## 三峡地区 20 种植物甲醇提取物的抗真菌活性

黄桂荣<sup>1</sup>, 杜晓英<sup>2</sup>, 徐大高<sup>1</sup>, 张 慧<sup>1</sup>, 潘汝谦<sup>1,2</sup>, 徐汉虹<sup>2</sup> (1 华南农业大学 资源环境学院, 广东 广州 510642; 2 华南农业大学 农药与化学生物学教育部重点实验室, 广东 广州 510642)

摘要:以6种重要的植物病原真菌:荔枝霜疫霉菌 Peronophthora litchii、黄瓜疫霉菌 Phytophthora melonis、稻瘟病菌 Magnaporthe grisea、稻纹枯病菌 Rhizoctonia solani、西瓜枯萎病菌 Fusarium oxysporum f. sp. niveum 和香蕉炭疽病菌 Colletotrichum musae 为供试菌,对采自三峡地区的 20 种植物的甲醇提取物的抑制菌丝生长活性进行离体测定. 结果表明:在甲醇提取物干质量浓度为 10 mg/mL 下,对荔枝霜疫霉菌抑菌活性较高的植物有山萝花 Melampyrum roseum(100%)、毛华菊 Dendranthema vestitum(100%)和金缕梅 Hamamelis mollis(82.35%)等 12 种;对黄瓜疫霉菌抑菌活性较高的植物有山萝花(100%)、毛华菊(96.23%)和兰香草 Caryopteris incana(82.43%)等 12 种;对稻瘟病菌表现较高抑菌率的植物是金缕梅(61.51%)和宜昌润楠 Machilus ichangensis(61.51%);对稻纹枯病菌有较高抑菌率的植物是透骨草 Phryma leptostachya(78.48%)和歪头菜 Vicia unijuga(78.03%);对西瓜枯萎病菌和香蕉炭疽病菌抑菌率最高的植物均是金缕梅,抑菌率分别为 51.12%和 61.07%. 对植物抑菌活性筛选中植物材料干质量的总抑制活性进行了讨论.

关键词:甲醇提取物; 抗真菌活性; 山萝花; 毛华菊; 金缕梅

中图分类号:S432

文献标识码:A

文章编号:1001-411X(2007)03-0037-05

# Antifungal Activities in Methanol Extracts from Twenty Species of Plants in Three Gorges Region, Hubei Province

HUANG Gui-rong<sup>1</sup>, DU Xiao-ying<sup>2</sup>, XU Da-gao<sup>1</sup>, ZHANG Hui<sup>1</sup>, PAN Ru-qian<sup>1, 2</sup>, XU Han-hong<sup>2</sup>

(1 College of Resources and Environment, South China Agric. Univ., Guangzhou 510642, China; 2 Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agric. Univ., Guangzhou 510642, China)

Abstract: Twenty species of plants collected from Three Gorges region, Hubei Province, were screened for their antifungal activity against six important plant pathogenic fungi: Peronophthora litchii, Phytophthora melonis, Magnaporthe grisea, Rhizoctonia solani, Fusarium oxysporum f. sp. niveum, and Colletotrichum musae, in vitro. The plants were dried, ground, and then extracted with methanol. The dry methanol extracts were tested for their inhibition of mycelial growth on PDA plates at mass concentration of dry methanol extract 10 mg/mL. The results showed that the inhibitory rate to P. litchii in methanol extracts from Melampyrum roseum, Dendranthema vestitum and Hamamelis mollis were 100%, 100%, and 82.35%, respectively, while that to P. melonis in methanol extracts from M. roseum, D. vestitum and Caryopteris incana were 100%, 96.23%, and 82.43%, respectively. In case of M. grisea, higher inhibitory rate occurred from H. mollis (61.51%) and Machilus ichangensis (61.51%), while Phryma leptostachya and Vicia unijuga exhibited higher inhibitory rate to R. solani, which were 78.48% and 78.03%, respectively. The effect of H. mollis showed the highest inhibitory rate to both of F. oxysporum

f. sp. *niveum* and *C. musae*, which were 51.12% and 61.07%, respectively. The inhibitory rate in total plant dry mass was discussed in the paper.

