禾本科植物内生固氮菌产 γ – 氨基丁酸特性

蔡锦标1.彭桂香2.谭志远1

(1 广东省植物分子育种重点实验室,华南农业大学 农学院,广东 广州 510642; 2 华南农业大学 资源环境学院,广东 广州 510642)

摘要:采用纸层析法与紫外分光光度法,对来源于禾本科植物的 64 株内生固氮菌产 γ – 氨基丁酸的特性进行分析鉴定. 筛选到 3 株 γ – 氨基丁酸产量较高的内生固氮菌: Y28 (0.754 mg· mL⁻¹)、Y21 (0.597 mg· mL⁻¹)、W3 (0.539 mg· mL⁻¹). 菌株 Y28 的产量比国内同行研究者初筛选到的产 γ – 氨基丁酸菌的产量(0.55 mg· mL⁻¹)都要高.兼具固氮活性,具有很高的研究及应用价值.

关键词:γ-氨基丁酸;内生固氮菌;纸层析

中图分类号:Q939.113

文献标识码:A

文章编号:1001-411X(2008)02-0059-04

The Ability of γ -Aminobutyric Acid Produced by Endophytic Diazotrophs from Gramineae

CAI Jin-biao¹, PENG Gui-xiang², TAN Zhi-yuan¹

(1 Guangdong Provincial Key Lab of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;

2 College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China)

Abstract: The gama-aminobutyric acid production ability of sixty-four endophytic diazotrophs from Gramineae were tested by paper chromatography and ultraviolet spectrophotometer. Strains Y28, Y21 and W3 can produce the gama-aminobutyric acid (0.754 ± 0.004) , (0.597 ± 0.001) and (0.539 ± 0.002) mg• mL⁻¹, respectively. Diazotrophic strain Y28 can produce the highest gama-aminobutyric acid than that of known description and may be potential application.

Key words: gama-aminobutyric acid; endophytic diazotrophs; paper chromatography

γ-氨基丁酸(γ-aminobutyric acid)是一种非蛋白质氨基酸,广泛存在于动植物以及人体内^[1].在人以及动物生理作用上,γ-氨基丁酸具有降低血压,治疗癫疯,抗衰老,抗心率失常,调节呼吸系统、生殖生理以及血糖与胰岛素,促进睡眠,增强记忆力等作用^[2-5].而在植物的生理生化上,γ-氨基丁酸同样具有重要的作用,它能够调节植物体 pH,在逆境条件下回补植物体的相关代谢,进行植物防御,促进植物体内氮储备,调节渗透压,调节生长发育,进

行植物防御,诱导乙烯合成等作用^[6-8]. 这些研究表明,无论是在医疗保健,还是在植物生理作用上,γ-氨基丁酸都发挥着重要的作用. 因此,研究和开发γ-氨基丁酸在动植物生理生化以及医疗领域都有广泛的应用前景. 目前,获得γ-氨基丁酸的方式主要有化学合成、大肠杆菌发酵、乳酸菌发酵等方法. 但是化学合成的方法,由于受到苛刻的反应条件及昂贵的天然原料的制约^[9],难以进行大规模工业化生产. 利用微生物发酵获取γ-氨基丁酸的方法是

大有前途的. 有研究者已经在应用大肠杆菌发酵生产 γ - 氨基丁酸的发酵工艺上获得很大的进展^[10]; 许建军等^[11]在利用乳酸发酵获得 γ - 氨基丁酸的研究上,也取得了突破性的成果. 在开发植物内生固氮菌进行 γ - 氨基丁酸的生物合成方面,目前的研究还比较少. 但研究显示,在一些与根瘤菌共生固氮植物的根瘤中, γ - 氨基丁酸以结合形式存在,苜蓿中结合形式的 γ - 氨基丁酸达干质量的 6.6% ^[8]. 鉴于此,本文对来源于禾本科植物的 64 株内生固氮菌产 γ - 氨基丁酸的特性进行了研究.

