荔枝园红火蚁和哀弓背蚁种间关系研究

席银宝,曾 玲,陆永跃,许益镌,梁广文,张维球(华南农业大学红火蚁研究中心,广东广州510642)

摘要:采用系统调查的方法对深圳市红火蚁发生区荔枝园内的哀弓背蚁 Camponotus dolendus 和红火蚁 Solenopsis innicta 种间关系进行了研究. 结果表明:红火蚁发生较严重的荔枝园,哀弓背蚁和红火蚁种群数量间表现为明显负相关,相关系数为 -0.8194,而红火蚁发生较轻的荔枝园两者不相关. 2 种蚂蚁种间存在明显的竞争关系,其竞争系数(α)为 0.3249. 在轻度发生荔枝园,气温对哀弓背蚁种群数量变动的直接作用最大;而在重度发生荔枝园,气温通过影响红火蚁种群数量进而对哀弓背蚁产生的间接作用最大. 决定系数分析结果表明,红火蚁是影响哀弓背蚁种群数量变动的最主要决定因素. 经主成分分析,获得了 2 个包含 3 个因子的主成分,其累积方差贡献率分别为95.73%和95.75%,并给出了 2 个主成分与 3 因子间函数表达式. 建立了哀弓背蚁工蚁数量与气温(X_1)、空气相对湿度(X_2)、红火蚁工蚁数量(X_3)之间的回归方程为 Y=5.490 2 -0.063 $0X_1-2.813$ $1X_2-0.003$ $3X_3$.

关键词:红火蚁; 哀弓背蚁; 种间关系

中图分类号:Q968.1

文献标识码:A

文章编号:1001-411X(2007)04-0006-05

Interspecific Relationship Between Solenopsis invicta and Camponotus dolendus in Litchi Orchard

XI Yin-bao, ZENG Ling, LU Yong-yue, XU Yi-juan, LIANG Guang-wen, ZHANG Wei-qiu (Red Imported Fire Ant Research Centre, South China Agric. Univ., Guangzhou 510642)

Abstract: Interspecific relationship between Solenopsis invicta Buren and Camponotus dolendus Forel in litchi orchard in Shenzhen was studied by systematic investigation. The results revealed the correlation index, -0.8194, told negative correlation between the two species of ants at litchi orchard infested heavily by red imported fire ant, and no correlation at litchi orchard infested lightly by red imported fire ant. Competition index, 0.3249, indicated that competition occurred between the two species. In 3 factors at litchi orchards infested lightly by red imported fire ant, areo temperature had heavy indirect effect on C. dolendus. But indirect effect of areo temperature on C. dolendus via direct effect on red imported fire ant was high at litchi orchards infested heavily by red imported fire ant. C. invicta was the most important deciding factor in 3 factors which influenced C. dolendus population by analysis of decision index. 2 principal components including 3 factors were given out, and their cumulative variance proportion were 95.73%, 95.75% repectively. The formula describing the relationship between the C. dolendus and aero temperature C, relative humidity C, C, invicta workers per bait C, was built up C = 5.490 C = 0.063 C = 0.003 C = 0.0

Key words: Solenopsis invicta: Camponotus dolendus: interspecific relationship

红火蚁 Solenopsis invicta Buren 是一种重要的外 来入侵物种,自 1930 年左右入侵美国后,导致当地

收稿日期:2007-05-10

作者简介:席银宝(1976 —),男,博士,现在安徽农业大学植物保护学院工作; 通讯作者:曾 珍(1949—),女,教授, E-mail: zengling@scau.edu.cn

基金项目: 国家自然科学基金(305712427); 国家"973"计划项目(2002CB111400); 广东省科技计划项目(2005A20401001, 2006A20301005); 农业部"2007 年农作物病虫害疫情监测与防治项目"