Key words: methanol extracts; antifungal activity; Melampyrum roseum; Dendranthema vestitum; Hamamelis mollis

当今使用的药物大约有一半来自天然产物,而 且,在1981-2002年间发现的877种小分子新化学 实体(new chemical entities, NCEs)中大约有一半 (49%)是天然产物、半合成的天然产物同类物或者 基于天然产物的合成物[1]. 虽然,在组合化学时代, 由于不适合高通量合成的需要,天然产物的研究一 度下降[2]. 但是,由于天然产物具有极为丰富的化 学结构多样性以及作用机理的多样性[2-3],在现代技 术进展,特别是化合物分离和结构鉴定的突破进展 下,那种只追求数量而忽略质量的有机合成时代已 经过去. 再加上病原菌抗药性的严重威胁[4],天然 产物作为发现新药物的重要来源,又重新获得普遍 的关注[5] 在农业领域,由于农业无公害、绿色、有 机生产,以及农产品出口贸易跨越"绿色技术壁垒" 的迫切需要,来自天然产物的生物农药是当今世界 农药研究和开发的必然趋势[6]. 许多植物的提取物 或纯化的化学物质被用来防治植物真菌病害[7-10]. 我国植物资源丰富,在植物中寻找活性成分一直是 资源植物化学及天然产物化学研究的主流[11]. 随着 种植结构的调整,我国主要农作物病害的发生产生 了很大的变化[12-13],针对这些病害的新药物的开发 具有非常重要的意义[14] 位于我国湖北省的三峡地 区,生态环境保护良好,植物资源丰富,许多植物种 类具有药用价值[15]. 本文报道了采自湖北三峡地区 的 17 科 20 种植物的甲醇提取物对 6 种生产上主要 的植物病原真菌的抗菌活性,为植物资源的合理利 用和新的活性化合物研究积累资料.

## 1 材料与方法

## 1.1 供试植物

于 2005 年 3—4 月在湖北三峡地区采集植物, 种类由中国科学院武汉植物园江明喜研究员鉴定.

## 1.2 供试植物病原真菌

荔枝霜疫霉菌 Peronophthora litchii、黄瓜疫霉菌 Phytophthora melonis、稻瘟病菌 Magnaporthe grisea、稻纹枯病菌 Rhizoctonia solani、西瓜枯萎病菌 Fusarium oxysporum f. sp. niveum 和香蕉炭疽病菌 Colletotrichum musae. 西瓜枯萎病菌承蒙华南热带农业大学郑服从

教授惠赠,其他病原菌由本研究室分离,并保存于PDA中

供试病原菌先于 PDA 中培养, 然后用孔径为 0.5 cm的打孔器在菌落边缘打孔, 切取生长一致的 菌块, 作为抑菌活性测定的接种菌块.

## 1.3 植物抗菌化合物的提取

参考黄桂荣等<sup>[16]</sup>的方法. 植物材料阴干或烘干后粉碎,取一定量的植物干粉加入 5 倍量的甲醇,在室温下浸泡提取,甲醇浸出液经过减压浓缩蒸出甲醇后成粘稠的干膏状,即为植物的甲醇提取物,置于4℃冰箱中保存,待测抑菌活性. 甲醇提取物的干质量与用于提取的植物干粉质量的百分比即为甲醇提取率.

## 1.4 植物抗菌化合物的抑菌活性测定

参考黄桂荣等<sup>[16]</sup>的方法. 将植物甲醇提取物配成一定浓度的母液,然后混入融溶的冷却至 50 ℃左右的 PDA 培养基中,充分摇匀后,倒入直径为 6 cm的培养皿中,静置待冷却,制成含甲醇提取物质量浓度为 10 mg/mL的含毒 PDA 培养平板. 设不含甲醇提取物的营养平板为对照. 将准备好的供试病原菌菌丝块接种到含毒平板中央,每处理 3 个重复,25 ℃恒温培养 3~5 d. 测量菌落直径,计算抑菌率.