1 材料与方法

1.1 材料

菌种来源于华南农业大学农学院分子遗传育种实验室保存的 64 株禾本科植物内生固氮菌,菌株名称及其来源见表 1. 固氮菌的分离和鉴定参考张国 霞等^[12]的方法.

生化试剂 γ – 氨基丁酸、L – 谷氨酸、茚三酮、正丁醇和冰醋酸,均为分析纯.

主要仪器包括 Eppendorf 5417R 冷冻离心机、电子天平、SHZ - 300 多用途水浴恒温震荡器、UV - 1201 紫外分光光度计、层析缸和生化培养箱.

内生固氮菌活化、增殖培养基参考张国霞^[12]的方法: VM-Ethanol 培养基,成分为 Döbereiner-basic 10.0 mL• L⁻¹; Fe($_3$)-EDTA (w = 0.66%) 1.0 mL• L⁻¹, Yeast Extract 1.0 g• L⁻¹, Peptone 3.0 g• L⁻¹, NH₄Cl 0.5 g• L⁻¹, NaCl 1.0 g• L⁻¹, K-PO₄-Buffer 3.0 mL• L⁻¹ (分开灭菌), Ethanol 6.0 mL• L⁻¹ (分开灭菌).

1.2 方法

- 1.2.1 菌种活化与扩增 将保存在 -80 ℃冰箱的 菌株取出,室温放置融化后,用接种环取一环划于 VM-Ethanol 培养基中活化 12 h(温度 34 ℃;湿度 85%);将活化的菌株转接到 VM-Ethanol 平板中进行扩大繁殖培养 24 h(温度 34 ℃;湿度 85%).
- 1.2.2 菌体收集并加底物反应 收集 VM-Ethanol 平板培养基上的菌株,w = 0.9% 的生理盐水洗涤 2次,离心(8 000 r/min,10 min)收集,称质量. 按菌体湿质量加入 10 倍 10 g/L 的 L 谷氨酸,调节 pH 至 4.7,于 37 ℃、160 r/min 振荡反应 12 h.
- 1.2.3 纸层析鉴定 γ 氨基丁酸产物 参考文献 [13-14],层析液为 V_{ETF} : V_{ZR} : V_{A} = 4:1:3, 加 φ = 0.1% 茚三酮;洗脱液为 φ = 0.1% 硫酸铜与 φ = 75% 乙醇按体积比 1:19 混合. 将振荡反应后的菌溶液离

心(8 000 r/min、20 min),取上清液,沸水浴5 min,离心(8 000 r/min、20 min). 取上清液 5 μ L 点样,阴干,并于层析纸的两边点上 γ – 氨基丁酸标准样,于层析液中进行上行层析3 h. 3 h 后取出晾干,于烘箱中烘干(90 ∞ 、15 min);测定标准样与待测样品的 R_f ,并将与标准样的 R_f 相同的样点剪下,于 15 mL 离心管中加3 mL 洗脱液,振荡洗脱 25 min.

1.2.4 γ-氨基丁酸最佳吸收波长的测定 纸层析后,取γ-氨基丁酸标准样品的洗脱液 1 mL,置于紫外分光光度计中,在波长 190~850 nm 的范围内进行吸收光谱扫描,并记录结果,确定γ-氨基丁酸最佳吸收波长.

1.2.5 γ-氨基丁酸标准曲线和待测样品吸光度测定 取γ-氨基丁酸质量浓度为0.2、0.4、0.6、0.8、1.0、1.2、1.6、2.0和2.5 mg· mL⁻¹的9个标准样品进行纸层析,用剪刀剪下标准样点,并各用3 mL洗脱液振荡洗脱,洗脱液和待测样品洗脱液在紫外分光光度计中,于波长510 nm(1.2.4 步骤选择的γ-氨基丁酸最佳吸收波长)处测定吸光度,每个样点重复测3次,并绘制标准曲线.

2 结果与分析

2.1 内生固氮菌产 γ – 氨基丁酸的定性分析

选定的 64 株不同类群的植物内生菌,经过活化、增殖,加 10 g/L 的 L - 谷氨酸发酵后,发酵液进行纸层析,结果(表 1)显示,部分菌株能够产生 γ - 氨基丁酸色斑,说明产生了 γ - 氨基丁酸.