蚂蚁群落丰富度和多样性大大降低[1-2]. 在红火蚁 发生严重的区域,蚂蚁群落中土著种类仅剩下30%; 多蚁后型红火蚁发生的区域土著蚂蚁数量迅速减 少,有时高达90%[1]. 红火蚁的入侵直接导致了很 多土著蚂蚁种类灭绝^[3-4]. 土著蚂蚁种类的减少给 捕食者或靠其完成生活史的其他物种造成了明显影 响[5-6],间接导致生态系统内生物和非生物因子的变 化[6-8],这些变化改变了生态系统内动植物区系结 构,进而对生态系统产生重大影响[9]. 2004 年 9 月 在广东局部地区发现红火蚁发生危害以来[10-11],我 国在红火蚁的发生分布、局域扩散、传播风险以及防 控技术等方面开展了研究[12-17] 但是,关于该虫人 侵中国南方后对该地生物多样性的影响,特别是与 本地蚂蚁种类间关系等尚不清楚. 因此,开展红火蚁 与华南特有土著蚂蚁种类间关系研究,揭示种间相 互作用规律对评价红火蚁入侵的生态影响等均具有 十分重要的意义. 哀弓背蚁 Camponotus dolendus Forel是我国南方生态系统中常见的优势蚂蚁种类之 一,在果园、荒地等生境中普遍存在;其个体较大,且 具有较强攻击性[18-20]. 本文研究了荔枝园中红火蚁 与哀弓背蚁之间的关系,为了解红火蚁入侵对华南 地区生物多样性影响提供科学参考.

1 材料与方法

试验在广东省深圳市宝安区荔枝园进行.该区域荔枝园红火蚁为多蚁后型.根据红火蚁种群密度将荔枝园划分为3个类型:对照区:未发生红火蚁,种群密度为0; I:轻度发生区,蚁巢密度为每100 m²有1~5个活动蚁丘、每个诱饵上工蚁数量为1~100

头; II: 重度发生区,蚁巢密度为每100 m² 有10 个以上活动蚁丘、每个诱饵上工蚁数量大于200 头. 每个区域荔枝园面积均不小于2000 m²,各区间距不小于1000 m. 每区设10个小区,每小区面积为100 m². 各区小气候、土质等生态环境相近,对荔枝害虫的防治均不采用化学农药.

调查于 2005 年 8 月至 2006 年 7 月各月中旬进行. 每个区域随机选取 10 个诱饵投放区,每个投放区面积为 100 m²,诱饵按曾玲等^[10]提出的方法放置. 诱饵放置时间在上午 10:00 至下午 3:00 红火蚁活动较密集的时段,放置 30 min 后收回,收集、计数诱饵上的工蚁数量,鉴定所诱蚂蚁种类. 主要观察记录红火蚁、哀弓背蚁的数量. 同时记录气温、相对湿度. 数据用 SAS8. 1 软件进行统计分析.

种间竞争采用 May [21] 种间竞争系数(α)测度:

$$\alpha = \sum P_i P_i / [(\sum P_i^2)(\sum P_i^2)]^{1/2},$$

式中, P_i 和 P_j 分别表示物种i和物种j在各资源序列中的比例.

2 结果与分析

2.1 荔枝园红火蚁和哀弓背蚁数量动态

由表1可知,在红火蚁轻度发生的荔枝园中不同时间诱饵上红火蚁工蚁数量不同,表现为明显的2个盛期,分别为4、5、6月和8、9、10、11月,其中以5月份最多,达到每个诱饵95头,4、6月份次之,工蚁数量分别为79、83头,冬季工蚁数量明显较低,2005年12月和2006年1月每个诱饵仅诱到了十几头.与轻度发生荔枝园相比较,重度发生园红火蚁工蚁数量表现出相似的发生趋势,但数量明显

表 1 荔枝园气候、红火蚁和哀弓背蚁时序动态1)

Tab. 1 The parameters of climate and dynamics of S. invicta and C. dolendus in two different litchi orchards