## 2 结果与分析

## 2.1 不同植物的甲醇提取率

20 种供试植物分属 17 科(表 1),由表 1 可见,不同植物的甲醇提取率差别较大:甲醇提取率最高的植物材料是樟科的宜昌润楠 Machilus ichangensis (枝叶和花),达 15.71%,蝶形花科的毛枝鱼藤 Derris scabricanlis(叶)和马鞭草科的兰香草 Caryopteris incana(全草)也有较高的提取率,分别是 14.54%和 14.24%;甲醇提取率最低的植物材料是五加科的短序鹅掌柴 Schefflera bodinieri(枝叶),仅为 1.88%. 植物的甲醇提取率与植物的种类和采集的植物部分均没有直接的关系.

## 2.2 提取物对6种植物病原真菌的抑菌活性

三峡地区 20 种植物的甲醇提取物对供试的 6 种植物病原真菌菌丝生长的抑制活性见表 2.

#### 表 1 植物种类和甲醇提取率

Tab. 1 Plant species and their methanol extract rate

| 植物科和种名称 plant family/species  | 植物部位<br>sample<br>parts | 甲醇提取率<br>methanol<br>extract<br>rate/% |  |  |
|-------------------------------|-------------------------|----------------------------------------|--|--|
| 五加科 Araliaceae                |                         |                                        |  |  |
| 短序鹅掌柴 Schefflera bodinieri    | 枝叶                      | 1.88                                   |  |  |
| 马兜铃科 Aristolochiaceae         |                         |                                        |  |  |
| 绵毛马蔸铃 Aristolochia mollissima | 全草                      | 6.66                                   |  |  |
| 石竹科 Caryophyllaceae           |                         |                                        |  |  |
| 假繁缕 Theligonum macranthum     | 全草                      | 7.97                                   |  |  |
| 菊科 Compositae                 |                         |                                        |  |  |
| 少花风毛菊 Saussurea oligantha     | 全草                      | 3.19                                   |  |  |
| 锈毛风毛菊 Saussurea dutaillyana   | 全草                      | 5.84                                   |  |  |
| 毛华菊 Dendranthema vestitum     | 全草                      | 5.15                                   |  |  |
| 山茱萸科 Cornaceae                |                         |                                        |  |  |
| 四照花 Dendrobenthamia japonica  | 枝叶,果                    | 7.54                                   |  |  |
| 苦苣苔科 Gesneriaceae             |                         |                                        |  |  |
| 半塑苣苔 Hemiboea henryi          | 全草                      | 5.44                                   |  |  |
| 金缕梅科 Hamamelidaceae           |                         |                                        |  |  |
| 金缕梅 Hamamelis mollis          | 枝叶                      | 10.36                                  |  |  |
| 茶茱萸科 Icacinaceae              |                         |                                        |  |  |
| 无须藤 Hosiea sinensis           | 全草                      | 8.18                                   |  |  |
| 唇形科 Labiatae                  |                         |                                        |  |  |
| 南方糙苏 Phlomis umbrosa          | 全草                      | 4.65                                   |  |  |
| 樟科 Lauraceae                  |                         |                                        |  |  |
| 宜昌润楠 Machilus ichangensis     | 枝叶,花                    | 15.71                                  |  |  |
| 豆科 Leguminosae                |                         |                                        |  |  |
| 歪头菜 Vicia unijuga             | 全草                      | 6.97                                   |  |  |
| 蝶形花科 Papilionaceae            |                         |                                        |  |  |
| 毛枝鱼藤 Derris scabricanlis      | 叶                       | 14.54                                  |  |  |
| 透骨草科 Phrymataceae             |                         |                                        |  |  |
| 透骨草 Phryma leptostachya       | 全草                      | 8.55                                   |  |  |
| 鼠李科 Rhamnaceae                |                         |                                        |  |  |
| 小勾儿茶 Berchemiella wilsonii    | 枝叶,果                    | 8.80                                   |  |  |
| 芸香科 Rutaceae                  |                         |                                        |  |  |
| 蚬壳椒 Zanthoxylum dissitum      | 枝叶                      | 4.68                                   |  |  |
| 湖北臭辣树 Evodia fargesii         | 枝叶                      | 8.63                                   |  |  |
| 玄参科 Scrophulariaceae          |                         |                                        |  |  |
| 山萝花 Melampyrum roseum         | 全草                      | 6. 10                                  |  |  |
| 马鞭草科 Verbenaceae              |                         |                                        |  |  |
| 兰香草 Caryopteris incana        | 全草                      | 14.24                                  |  |  |

