 材料与方法

1.1 高岭石的制备

供试高岭石来源于江西省景德镇市. 粉碎后,过60 目筛,用去离子水反复淋洗,直至溶剂电导率接近去离子水. 然后在红外灯下60 ℃烘干,粉碎,再过60目筛,保存备用. 用电子探针分析其矿物 Al/Si 的摩尔比为 0.94 ± 0.01;用 BET 气体吸附法测定其表面

收稿日期:2006-08-28

积为 27.0 m²/g.


1.2 方法

先将经硝酸洗液(体积比1:3)浸泡过的聚乙烯转子(3 cm)放入经重铬酸钾洗液清洗、干燥的500 mL玻璃广口瓶,然后分别称取8份3.00 g的高岭石样品置于反应器,再分别准确加入0、0.02、0.10、0.50、1.00、5.00、10.00、20.00 mmol/L 柠檬酸溶液300 mL;将反应器放在磁力搅拌器上,搅拌5 min(60 r/min).整个试验在室温(25±2)℃下平衡936 h.分别在反应液配制后的第12、24、48、72、96、144、216、456、696、936 h以60 r/min转速搅拌1 min,用移液管准确吸取均匀混浊液20 mL,以5000 r/min转速离心30 min,然后将离心液贮于预先洗净干燥的塑料瓶中冷藏,以备ICP测定其Al、Si含量.

2 结果与分析

2.1 反应液中 AI、Si 浓度的变化

图 1 为不同浓度柠檬酸作用下,反应液中 Al、Si 浓度与取样时间的关系. 由图 1 可知,去离子水与高岭石作用 936 h后,其反应液中几乎检测不到 Al 和 Si,说明高岭石在去离子水中的溶解度极低;而且在 0.02 mmol/L 柠檬酸高岭石反应液中,也检测不到 Al 和 Si. 然而,随着柠檬酸浓度的增加,反应液中 Al、Si 浓度显著提高. 说明柠檬酸浓度的提高能增强高岭石的溶解.

ig. 1 Concentration of Al and Si in different citric acids concentrations

在 0.10、0.50 和 1.00 mmol/L 柠檬酸高岭石反应液中, Al 的浓度随反应时间经历了一个先升后降的抛物线过程,即反应开始阶段, 柠檬酸反应液中 Al 的浓度是上升的, 反应几天后, 其反应液中的 Al 浓

度开始下降;且柠檬酸反应液中 Al 浓度开始下降的时间与柠檬酸的浓度有关;0.10、0.50 和1.00 mmol/L 的柠檬酸高岭石反应液中,分别在反应 48、144 和456 h 后,测到 Al 浓度的下降.

如图 1B 所示:与 Al 有所不同,在 ≤1.00 mmol/L 柠檬酸高岭石反应液中,没有测到 Si 浓度下降的过程;整个反应期间, Si 的浓度随反应液中柠檬酸浓度的提高而提高,且随反应时间的推移而增加直至达到平衡.0.10 mmol/L 柠檬酸与高岭石反应 12 h 后,反应液中的 Si 浓度为 0.001 mmol/L;936 h 后,反应液中的 Si 浓度达到 0.037 mmol/L,是反应 12 h 后反应液中 Si 浓度的 61 倍.1.00 mmol/L 柠檬酸与高岭石作用 12 h 后,其反应液中 Si 的浓度是 0.028 mmol/L;936 h 后,反应液中 Si 的浓度增加到 0.239 mmol/L,是反应 12 h 后反应液中 Si 浓度的 8 倍.且可以看出,反应 936 h 后,1.00 mmol/L 柠檬酸作用下,高岭石反应液中 Si 的浓度是 0.10 mmol/L 柠檬酸作用下 Si 浓度的 6 倍.

在 5.00、10.00 和 20.00 mmol/L 柠檬酸反应液中, Al 和 Si 的浓度随着柠檬酸浓度的增加而增加(图 1C、1D).反应 936 h后, 20.00 mmol/L 柠檬酸反应液中 Al、Si 的浓度分别是 5 和 10 mmol/L 柠檬酸反应液中 Al 浓度的 1.67 和 1.29 倍, Si 浓度的 1.56 和 1.29 倍.且在整个试验期间,反应液中 Al 和 Si 的浓度随着时间延长不断增加且未达到平衡.反应 12 h后, 5.00 和 20.00 mmol/L 柠檬酸反应液中 Al 浓度达到 0.08 和 0.11 mmol/L, Si 浓度达到 0.06 和 0.08 mmol/L; 936 h后, 其反应液中 Al 浓度到达 0.52 和 0.87 mmol/L, Si 浓度达到 0.62 和 0.97 mmol/L; 分别是反应 12 h后, Al 浓度的 6.50 和 7.91 倍; Si 浓度的 10.33 和 12.13 倍.