时间 time	气温 acro temperature/℃	空气相对湿度 relative humidity/%	红火蚁工蚁数量 S. invicta workers/(头,诱饵 ⁻¹)		哀弓背蚁工蚁数量		
					C. dolendus workers/(头・诱饵-1)		
			I	П	Ī	П	
2005-08	29. 33 ± 2. 79a	79.0 ± 3.0a	49.60 ± 0.16e	$192.30 \pm 0.37g$	7.50 ± 0.16 f	$2.50 \pm 0.18d$	
2005-09	$27.50 \pm 2.74c$	$67.0 \pm 5.0 d$	$44.60 \pm 0.16g$	$180.40 \pm 0.37i$	$10.50 \pm 0.34c$	$4.00\pm0.03\mathrm{b}$	
2005-10	$24.29 \pm 3.22e$	$58.0 \pm 2.0e$	$59.50 \pm 0.17d$	$228.00 \pm 0.47d$	$5.50 \pm 5.50 h$	0	
2005-11	20.36 ± 2.95 g	$45.0 \pm 7.0 h$	47.60 ± 0.18 f	$194.20 \pm 0.42f$	$8.50 \pm 0.14e$	$2.00 \pm 0.10e$	
2005-12	14.67 ± 3.45 j	$36.0 \pm 4.0i$	15.00 ± 0.03 j	49.60 ± 0.161	$6.50 \pm 0.40g$	$5.00 \pm 0.24a$	
2006-01	13.38 ± 2.66k	$52, 0 \pm 6.0f$	$18.00 \pm 0.05i$	64.40 ± 0.16 k	$4.50 \pm 0.42i$	$3.00 \pm 0.14c$	
2006-02	16.39 ± 2.83i	$48.0 \pm 1.0g$	$41.60 \pm 0.14 h$	166.50 ± 0.34 j	$2.50 \pm 0.32j$	$1.50 \pm 0.08f$	
2006-03	$18.07 \pm 2.18h$	$60.0 \pm 3.0e$	$49.60 \pm 0.04e$	$198.20 \pm 0.42e$	$12.50 \pm 0.08b$	0.50 ± 0.15 g	
2006-04	$23.59 \pm 2.53f$	$64.0 \pm 8.0 d$	$79,40 \pm 0.12c$	311.10 ± 0.60c	$9.50 \pm 0.04 \mathrm{d}$	0	
2006-05	$25.82 \pm 2.85c$	$66.0 \pm 6.0 d$	$95.10 \pm 0.23a$	$368.70 \pm 0.73a$	$6.50 \pm 0.12g$	0	
2006-06	28.78 ± 3.01b	$70.0 \pm 4.0c$	$83.20 \pm 0.20 b$	$327.00 \pm 0.63 $ b	$8.50 \pm 0.14e$	0	
2006-07	28.68 ± 2.85	$73.0 \pm 5.0b$	$47.60 \pm 0.15f$	$188.30 \pm 0.37h$	$14.50 \pm 0.20a$	$2.00 \pm 0.23e$	

^{1) [}为轻度发生区, □为重度发生区;表中数据为平均值±标准误, 同列数据后具相同字母者表示经方差分析(DMRT法) 在5%水平上差异不显著

多于轻度发生区. 例如 2006 年 5 月每个诱饵上有工 蚁 368 头,是轻度区的 4 倍.

与红火蚁相比,同一区域内哀弓背蚁工蚁数量明显较少,且年变化相对较为平缓,如轻度园单个诱饵每次仅诱到哀弓背蚁3~14头,重度园区则更少了,甚至几个月诱集不到哀弓背蚁.

2.2 红火蚁、哀弓背蚁、2 个气象因子之间相关关系 分析

由表2可看出,两类型荔枝园红火蚁工蚁数量

与月平均温度之间存在显著的相关性,其相关系数分别为0.641(P<0.05)、0.647(P<0.05),但是工蚁数量与空气相对湿度之间不相关.而同一荔枝园中哀弓背蚁与这2个气象因子均不相关.这表明温度对红火蚁工蚁活动影响很大.对2种蚂蚁关系的分析结果表明,仅在红火蚁重度发生的荔枝园,红火蚁与哀弓背蚁之间的相关系数为-0.819(P<0.01),达到极显著水平.2种蚂蚁间表现为显著负相关,种间呈明显的竞争抑制作用.

表 2 两类型荔枝园 2 种蚂蚁与气象因子的相关性1)

Tab. 2 Correlation indices among S. invicta, C. dolendus and climatic factors in two different litchi orchards

气象因子	红火蚁工蚁数量 S. invicta workers		哀弓背蚁工蚁数量 C. dolendus workers	
climatic factors	I	I	I	II
气温	0.641*	0.647	0.468	-0.315
aero temperature	0.041	0.047		0.515
空气相对湿度	0. 559	0.562	0, 476	-0.370
relative humidity	0.339	0.304	0.470	-0.570

1) Ⅰ为轻度发生区, Ⅱ为重度发生区; *表示显著相关(P<0.05)

2.3 红火蚁与哀弓背蚁的种间竞争分析

种间竞争系数(α)为 0.324 9,这说明红火蚁与哀弓背蚁之间存在明显的竞争关系. 试验观察中发现红火蚁与哀弓背蚁之间的竞争主要表现在以下方面:(1)对食物资源的竞争,这是最主要和最奏效的竞争方式. 红火蚁采用快速发现领域范围内的食物,并迅速增大工蚁数量的方式,竞争、获取食物,从而减少哀弓背蚁的食物资源,进而降低哀弓背蚁的数量. (2)对哀弓背蚁的活动进行干扰甚至攻击该蚁,影响哀弓背蚁的活动,减少了该蚁活动领域. 总的来说,红火蚁具有发现资源速度快、种群数量巨大、活动时间长等特点,相对于哀弓背蚁来说该蚁具有明显的种间竞争优势.