在对低等卵菌的抑制作用方面: 所有供试植物甲醇提取物对荔枝霜疫霉菌菌丝生长均具有抑制活

性,抑菌率大于 50% 的有 12 种,其中抑菌率大于 80% 的有 4 种,即山 萝花 Melampyrum roseum (100%)、毛华菊 Dendranthema vestitum(100%)、金 缕梅 Hamamelis mollis(82.35%)和锈毛风毛菊 Saussurea dutaillyana(80.88%);对黄瓜疫霉菌菌丝生长也有较高的抑制作用,抑菌率大于 50% 的也有 12 种,其中抑菌率大于80% 有 3 种,即山萝花(100%)、毛华菊(96.23%)和兰香草(82.43%). 锈毛风毛菊和金缕梅对荔枝霜疫霉菌有较高抑制活性,但对黄瓜疫霉菌的抑菌率分别下降为 74.90% 和 64.85%;而兰香草对黄瓜疫霉菌的抑制活性较高,但对荔枝霜疫霉菌的抑菌率下降为 69.61%.

供试植物对 4 种高等真菌的抑制活性普遍低于对 2 种卵菌的抑制活性. 对稻瘟病菌抑菌率大于50%的只有 2 种,分别是宜昌润楠(61.51%)和金缕梅(61.51%);对稻纹枯病菌抑菌率大于50%的也只有 2 种植物,即透骨草 Phryma leptostachya (78.48%)和歪头菜 Vicia unijuga(78.03%);对西瓜枯萎病菌抑菌率大于50%的只有金缕梅(51.12%);对香蕉炭疽病菌抑菌率大于50%的植物有 4 种,即金缕梅(61.07%)、少花风毛菊 Saussurea oligantha (57.89%)、兰香草(56.11%)和绵毛马蔸铃 Aristolochia mollissima (51.02%). 这些植物对高等真菌的抑制活性同样有差异,对稻瘟病菌具有较高活性的宜昌润楠以及对稻纹枯病菌具有较高抑菌活性的透骨草和歪头菜,均对其他 3 种高等病原真菌表现出较低的抑菌活性.

对所有供试的 6 种植物病原真菌,无论是卵菌或高等真菌,表现出广谱的抑菌活性的只有金缕梅科的金缕梅,其抑菌活性都在 50% 以上. 其他植物对不同病原菌的抑菌活性差别较大:山萝花和毛华菊对低等卵菌都具有很高的抑菌活性,但是对高等真菌的抑菌活性较低或者没有抑菌活性;同样的现象还出现在锈毛风毛菊,该植物对低等卵菌都具有较高抑菌活性,但是对高等真菌的抑菌活性相对较低,甚至对 2 种土传病原菌具有促进生长的作用;对稻纹枯病菌具有较高抑菌活性的透骨草和歪头菜却对低等卵菌表现相对较低的抑菌活性.