对比高岭石 Al 和 Si 的释放动力学曲线可知(图 1A、1B),在 0.10、0.50 和 1.00 mmol/L 柠檬酸高岭石反应液中,随着反应时间的延续,其反应液中 Al 的浓度经过了先升后降的过程;而其反应液中 Si 的浓度却随着反应时间的延长而增加,直至达到平衡.一般情况下,当反应液中 Al 的浓度开始下降时,被认为高岭石溶解达到平衡;然而 Si 的释放动力学曲线(图 1B)显示:Si 仍在缓慢释放.说明此情况下,高岭石溶解仍在进行. Al 在有机酸溶液中,特别是在中性及接近中性 pH 的有机酸溶液中主要以可溶性络合物存在^[7-9],但也可形成不溶性羟基铝有机络合物,这主要取决于有机酸与反应液中 Al³⁺的摩尔比率、反应液的 pH 及有机酸的性质^[10-13].因此,随着高岭石溶解的进行,反应液中柠檬酸根浓度减少,就会

有部分不溶性羟基铝有机络合物形成,从反应液中沉积出来.研究发现:柠檬酸作用下,高岭石 AI、Si 释放动力学曲线与长石 AI、Si 释放动力学曲线极其相似,且在低浓度柠檬酸影响下,长石溶解过程中有次生富铝相沉积物生成^[9].

2.2 高岭石溶解的同步性

将反应液中 AL/Si 的摩尔比作为反应时间的函数,并对比矿物 AL/Si 的摩尔组分比,可知硅酸盐矿物溶解的同步性[14]. 图 2 示反应液中 AL/Si 摩尔比值与反应时间的关系. 由图 2 可知:在 5.00 mmol/L 的柠檬酸作用下,高岭石反应 24 h后, Al 和 Si 开始趋于同步释放,在 10.00 和 20.00 mmol/L 的柠檬酸作用下,高岭石反应 12 h后, Al 和 Si 的释放就开始趋于同步,而当柠檬酸浓度为 1.00 mmol/L 时,反应96 h后,高岭石趋于同步溶解,当反应进行 216 h后,其溶解又变成了非同步. 以上现象说明:高岭石趋于同步溶解的性质是随着柠檬酸浓度的提高而增强,即柠檬酸浓度越高,其高岭石越早趋于同步溶解.

在 1.00 mmol/L 的柠檬酸反应液中,反应 24 h 后,其 Al/Si 的比值为 1.82,936 h 后下降到 0.035,这进一步说明在反应初期高岭石释放的铝可能部分来自于高岭石表面吸附的铝而非全部是高岭石溶解的铝,但随后其趋于同步溶解,又说明其表面吸附的铝很少,当溶出Si较多时,其含量可以忽略.在反应216h以后,高岭石又趋向非同步溶解,这可能由于反应后期溶解的 Al 形成次生富 Al 沉积相或被高岭石表面重新吸附所致.