2.4 红火蚁对哀弓背蚁的直接作用与间接作用

通径分析结果(表3)表明,在轻度发生荔枝园, 气温对哀弓背蚁种群数量变动的直接作用最大,且 其直接作用大于间接作用. 这说明轻度发生荔枝园 气温变化直接影响哀弓背蚁种群的数量波动. 而在 重度发生荔枝园,气温对哀弓背蚁种群的间接作用 要比直接作用大,而且这种间接作用主要是通过影响红火蚁种群数量而产生的. 红火蚁对哀弓背蚁的 直接抑制作用远远大于其他因子. 在重度发生荔枝 园,红火蚁种群数量是影响哀弓背蚁种群数量大小 的直接原因.

决定系数分析结果显示,以上 3 个影响哀弓背蚁种群数量的因子的决定系数分别为 $R_1^2 = -0.062$ 3、

 $R_2^2 = 0.0257$ 、 $R_3^2 = 0.6443$,按照决定系数的大小排序依次为红火蚁工蚁数量、空气湿度、气温.在这3个因子中红火蚁种群数量数对应的决定系数为正值且最大.这说明红火蚁种群数量是影响哀弓背蚁种群数量变动的最主要决定因素.

2.5 影响哀弓背蚁种群数量变动的 3 个因子的主成分分析

3个因子的主成分分析结果(表4)表明,在红火蚁轻度发生和重度发生荔枝园中,主成分1的特征根分别为2.3850和2.3909,方差贡献率分别为79.50%和79.70%,代表了全部性状信息的79.50%和79.70%,是最主要的主成分.主成分2的特征根分别为0.4870和0.4816,方差贡献率分别为16.23%和16.05%,是仅次于主成分1的重要主成分.前2个主成分的累积方差贡献率分别为95.73%与95.75%,表明这2个主成分已经把影响哀弓背蚁种群数量变动的影响因子的95.73%与95.75%的信息反映出来.因而可以选择这2个指标来分析哀弓背蚁种群变动的情况.

根据各因子相关矩阵的特征向量(表 5),列出主成分 1、主成分 2 的函数表达式,在轻度危害园是 $Y_1=0.612\ 3X_1+0.593\ 1X_2+0.522\ 8X_3$ 、 $Y_2=-0.268\ 5X_1-0.465\ 9X_2+0.843\ 1X_3$,在重度危害园是 $Y_1=0.611\ 9X_1+0.592\ 3X_2-0.524\ 1X_3$ 、 $Y_2=-0265\ 2\ X_1-0.470\ 6X_2+0.841\ 5X_3$ 、式中 Y_1 、 Y_2 分别为主成分 1、主成分 2, X_1 、 X_2 、 X_3 为分别代表气温、空气相对湿度、红火蚁工蚁数量.

表 3 影响哀弓背蚁种群数量变动的主要因子的相关与通径分析

Tab. 3 Correlation and path analysis between the fluctuation of C. dolendus population abundance and main factors

荔枝园 litchi orchard	影响因子 influence factor	相关系数 correlation index	直接作用 direct path coefficient	间接作用总和 sum of indirect path coefficient	间接作用 indirect path coefficient		
					气温 sero temperature	空气相对湿度 relative humidity	红火蚁工蚁数量 S. invicta workers
轻度发生区	气温	0.468 3	0.371 9	0.0964		0.247 3	-0.150 8
area infested	空气相对湿度	0.476 0	0.2860	-0.147 0	0.221 5		-0.368 5
lightly	红火蚁工蚁数量	0.163 0	-0.235 2	0.398 2	0.2384	0.159 8	
重度发生区	气温	-0.315 4	0.6905	-1.005 9		-0.3227	-0.683 2
area infested	空气相对湿度	-0.370 2	-0.373 3	0.003 1	0.597		-0.594
heavily	红火蚁工蚁数量	-0.819 4	-1.0562	0.236 8	0.4467	-0.2099	

表 4 影响哀弓背蚁种群数量变动的 3 个主成分的方差贡献 案和累积方差贡献率

Tab. 4 Variance proportion and cumulative variance proportion of 3 principal components which influenced C. dolendus population