一些植物的甲醇提取物不仅没有抑菌作用,还促进病原真菌菌丝的生长.尤其是对2种土传病原真菌,如毛枝鱼藤对稻纹枯病菌和西瓜枯萎病菌、半塑苣苔 Hemiboea henryi 对西瓜枯萎病菌等.特别是西瓜枯萎病菌,有6种植物的甲醇提取物对该病原菌具有促进生长作用.

表 2 三峡地区 20 种植物甲醇提取物对 6 种植物病原真菌菌丝生长的抑制活性1)

Tab. 2 The inhibitory activities to mycelial growth of six plant pathogenic fungi in methanol extracts of 20 species of plants from Three Gorges region, Hubei Province

| 植物种名<br>plant<br>species |                    |                             | 黄瓜疫<br>P. me       |                             |                    |                             |                    |                             | 西瓜枯萎病菌<br>F. oxysporum<br>f. sp. niveum |                             | 香蕉炭疽病菌<br>C. musae |                             |
|--------------------------|--------------------|-----------------------------|--------------------|-----------------------------|--------------------|-----------------------------|--------------------|-----------------------------|-----------------------------------------|-----------------------------|--------------------|-----------------------------|
|                          | d(菌落<br>colony)/cm | 抑菌率<br>inhibitory<br>rate/% | d(菌落<br>colony)/cm | 抑菌率<br>inhibitory<br>rate/% | d(菌落<br>colony)/cm | 抑菌率<br>inhibitory<br>rate/% | d(菌落<br>colony)/cm | 抑菌率<br>inhibitory<br>rate/% | d(菌落<br>colony)/cm                      | 抑菌率<br>inhibitory<br>rate/% | d(菌落<br>colony)/cm | 抑菌率<br>inhibitory<br>rate/% |
| 短序鹅掌柴 S. bodinieri       | 1.02 ± 0.08        | 74.37                       | 1.38 ± 0.19        | 62.38                       | 1.97 ± 0.03        | 31. 79                      | 2.43 ± 0.38        | 10.98                       | $3.38 \pm 0.08$                         | -3.05                       | $1.78 \pm 0.03$    | 43.68                       |
| 少花风毛菊 S. oligantha       | $0.87 \pm 0.03$    | 78.51                       | $2.10 \pm 0.15$    | 49.60                       | 1.48 ±0.08         | 46.39                       | $3.03 \pm 0.45$    | 21.55                       | $2.65 \pm 0.05$                         | 15.43                       | $1.73 \pm 0.08$    | 57.89                       |
| 锈毛风毛菊 S. dutaillyana     | $0.65 \pm 0.05$    | 80. 88                      | $1.00 \pm 0.14$    | 74. 90                      | $3.65 \pm 0.22$    | 13. 10                      | 1. 97 ± 0. 12      | -3.51                       | $3.50 \pm 0.05$                         | - 17. 98                    | $2.88 \pm 0.03$    | 33.97                       |
| 毛华菊 D. vestitum          | $0.00 \pm 0.00$    | 100.00                      | $0.15 \pm 0.15$    | 96.23                       | $3.12 \pm 0.18$    | 25.79                       | 1.32 ± 0.03        | 30.70                       | $2.08 \pm 0.03$                         | 29.78                       | $2.30 \pm 0.00$    | 47.33                       |
| 南方糙苏 P. umbrosa          | 1.15 ±0.10         | 71.01                       | $1.32 \pm 0.03$    | 66.09                       | $2.93 \pm 0.12$    | -1.73                       | $2.72 \pm 0.28$    | 0.61                        | $3.00 \pm 0.05$                         | 8.63                        | $2.45 \pm 0.09$    | 22.63                       |
| 蚬壳椒 Z. xylum             | 2.40 ±0.13         | 39.50                       | $2.25 \pm 0.09$    | 42.06                       | $2.15 \pm 0.95$    | 25.43                       | 1.95 ± 0.26        | 28.66                       | $3.38 \pm 0.20$                         | -3.05                       | $2.03 \pm 0.08$    | 35.79                       |
| 湖北臭辣树 E. fargesii        | $3.43 \pm 0.19$    | -0.98                       | $3.10 \pm 0.30$    | 22.18                       | $4.10 \pm 0.10$    | 2.38                        | $1.78 \pm 0.08$    | 6. 14                       | 2.47 ± 0.06                             | 16.85                       | $3.25 \pm 0.65$    | 25.57                       |
| 山萝花 M. roseum            | $0.00 \pm 0.00$    | 100.00                      | $0.00 \pm 0.00$    | 100.00                      | $2.25 \pm 0.09$    | 18.67                       | $2.23 \pm 0.33$    | 42. 24                      | 3. 13 ± 0. 12                           | 0.00                        | $2.88 \pm 0.08$    | 29.96                       |