64 株菌经过产 γ – 氨基丁酸能力的初步测定发现,菌株 ZH4、ZH5、ZH7、ZH10、ZH12、ZH13、ZH21、ZH46、ZH59、H041、H057、H068、W2、W3、W58、Y2、Y9、Y21、Y25、Y28 和 Y29 共 21 株菌能够产生与标样 γ – 氨基丁酸同一 R_f 的紫色色斑;其中 W3、Y21、Y28 这 3 株菌的反应液在纸层析上产生的色斑颜色较深、面积较大,初步确定其产量较高,用这 3 株菌进行下一步定量分析测定.

2.2 γ-氨基丁酸最佳吸收波长的测定

纸层析后,剪下 γ - 氨基丁酸标准样的斑点,经洗脱液洗脱之后,在 UV - 1201 紫外分光光度计上进行光谱扫描. 在波长范围为 190 ~ 850 nm 的条件下,获得 γ - 氨基丁酸的光谱变化图(图1). 由图 1 可见,γ - 氨基丁酸在 190 ~ 850 nm 波长范围内有 4 个光吸收峰,波长分别为 510、460、230 和 204 nm. 其中510 nm 与230 nm处的吸收峰较高、较陡,符合最佳

表 1	64 株禾本科植物内生固氮菌来源和产	γ - 氨基丁酸((GABA)的能力 ¹⁾
-----	--------------------	-----------	-------------------------

Tob	1	The source and the	gama-aminobutyric	ooid (CADA	nnoduoina obi	lity of civit	y four andanhytic	diazotronha
i ab.		The source and the	gama-aminobilivric	acid (CtABA) producing abi	HIEV OF SIXE	v-tour enaonnyua	diazotrophs

			0	•	,	/ 1				1 0	
菌株	寄主来源	产 GABA									
strain	host origin	produce GABA									
ZH2	野生稻	-	ZH51	野生稻	-	W51	龟背竹	-	Y14	野生稻	-
ZH4	野生稻	+	ZH59	野生稻	+	W58	龟背竹	-	Y15	野生稻	-
ZH5	野生稻	+	ZH67	野生稻	-	W59	龟背竹	-	Y16	野生稻	-
ZH7	野生稻	+	ZH69	野生稻	-	Y1	野生稻	-	Y17	野生稻	-
ZH8	野生稻	-	H47	刺竹	+	Y2	野生稻	+	Y18	野生稻	-
ZH10	野生稻	+	H47	刺竹		Y3	野生稻	-	Y19	野生稻	-
ZH12	野生稻	+	H48	刺竹	-	Y4	野生稻	-	Y20	野生稻	-
ZH13	野生稻	+	H50	刺竹	-	Y5	野生稻	-	Y21	野生稻	+ +
ZH21	野生稻	+	H56	刺竹	-	Y6	野生稻	-	Y22	野生稻	-
ZH27	野生稻	-	H57	刺竹	+	Y7	野生稻	-	Y23	野生稻	-
ZH33	野生稻	-	Н68	刺竹	+	Y8	野生稻	-	Y24	野生稻	-
ZH35	野生稻	-	W2	龟背竹	+	Y9	野生稻	+	Y25	野生稻	+
ZH39	野生稻	-	W3	龟背竹	+ +	Y10	野生稻	-	Y26	野生稻	-
ZH43	野生稻	-	W33	龟背竹	-	Y11	野生稻	-	Y27	野生稻	-
ZH46	野生稻	+	W38	龟背竹	-	Y12	野生稻	-	Y28	野生稻	+ +
ZH50	野生稻	-	W43	龟背竹	-	Y13	野生稻	-	Y29	野生稻	+