荔枝园	主成分	特征根	方差贡献率	累积方差贡献率
litchi orchard	principal components	eigenvalues	proportion	cumulative
—————— 轻度发生区	主成分1	2.385 0	0.7950	0, 795 0
area infested lightly	主成分2	0.4870	0.1623	0.957 3
	主成分3	0.1280	0.042 7	1,000 0
重度发生区	主成分1	2.3909	0.7970	0.797 0
area infested heavily	y 主成分2	0.4816	0, 160 5	0.957 5
	主成分3	0.127 5	0.042 5	1,000 0

表 5 影响哀弓背蚊种群数量变动的 3 个因子相关矩阵的特征向量

Tab. 5 Eigenvalues of correlation matrix of three factors which influenced *C. dolendus* population

荔枝园 litchi orchard	主成分 principal components	气温 aero lemperature	空气相对湿度 relative humidity	红火蚁工蚁数量 S. invicto workers
—————————————————————————————————————	主成分 1	0,612 3	0.593 1	0. 522 8
erea infested lightly	主成分2	-0.268 5	-0,4659	0.843 1
	主成分3	-0,743 6	0.6566	0.1260
重度发生区	主成分1	0.6119	0.5923	0.5241
area infested heavily	主成分2	-0.2652	-0.470 6	0,8415
	主成分3	-0.745 1	0.6540	0. 130 9

从表5还可看出,在主成分1中,无论轻、重发生的荔枝园3个影响因子均具有较大的正系数值,且两类型园各因子的系数大小相近。这表明主成分1主要反映了这3个因子都对哀弓背蚁种群数量存在较大影响。主成分2中,轻、重发生的荔枝园红火蚁工蚁数量的因子系数值均较大,其他因子系数均

较小,且两类型园各因子的系数大小相近,因此,认为主成分2是影响红火蚁种群数量变动的主要因子.

2.6 主要因子对哀弓背蚁种群变动的逐步回归分析

上述研究结果表明,在重度发生荔枝园红火蚁工蚁数量对哀弓背蚁变动的影响较为明显. 选择重度发生荔枝园哀弓背蚁工蚁数量(Y)为因变量,气温(X_1)、空气相对湿度(X_2)、红火蚁工蚁数量(X_3)为自变量,对这3个因子与哀弓背蚁种群数量变动关系进行了逐步回归分析,得到如下回归方程: $Y=5.490\ 2-0.063\ 0X_1-2.813\ 1X_2-0.003\ 3X_3$ (F=9.784,P=0.0047),决定系数(R^2)为0.7858,即这3个变量决定了哀弓背蚁种群动态变化的78.58%。由此可见气温、空气相对湿度、红火蚁工蚁数量等是影响哀弓背蚁种群动态变化的重要因子.

3 结论

荔枝园诱饵上红火蚁工蚁数量全年变化较大,以4、5、6月和8、9、10、11月较多,哀弓背蚁工蚁数量较少,且年数量变化相对较小.这可能是由这2种蚂蚁的生物学特性所决定的.红火蚁比较喜欢温暖潮湿的环境,工蚁的取食活动受天气和季节的影响很大,其中温度是影响红火蚁取食的重要因素[22-23].广东荔枝园不同月份因气温等环境因子的不同,工蚁外出取食数量比例也不同,12月和1月觅食活动最弱,因而诱集到的红火蚁数量也最少.2—6月随着气温回升工蚁觅食逐渐进入旺盛期,诱饵上红火蚁数量也逐渐增多.7、8月出现了高温等天气,这对工蚁的觅食活动有一定抑制作用.9月中旬以后,红火蚁的觅食活动又进入了另一个盛期.

通过相关分析、通径分析和竞争分析证实红火蚁是影响哀弓背蚁种群数量的重要因子,且2种蚂

蚁种间存在明显的竞争关系,环境温、湿度等通过作用于红火蚁而间接地影响了哀弓背蚁种群,在重度发生荔枝园,红火蚁与哀弓背蚁之间存明显的负相关,它们之间的竞争更为激烈.

观察还表明,红火蚁对哀弓背蚁具有极显著的直接作用,通过干扰竞争和资源掠夺式竞争的联合作用降低了哀弓背蚁数量.干扰竞争包括工蚁水平上的行为(如打斗等)和群体水平上的行为(如蚁伴的募集、种间领域性和对蚁巢的突袭等),也包括在竞争食料过程中红火蚁利用发达的上颚和螯刺对哀弓背蚁叮咬蛰刺,降低了哀弓背蚁存活率;对资源掠夺式竞争可能包括红火蚁具有快速地发现食物、快速募集大量工蚁、募集时间持续较长以及24小时连续活动的能力等.正是由于红火蚁竞争食料,因缺乏足够食物导致哀弓背蚁数量急剧减少.