| 半塑苣苔 H. henryi           | $1.73 \pm 0.33$    | 57.02                       | $2.95 \pm 0.28$    | 29. 20                      | $1.48 \pm 1.01$    | 46.39                       | $2.92 \pm 0.35$    | 24. 57                      | $3.73 \pm 0.32$                         | - 19. 15                    | $2.83 \pm 0.78$    | 31.17                       |
| 无须藤 H. sinensis          | $1.70 \pm 0.30$    | 50.00                       | $1.22 \pm 0.15$    | 68.06                       | NT                 | NT                          | 1.02 ± 0.03        | 46. 49                      | $2.53 \pm 0.12$                         | 14.61                       | $2.20 \pm 0.05$    | 49.62                       |
| 四照花 D. japonica          | $3.43 \pm 0.85$    | 14.88                       | $3.02 \pm 0.10$    | 27.60                       | $1.70 \pm 0.13$    | 38.55                       | $2.55 \pm 0.25$    | 34.05                       | $2.47 \pm 0.06$                         | 21.28                       | $3.38 \pm 0.03$    | 17.81                       |
| 歪头菜 V. unijuga           | $2.65 \pm 0.48$    | 15.43                       | $3.57 \pm 0.62$    | 22.18                       | $2.23 \pm 0.32$    | 12.75                       | $0.82 \pm 0.10$    | 78.03                       | $3.52 \pm 0.13$                         | 7.46                        | $3.27 \pm 0.06$    | 18.33                       |
| 绵毛马蔸铃 A. mollissima      | NT                 | NT                          | 1.28 ±0.10         | 73.72                       | 1.97 ±0.06         | 24.84                       | $2.45 \pm 0.38$    | 16.48                       | $2.27 \pm 0.06$                         | 18.07                       | $2.00 \pm 0.17$    | 51.02                       |
| 金缕梅 H. mollis            | $0.60 \pm 0.30$    | 82.35                       | 1.40 ± 0.09        | 64.85                       | $1.62 \pm 0.71$    | 61.51                       | 1.20 ± 0.05        | 36.84                       | $1.45 \pm 0.05$                         | 51.12                       | $1.70 \pm 0.13$    | 61.07                       |
| 宜昌润楠 M. ichangensis      | $2.00 \pm 0.17$    | 41. 18                      | $2.02 \pm 0.16$    | 49.37                       | 1.62 ± 0.51        | 61.51                       | $1.55 \pm 0.05$    | 18. 42                      | $2.\ 10\pm0.\ 18$                       | 29. 21                      | $2.60 \pm 0.31$    | 40.46                       |
| 假繁缕 T. macranthum        | $0.77 \pm 0.08$    | 77.45                       | $1.88 \pm 0.13$    | 52.72                       | $2.53 \pm 0.03$    | 39.68                       | 1.57 ± 0.06        | 17.54                       | $3.23 \pm 0.15$                         | -8.99                       | $2.53 \pm 0.03$    | 41.98                       |
| 小勾儿茶 B. wilsonii         | $2.88 \pm 0.21$    | 15.20                       | $2.58 \pm 0.06$    | 35.15                       | $3.80 \pm 0.18$    | 9.52                        | $1.45 \pm 0.30$    | 23.68                       | $2.55 \pm 0.09$                         | 14.04                       | $3.43 \pm 0.06$    | 21.37                       |
| 兰香草 C. incana            | 1.03 ±0.10         | 69.61                       | $0.70 \pm 0.05$    | 82.43                       | $2.37 \pm 0.14$    | 43.65                       | 1.18 $\pm$ 0.03    | 37.72                       | $2.25 \pm 0.09$                         | 24. 16                      | $1.92 \pm 0.14$    | 56.11                       |
| 毛枝鱼藤 D. scabricanlis     | 2. 15 ±0. 17       | 43.91                       | $3.25 \pm 0.09$    | 33.45                       | $2.50 \pm 0.10$    | 4.46                        | $4.12 \pm 0.20$    | -40.34                      | $3.25 \pm 0.13$                         | - 17. 47                    | $3.37 \pm 0.03$    | 17.55                       |
| 透骨草 P. leptostachya      | 1.92 ±0.24         | 38.83                       | $2.22 \pm 0.18$    | 51.64                       | NT                 | NT                          | $0.80 \pm 0.05$    | 78.48                       | $3.53 \pm 0.15$                         | 7.02                        | $2.63 \pm 0.08$    | 34.17                       |