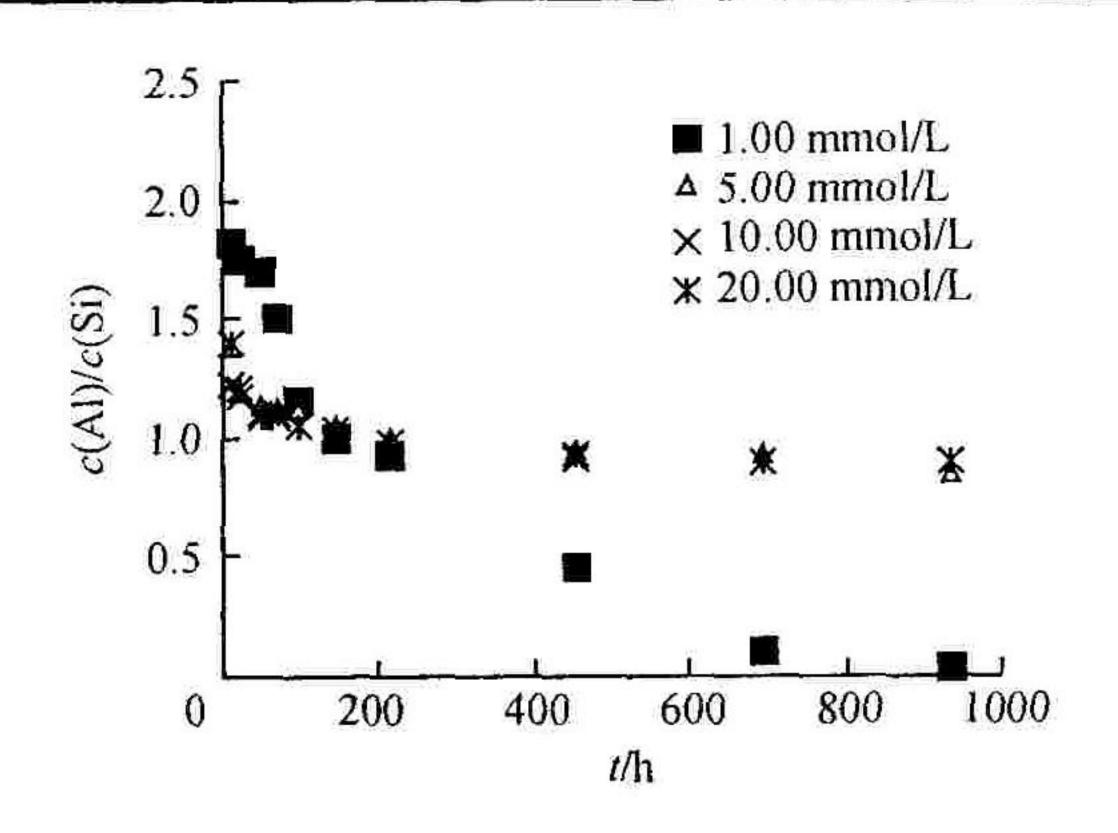


图 2 不同浓度柠檬酸高岭石溶解的同步性

Fig. 2 Stoichiometry of water washing kaolinite dissolution in different concentrations of citric acid

2.3 溶解速率

由图 1C、1D 可以看出:当反应液中柠檬酸的浓度为 1.00、5.00、10.00 和 20.00 mmol/L 时,反应 48 h后,高岭石反应液中 Al 和 Si 的浓度都是随反应时间而呈线性上升的,且反应 216 h以后,其 Al 和 Si 的释放速率下降. 因此可根据初始速率法[15-16],用 48~216 h内 Al 和 Si 与反应时间的线性关系拟合其动力学方程,然后根据动力学方程假定反应过程中高岭石的比表面积不变,求出其溶解速率(表 1). 从表 1 可以看出,柠檬酸作用下,高岭石 Al 的释放速率为 2.19×10⁻¹³~1.15×10⁻¹² mol·m⁻²·s⁻¹; Si 为 6.01×10⁻¹³~1.36×10⁻¹² mol·m⁻²·s⁻¹.高岭石的溶解速率是随着柠檬酸浓度的增加而提高. 相对于高岭石在无机酸中的溶解速率[17-18],柠檬酸对高岭石具有较强的溶解作用.

表 1 不同浓度柠檬酸反应液中高岭石 Al 和 Si 的溶解速率1)

Tab. 1 Al and Si release rates from water washing kaolinite induced by different concentrations citric acid

	Al			Si		
$c/(\text{mmol} \cdot \text{L}^{-1}$) 动力学方程	R^2	速率 rate/ (mol·m ⁻² ·s ⁻¹)	动力学方程 dynamic equation	R^2	速率 rate/ (mol·m ⁻² ·s ⁻¹)
	dynamic equation					
1.00	$y = 2.13 \times 10^{-4} x + 0.1009$	0.8958*	2.19×10^{-13}	$y = 5.84 \times 10^{-4} x + 0.0382$	0.935 9 **	6.01×10^{-13}
5.00	$y = 7.76 \times 10^{-4} x + 0.0999$	0.995 5 **	7.98×10^{-13}	$y = 8.79 \times 10^{-4} x + 0.0754$	0.997 1 **	9.04×10^{-13}
10.00	$y = 1.00 \times 10^{-3} x + 0.106 2$	0.993 7**	1.03×10^{-12}	$y = 1.19 \times 10^{-3} x + 0.0814$	0.993 1 **	1.22×10^{-12}
20.00	$y = 1.12 \times 10^{-3} x + 0.125 0$	0.990 1 **	1.15×10^{-12}	$y = 1.32 \times 10^{-3} x + 0.087 2$	0.993 7 **	1.36×10^{-12}

1) y 为释放量,单位: mmol/L; x 为反应时间(48≤x≤216),单位:h; $R_{0.05}^2$ = 0.770 9, $R_{0.001}^2$ = 0.919 7