参考文献:

- [1] PORTER S D, SAVIGNANO D A. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community[J]. Ecology, 1990,71(6): 2095-2106.
- [2] PENNISI E. Ecology-When fire ants move in, others leave [J]. Science, 2000, 289(5477);231.
- [3] PORTER S D, VAN EMEREN B, GILBERT L E. Invasion of fire ants (Hymenoptera; Formicidae); microgeography of competitive replacement [J]. Annuals of the Ento Molecular Society of America, 1988, 81;913-918.
- [4] CAMILO G R, PHILIPS S A Jr. Evolution of ant communities in response to invasion by the fire ant Solenopsis invicta[M] //. VANDER MEER R K, JAFFE K, CEDENO A. Applied myrmecology: A world perspective. Boulder: West-View Press, 1990;190-198.
- [5] ABENSPERG-TRAUM M, STEVEN D. Ant and termite edting in Australian mammals and lizards: A comparison [J]. Australian Journal of Ecology, 1997, 22:9-17.
- [6] EASTWOOD R F. Associations between lycaenid butterflies and ants in Australia [J]. Australian Journal of Ecology, 1999, 24,503-537.
- [7] HOLLDOBLER B, WILSON E O. The ants [M]. Cambridge: Belknap Press, 1990.
- [8] FOLGGARAIT P J. Ant biodiversity and its relationship to

- ecosystem functioning; A review[J]. Biodiversity and Conservation, 1998,7:1221-1244.
- [9] JONES C G, LAWNTON J H, SCHACHAK M. Organisms as ecosystem engineers [J]. Oikos, 1994,69:373-386.
- [10] 曾玲,陆永跃,陈忠南,等. 红火蚁监测与防治[M]. 广州:广东科学技术出版社,2005:5.
- [11] 曾玲,陆永跃,何晓芳,等. 入侵中国大陆的红火蚁的鉴定及发生为害调查[J]. 昆虫知识,2005,42(2):144-148.
- [12] 李宁东,陆永跃,曾玲,等.广东省红火蚁生境类型、空间分布和抽样技术研究[J]. 华中农业大学学报,2006,25(1);31-35.
- [13] HE Xiao-fang, LU Yong-yue, ZHANG Wei-qiu, et al. Three haplotypes found in introduced populations of red imported fire ant invading China[J]. Acta Sinica Entomologia, 2006, 49(6):1046-1049.
- [14] 黄梭,曾玲,陆永跃. 带土园艺植物传播红火蚁的风险 调查[J]. 昆虫知识,2007,44(2):217-220.
- [15] 许益镌, 陆永跃, 曾玲, 等. 红火蚁局域扩散规律研究 [J]. 华南农业大学学报, 2006, 26(1):40-42.
- [16] 陆永跃,李宁东,梁广文,等. 红火蚁多蚁后型种群有效 蚁巢局域分布的空间相关性研究[J]. 应用生态学报, 2007,18(1):140-144.
- [17] 黄俊,曾玲,陆永跃,等. 多种杀虫剂对盆栽花卉上红火蚁的检疫处理效果[C]//成卓敏. 中国植物保护学会2006 年学术年会"科技创新与绿色植保". 北京;中国农业科学技术出版社,2006;44-47.
- [18] 周善义,广西蚂蚁[M]. 桂林;广西师范大学出版社, 2001
- [19] 吴坚,王常禄.中国蚂蚁[M].北京:中国林业出版社, 1995.
- [20] 梁子宁,张永强. 龙眼园蚂蚁类群结构及其数量动态 [J]. 广西植保,2007,20(1);7-9.
- [21] MAY R M. Some notes on estimating the competition matrix[J]. Ecology, 1975, 56: 737-741.
- [22] PORTER S D, TSCHINKEL W R. Foraging in Solenopsis invicta: Effects of weather and season [J]. Environmental Entomology, 1987,16(3):802-808.
- [23] COK ENDOIPHER J C, FRANCKE O F. Temperature preferences of four species of fire ants (Hymenoptera, Formicidae, Solenopsis) [J]. Psyche, 1985,92:91-104.

【责任编辑 周志红】