<sup>1)</sup>各植物甲醇提取物的质量浓度均为 10 mg/mL; 菌落直径是 3 次重复的平均值 ± S. E.; "NT"表示没有测定.

## 3 讨论

荔枝霜疫霉菌、香蕉炭疽菌、黄瓜疫霉菌、西瓜 枯萎菌、稻瘟菌和稻纹枯菌都是粮食作物和果蔬的 主要病原菌. 随着种植结构的调整,这些病原菌引起 的病害都有加重发生的态势,尤其是稻瘟病和稻纹 枯病[12-13] 吴光旭等[17]以荔枝霜疫霉菌和香蕉炭疽 菌为筛选菌对64种植物的抑菌活性进行测定,发现 了许多抗菌活性较好的植物,并将植物提取物应用 于荔枝果实的贮藏保鲜[10]. 作者曾用荔枝霜疫霉 菌、香蕉炭疽菌及稻瘟菌对一些湘西植物的抗菌活 性进行了筛选[16],本研究在原来的研究基础上增加 黄瓜疫霉菌、稻纹枯病菌和西瓜枯萎病菌作为筛选 菌,结果都发现了对供试病原菌具有较高抑制活性 的植物材料,为植物资源的进一步开发应用打下了 基础. 扩大筛选的病原菌谱, 有利于发现新的具有较 好活性的植物材料, 本研究发现的具有广谱活性的 金缕梅是今后进一步研究的重点植物之一. 此外,有 些植物材料对卵菌高活性,但对高等真菌活性较低,如 山萝花、毛华菊等;而有些相反,对高等真菌活性较高 但对卵菌活性较低,如透骨草和歪头菜等.可能的机理 是这些植物的抗菌物质作用于高等真菌或者卵菌的 特异位点,这些植物的抗菌化合物及其作用机理也值 得进一步研究.