2.4 速率与浓度的关系

由于高岭石溶解是通过表面反应机制控制的,配体促进的高岭石溶解速率是吸附的配体浓度的函数,因此当反应液中的配体浓度达到较高水平,充分使高岭石表面的有效反应位饱和时,溶解速率将不再随配体浓度的增加而提高.图3显示了Al和Si的释放速率对柠檬酸浓度降低的依存性,溶解速率向着恒定速率接近(其稍微增加可

能是由于 H⁺的作用). 这个稳定状态可以说明柠檬酸导致了高岭石表面反应位的饱和. Blake 等^[14]报道了拉长石(labradorite)的溶解速率随着柠檬酸浓度的增加而提高,直到柠檬酸的浓度为10.00 mmol/L(pH 6、80 °C),而后其溶解速率基本保持恒定. Wogelius 等^[19]也观察到在25 °C和 pH = 2 时,抗坏血酸作用下,橄榄石(olivine)溶解速率的近似饱和性质.

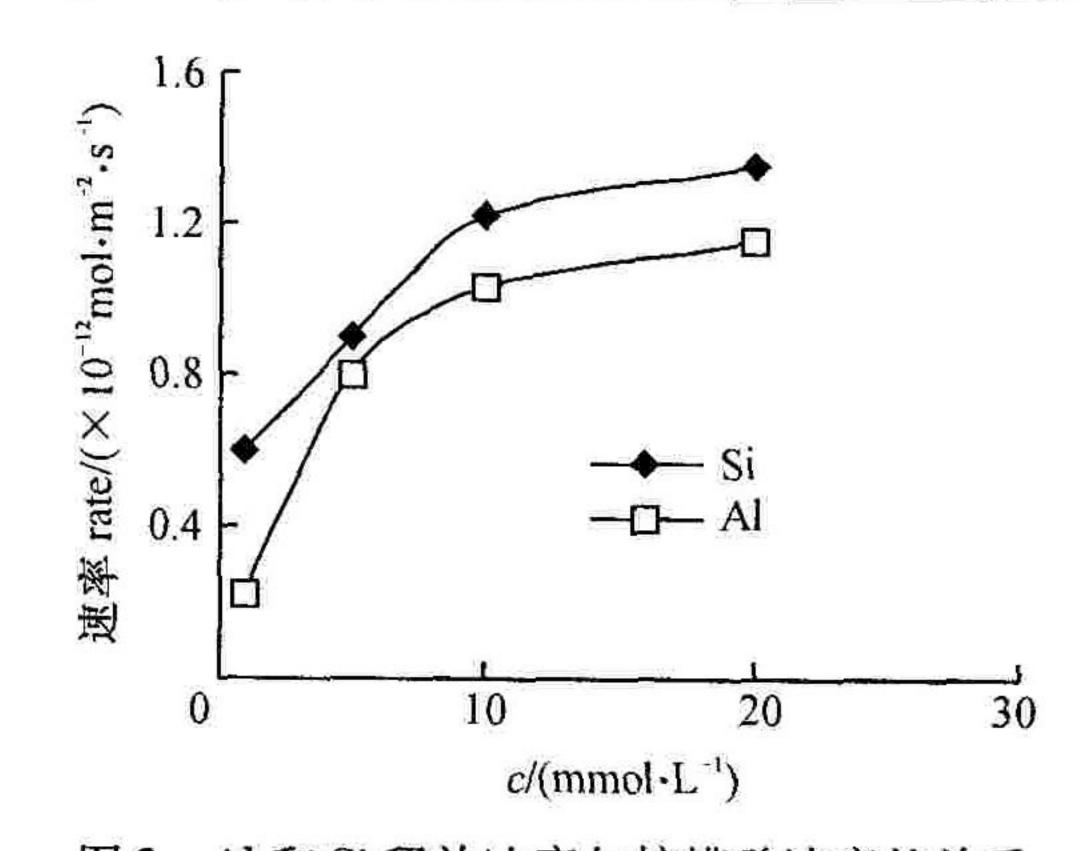


图 3 Al 和 Si 释放速率与柠檬酸浓度的关系 g. 3 Relation of release rates of Al and Si to citric acid concentrations

3 结论

柠檬酸能显著促进高岭石 Al 和 Si 的释放,且 Al、Si 的释放能力随柠檬酸浓度的增加而增强;高岭石溶解同步性与柠檬酸浓度有关,随着柠檬酸浓度的提高,其溶解的同步性增强;10.00 和20.00 mmol/L的柠檬酸在反应12 h后,高岭石溶解趋于同步,5.00 mmol/L柠檬酸在反应24 h后,高岭石溶解趋于同步,而当柠檬酸浓度为1.00 mmol/L时,反应96 h后,高岭石才趋于同步.且反应前期高岭石都表现为Al的优先释放.柠檬酸对高岭石的溶解速率一般较无机酸高1个数量级左右,且其溶解速率表现出对柠檬酸浓度的饱合性.