1)"-"表示没有产γ-氨基丁酸;"+"表示有产γ-氨基丁酸;"++"表示γ-氨基丁酸产量较高

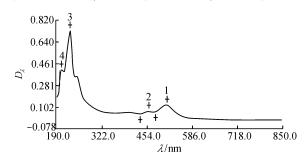


图 1 γ-氨基丁酸吸收光谱扫描图

Fig. 1 The absorption spectrum of gama-aminobutyric acid

吸收光波长的要求. 同时,通过对不同浓度的 γ – 氨基丁酸标准样作进一步的测量,结果显示,在波长510 nm 处, γ – 氨基丁酸浓度梯度变化呈线性关系,而在波长230 nm 处,其线性变化规律不明显. 故选择波长510 nm 为 γ – 氨基丁酸最佳吸收波长并进行标准曲线测定.

2.3 γ-氨基丁酸标准曲线测定

9个不同浓度梯度的 γ – 氨基丁酸标准样经过纸层析,洗脱液洗脱后,在波长 510 nm 处测量它们的吸光度(D),得到线性关系图(图 2).由图 2 可见, γ – 氨基丁酸在 510 nm 处的吸光度,在所测的质量浓度范围内呈线性相关,但总体的相关性不是很好.只有在 $0.2 \sim 1.2$ mg· mL ⁻¹ 的范围内,吸光度与测量值的线性关系较好,求得的相关方程为: y = 0.056 3

x + 0.0315,决定系数 $R^2 = 0.9829$. 故取 $\gamma - 氨基丁酸在质量浓度范围 0.2~1.2 mg· mL⁻¹, 吸光度(<math>D$) 在 0.02~0.10 时的曲线作为本研究的标准曲线.

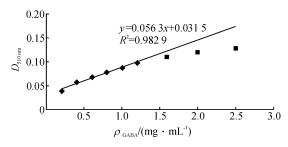


图 2 γ-氨基丁酸(GABA)标准曲线图

Fig. 2 The standard curve of gama-aminobutyric acid

2.4 γ-氨基丁酸的定量分析

将筛选出来的 3 株菌(W3、Y21、Y28) 加10 g/L的 L - 谷氨酸进行发酵,发酵液进行纸层析及紫外分光光度法定量分析. 在波长 510 nm 处,这 3 株菌株纸层析洗脱液的吸光度如表 2. 将 3 株菌在紫外分光光度计上测得的吸光度(每株重复 3 次),于标准曲线方程 y = 0.049 3x + 0.035 5 (图 2) 中进行返回值计算,获得 3 株菌株各自产 γ - 氨基丁酸的浓度.结果(表 2) 显示,这 3 株菌株产 γ - 氨基丁酸的能力都达到 0.5 mg· mL $^{-1}$ 以上,从高至低分别是 Y28 (0.754 ± 0.004) mg· mL $^{-1}$ 、Y21 (0.597 ± 0.001) mg· mL $^{-1}$ 、W3 (0.539 ± 0.002) mg· mL $^{-1}$.

表 2 3 株高产 γ – 氨基丁酸(GABA) 菌株纸层析洗脱液的吸光度和产 γ – 氨基丁酸的质量浓度¹⁾

Tab. 2 The eluate's absorbency and the strength of GABA of the 3 highest GABA production bacterium

菌株 strain	$D_{ m 510~nm}$	$\rho_{GABA}/(mg \bullet mL^{-1})$
W3	0.062	0.539 ± 0.002
Y21	0.065	0.597 ± 0.001
Y28	0.074	0.754 ± 0.004

1)吸光度($D_{510 \text{ nm}}$)为3次重复测定值的平均值; γ -氨基丁酸质量浓度为3次重复测定的 $D_{510 \text{ nm}}$ 各自的返回值的平均值±标准误