Eloff<sup>[18]</sup>认为,在植物材料的筛选和活性跟踪中, 应当使用"植物材料质量的总抑制活性"的概念,以 防止出现漏筛和活性丢失,在本研究中,在甲醇提取 物质量浓度 10 mg/mL 下,短序鹅掌柴甲醇提取物对 荔枝霜疫霉菌的抑制率为 74.37%,宜昌润楠甲醇提 取物对荔枝霜疫霉菌的抑菌活性则为 41.18%,因此 推断短序鹅掌柴对荔枝霜疫霉菌的抑菌活性比官昌 润楠高,这个结论存在片面性. 因为,短序鹅掌柴的 甲醇提取率为1.88%,即每100 mg 植物材料干质量 中有1.88 mg甲醇提取物,换算为植物材料干质量的 总抑菌活性,每10 mg 植物材料干质量的抑菌率将 为1.40%;同样,宜昌润楠的甲醇提取率为15.71%, 换算为植物材料干质量的总抑菌活性,每 10 mg 植 物材料干质量的抑菌率将为 6.46%. 显然,宜昌润 楠对荔枝霜疫霉菌的抑菌活性比短序鹅掌柴高. 可 见,在植物材料活性物质初筛中,还要注意考虑植物 材料干质量的总抑菌活性.

#### 参考文献:

- NEWMAN D J, CRAGG G M, SNADER K. Natural products as sources of new drugs over the period 1981-2002
   Journal of Natural Products, 2003, 66: 1022-1037.
- [2] KOEKN F E, CARTER G T. The evolving role of natural

- products in drug discovery[J]. Nature Reviews Drug Discovery, 2005, 4: 206-220.
- [3] CLARDY J, WALSH C. Lessons from natural molecules
  [J]. Nature, 2004, 432: 829-837.
- [4] ANDERSON J B. Evolution of antifungal drug resistance; mechanisms and pathogen fitness[J/OL]. Nature Reviews Microbiology, (2005-06-10) [2006-12-20] http://www.nature.com/reviews/micro.
- [5] PATERSON I, ANDERSON E A. The renaissance of natural products as drug candidates [J]. Science, 2005, 310: 451-453.
- [6] 陶建平,徐晔. 论我国生物农药发展策略[J]. 生态经济,2004(S1): 229-231.
- [7] KIM J, CHOI G J, LEE S W, et al. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew[J]. Pest Management Science, 2004, 60: 803-808.
- [8] BOWERS J H, LOCHE J C. Effect of formulated plant extracts and oils on population density of *Phytophthora incotianae* in soil and control of Phytophthora blight in the greenhouse[J]. Plant Disease, 2004, 88(1): 11-16.
- [9] ABDELGALEIL S A M, HASHINAGA F, NASKATANI
   M. Antifungal activity of limonoids from *Khaya ivorensis* [J]. Pest Management Science, 2005, 61: 186-190.
- [10] 吴光旭, 刘爱媛, 陈维信. 开口箭提取物对荔枝霜疫霉菌的抑制作用及其对荔枝果实的贮藏效果[J]. 中国农业科学, 2006, 39(8): 1703-1708.
- [11] 方颖, 温明章. 我国资源植物化学与天然产物化学基础研究的现状与发展[J]. 生命科学, 2005, 17(3): 282-285.
- [12] 赖真如, 邹寿发, 徐起峰. 广东水稻病害发生态势及综合防治[J]. 广东农业科学, 1999(1): 32-33.
- [13] 邹寿发,黄德超,李建丰,等.广东省稻瘟菌生理小种变化研究[J] 仲恺农业技术学院学报,2005,18(4):36-41.
- [14] 潘汝谦,徐大高,严绮文,等. 嘧菌酯对扁豆纹枯病的物理作用方式及其生物动力学特性[J]. 农药学学报,2007,9(1):34-38.
- [15] 朱兆泉,宋朝枢. 神农架自然保护区科学考察集[M]. 北京:中国林业出版社,1999:298-302.
- [16] 黄桂荣, 李有志, 徐大高, 等. 九种湘西植物甲醇提取物的抗真菌活性[J]. 仲恺农业技术学院学报, 2005, 18(4): 49-52.
- [17] 吴光旭, 杨小玲, 刘爱媛, 等. 64 种植物提取物的离体抗真菌活性评价[J]. 长江大学学报: 自然科学版, 2005, 25(1): 77-82.
- [18] ELOFF J N. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation [J]. Phytomedicine, 2004, 11: 370-371.

【责任编辑 李晓卉】