参考文献:

- [1] RITCHIE G S P. Role of dissolution and precipitation of minerals in controlling soluble aluminum in acidic soils [J]. Advances in Agronomy ,1994,53:47-84.
- [2] DAI Z H, WANG X J, ZHAO D W, et al. Changes in pH, CEC and exchangeable acidity of some forest soils in southern China during the last 32-35 years [J]. Water, Air and Soil Pollution, 1998, 108(3-4): 377-390.
- [3] SHEN A-Lin, LI, Xue-yuan, KANAMORI T O S, et al. Low-molecular-weight organic acids in two Japanese soils incubated wirh plant residues under different moisture conditions: I. Aliphatic acids[J]. Pedosphere, 1997, 7(1): 79-86.
- [4] TAN K H. Degradation of soil minerals by organic acids [M]//HUANG P M, SCHNITZER M. Interactions of Soil Minerals with Natural Organics and Microbes. Madison: Soil Science Society of American, 1986:1-28.
- [5] VANCE G F, STEVENSON F J, SIKORA F J. Environmental chemistry of aluminum organic complexes [M]//SPOSITO G. The Environmental Chemistry of Aluminum.

- 2nd ed. CRC Press Inc, 1996:170-176.
- [6] KAURICHEV I S, IVANOVA T N, NOZDRUNOVA Y M. Low molecular organic acid content of water-soluble organic matter in soils [J]. Sov Soil Sci, 1963:223-229.
- [7] STILLINGS L L, DREVER J I, BRANTLEY S L, et al.
 Rates of feldspar dissolution at pH 3-7 with 0-8 mM oxalic
 acid[J]. Chem Geol, 1996, 132: 79-89.
- [8] FEIN J B, HESTRIN J E. Experimental studies of oxalate complexation at 80 °C; Gibbsite, amorphous silica, and quartz solubilities in oxalate-bearing fluids [J]. Geochim Cosmochim Acta, 1994, 58:4817-4829.
- [9] BLAKE R E. WALTER L M. Kinetics of feldspar and quartz dissolution at 70-80°C and near-neutral pH: Effects of organic acids and NaCl [J]. Geochim Cosmochim Acta, 1999, 63: 2043-2059.
- [10] KWONG K F, HUANG P M. Influence of citric acid on the crystallization of aluminum hydroxides [J]. Clays Clay Miner, 1975, 23: 164-165.
- [11] KWONG K F. HUANG P M. Comparison of the influence of tannic acid and selected low-molecular-weight-organic acids on precipitation products of aluminum [J]. Geoderma, 1981, 26: 179-193.
- [12] VIOLANTE A, HUANG P M. Nature and properties of pseudoboehmites formed in the presence of organic and inorganic ligands [J]. Soil Sci Soc Am J, 1984, 48: 1193-1201.
- [13] VIOLANTE A, HUANG P M. Influence of inorganic and organic ligands on the formation of aluminum hydroxides and oxyhydroxides[J]. Clays Clay Miner, 1985, 33: 181-192.
- [14] HUANG W L, KELLER W D. Dissolution of rock-forming silicate minerals in organic acids: Simulated first-stage weathering of fresh mineral surfaces [J]. Am Mineral, 1970,55:2076-2094.
- [15] 张生,李统锦,王联魁. 地球化学动力学反应器原理和速率方程测定[J]. 地质地球化学,1997,25(1):53-59.
- [16] 张生. 金属矿物的反应动力学与地球化学意义[J]. 地学前缘,1999,6(2):351-360.
- [17] CHEN P K F, MILLS G L. Kinetics and mechanisms of kaolinite dissolution: effects of organic ligands [J]. Chem Geol, 1991, 90: 307-317.
- [18] 王兴祥,胡华锋. 高岭石在醋酸 醋酸铵缓冲体系中的溶解特征[J]. 土壤,2005,37(2):192-196.
- [19] WOGELIUS R A, WALTHER J V. Olivine dissolution at 25 °C: Effects of pH, CO₂ and organic acids [J]. Geochim Cosmochim Acta, 1991, 55: 943-954.

【责任编辑 周志红】