3 讨论与结论

64 株不同类群的植物内生固氮菌经过纸层析定性分析,鉴定得到 ZH4 等 21 株具有产 γ – 氨基丁酸活性的菌株;进一步采用紫外分光光度法定量分析显示,W3、Y21、Y28 的产量均超过 0.5 mg· mL⁻¹,而 Y28 的产量达到(0.754 ± 0.004) mg· mL⁻¹.在进行产 γ – 氨基丁酸菌的初步筛选上,许建军等[11]从乳酸菌筛选到的菌株产 γ – 氨基丁酸的量最高达0.55 mg· mL⁻¹,徐冬云等[14]从土壤、酸菜、酸奶等分离 得 到 的 菌 株 产 量 最 高 的 也 只 达 0.463 mg· mL⁻¹. 而本研究筛选到的菌株产 γ – 氨基丁酸的量最高达到了(0.754 ± 0.004) mg· mL⁻¹,产量明显高出国内同行研究用的菌株. 在植物内生菌产 γ – 氨基丁酸的同类研究中鲜见相关的报道. 故本研究中筛选到的菌株作为进行 γ – 氨基丁酸生产的选育菌株,具有更高的研究和利用价值.

本研究的植物内生菌,早期的研究表明其已具有生物固氮功能^[12],现测得其具有高产 γ - 氨基丁酸的功能. 这类微生物寄生在植物体内,可通过自身的生理生化代谢,分泌代谢物质,不仅可合成植物生长发育所需要的氮源,还可以通过分泌 γ - 氨基丁酸调节植物体的生理生化代谢并提高植物体的抗性,故具有更好的植物生理生化辅助功能. 同时,这类微生物代谢产生的 γ - 氨基丁酸若能够积累在植物体内,将可以提高植物体 γ - 氨基丁酸的含量,从而提

高植物体的利用价值及其经济效益.

参考文献:

- [1] 白松,林向阳,阮榕生,等. γ-氨基丁酸的分布和制备 [J]. 现代食品科技,2005,21(2);202-205.
- [2] 郑红发,黄亚辉,刘霞林,等. γ-氨基丁酸的药理作用 [J]. 茶叶通讯,2004(4):14-17.
- [3] 包华琼,王新庄. γ-氨基丁酸(GABA)的生殖生理作用[J]. 动物医学进展,2002,23(3);39-41.
- [4] 陈恩成,张名位,彭超英,等. γ-氨基丁酸的功能特性 及其在食品原料中的富集技术研究进展[J]. 湖北农学 院学报,2004,24(4);316-320.
- [5] 杨胜远,陆兆新,吕风霞,等. γ-氨基丁酸的生理功能和研究开发进展[J].食品科学,2005,26(9);546-551.
- [6] 谢峥嵘. γ-氨基丁酸在茶树及高等植物体内的代谢和生理作用[J]. 福建茶叶生理生化,2004,4:24-26.
- [7] 田小磊,吴晓岚,张蜀秋,等. γ-氨基丁酸在高等植物 逆境反应中的作用[J]. 生命科学,2002,14(4):215-219.
- [8] 蒋振晖,顾振新. 高等植物体内 γ 氨基丁酸合成、代谢及其生理作用[J]. 植物生理学通讯,2003,39(3): 249-254.
- [9] 林少琴,吴若红,邹开煌,等. 米胚芽中 γ 氨基丁酸的 分离提取及鉴定[J]. 食品科学,2004,25(1);76-78.
- [10] PLOKHOV A Y, GUSYATINERETAL M M. Preparation of *C*-aminobutyric acid using *E. coli* cells with high activity of glutamate decarboxylase [J]. Applied Biochemistry and Biotechnology, 2000,88:257-265.
- [11] 许建军, 江波, 许时婴. 生物合成 γ 氨基丁酸的乳酸菌的筛选[J]. 食品科技, 2002, 10:7-40.
- [12] 张国霞,茅庆,何忠义,等. 陵水普通野生稻(*Oryza rufi-pogon*)内生菌的固氮及溶磷特性[J]. 应用与环境生物学报,2006,12(4):457-460.
- [13] 张晖,徐永,姚惠源. 纸层析法定量测定米胚芽中的 γ -氨基丁酸[J]. 无锡轻工大学学报,2004,23(2): 101-103.
- [14] 徐冬云,周立平,童振宇,等. 产γ-氨基丁酸乳酸菌的 分离及筛选[J].中国食品添加剂,2006,2:105-109

【责任编辑 周志红】