# 广西黄鸡 β-防御素基因的克隆、 序列分析与组织分布

冀 君,陈燕珊,张祥斌,陈俊伟,马静云,毕英佐,谢青梅 (华南农业大学 动物科学学院,广东广州 510642)

摘要:用设计的特异性引物,采用 RT-PCR 方法扩增到广西黄鸡  $\beta$ -防御素基因 gallinacin-1 (简称 Gal-1) ~ gallinacin-13 (简称 Gal-13). 通过克隆、测序获得这 13 个基因的 cDNA 核苷酸序列,并提交到 GenBank (Gal-1 ~ Gal-13 基因的注册号为:DQ858297 ~ DQ858310). 比较分析广西黄鸡 13 种  $\beta$ -防御素 Gal-1 ~ Gal-13 基因分别与 GenBank 中注册的防御素基因氨基酸序列的相似性,其氨基酸的相似性均在 95.5% ~ 100% 之间. 利用 DNAStar 软件对所获得的 13 种广西黄鸡  $\beta$ -防御素基因进行系统发育树分析,结果 Gal-1 与 Gal-5、Gal-12、Gal-2 在同一分支上,Gal-6、Gal-7、Gal-9、Gal-8 在同一分支上,Gal-10、Gal-11、Gal-4 在同一分支,Gal-13 独自为一分支。同样用 RT-PCR 方法分析了广西黄鸡  $\beta$ -防御素 Gal-1 ~ Gal-13 基因在不同组织中的分布,结果发现:Gal-1、Gal-2、Gal-4、Gal-5、Gal-6、Gal-7、Gal-10 的表达分布非常广泛,Gal-3、Gal-8、Gal-9、Gal-11、Gal-12、Gal-13 的分布较少。

关键词:广西黄鸡; β-防御素; gallinacin 基因; 序列分析; 组织分布 中图分类号:S859.796 文献标识码:A 文章编号:1001-411X(2008)03-0061-05

# Cloning, Sequencing and Tissue Distribution of $\beta$ -Defensin Gallinacin Genes in Guangxi Yellow Chicken

JI Jun, CHEN Yan-shan, ZHANG Xiang-bin, CHEN Jun-wei, MA Jing-yun, BI Ying-zuo, XIE Qing-mei (College of Animal Science, South China Agricultural University, Guangzhou 510642, China)

Abstract: With specific primers, thirteen chicken β-defensin gallinacin-1 (Gal-1) ~ gallinacin-13 (Gal-13) cDNA fragments, were amplified by reverse transcription-polymerase chain reaction (RT-PCR) from Guangxi Yellow chicken. All of the cDNA fragments covered the full-length of the open reading frame, with the exception of Gal-3. After being sequenced, 13 cDNA fragments were identified and deposited to GenBank<sup>TM</sup> (accession numbers DQ858297 ~ DQ858310). The results of sequence comparison with the β-defensin gene sequences published in GenBank<sup>TM</sup> indicated that amino acid similarity of the 13 chicken β-defensin genes ranged from 95.5% to 100%. Analysis by DNAstar showed that Gal-1, Gal-5, Gal-12 and Gal-2 lay at the same embranchment; Gal-6, Gal-7, Gal-9 and Gal-8 lay at the same one; Gal-10, Gal-11 and Gal-4 lay at the same one; Gal-13 lay at the embranchment independently. Different mRNA distribution of genes in different tissues, analyzed by RT-PCR, indicated that Gal-1, Gal-2, Gal-4, Gal-5, Gal-6, Gal-7 and Gal-10 were widely expressed in tissues, while Gal-3, Gal-8, Gal-11, Gal-12 and Gal-13 had limited tissue distribution.

Key words: Guangxi Yellow chicken; β-defensin; gallinacin gene; sequence analysis; tissue distribution

防御素(defensin)是家禽异嗜性细胞颗粒中的 重要的阳离子杀菌与细胞毒害肽,其细胞颗粒中的 阳离子多肽与细胞毒害肽对其杀菌更为重要,抗菌 活性研究表明它们具有广谱抗菌功能[1-2]. 在家禽 的异嗜性细胞中现已纯化出很多种抗菌多肽[3-4],从 鸡β-防御素的研究始, Harwig 等<sup>[5]</sup> 和 Evans 等<sup>[6]</sup> 在 鸡的白细胞发现4种抗菌肽,命名为"gallinacins" [Cal-1、Gal-2、Gal-3 和 Gal-1(α)]. 随着鸡基因组的 公布, Lynn 等[7] 采用 HMM(Hidden Markov Model)搜 索工具与 BLAST 对比法,从鸡基因组数据库中搜索 到 6 个新的鸡  $\beta$ -防御素基因. 同年 Xiao 等<sup>[8]</sup> 也用生 物信息学的方法,分析搜索到 10 个新的鸡  $\beta$ -防御素 基因,并按这 10 个基因的 mRNA 表达的位置依次将 它们命名为 Gal-4~ Gal-13. 本研究利用 RT-PCR 方 法成功克隆出广西黄鸡 β-防御素 13 个 cDNA 片段, 同时进行序列分析,发现6个防御素 cDNA 片段编码 的防御素成熟肽片段中的氨基酸残基与 GenBank 中 注册的相对应的防御素基因编码的氨基酸残基有差 异,研究这些个别氨基酸残基的差异对防御素活性 及影响机制,将有利于鸡防御素的开发利用. 同时检 测了13种防御素基因在鸡喉气管、肺脏、肝脏、十二 指肠、肾脏、法氏囊组织中分布,为以后研究鸡防御 素的结构、功能、多样性及其进化奠定基础.

# 1 材料与方法

#### 1.1 材料

- 1.1.1 试验动物 广西黄鸡购自广东省农科院畜 牧研究所,由华南农业大学基因工程实验室饲养至1 月龄.
- 1.1.2 菌株与质粒 大肠杆菌 DH5α 由华南农业大学基因工程实验室保存,基因型为: supE44, ΔlacU169(Φ80, lacZΔM15), hsdR17, recA1, endA1, gyrA96,thi-1, reA1. pMD18-T 载体质粒系统为 TaKa-Ra 公司产品.
- 1.1.3 细胞总 RNA 提取试剂盒 TRIzol LS Reagent RNA 提取试剂盒为 GIBCORL 公司产品.
- 1.1.4 酶类及其他试剂 AMV 反转录酶(5 U/μL)、HRP RNA 酶抑制剂(40 U/μL)、dNTPs(2.5 mmol/L each)、EcoR I(15 U/μL)、DNA marker DL2000 均为 TaKaRa 公司产品;Blend Taq DNA 聚合酶(5 U/μL)为 Toyobo 公司产品;DEPC、饱和酚为上海生工生物工程公司产品;X-gal、IPTG、EB(溴化乙锭)为宝泰克生物科技有限公司产品;E. Z. N. A. Plasmid Minipreps Kit 和 E. Z. N. A. Gel Extraction Kit 均为 Omega公司产品.

#### 1.2 方法

- 1.2.1 PCR 引物的设计 参照 GenBank 中注册的 鸡  $\beta$ -防御素基因 Gal-1~Gal-13 序列,根据 PCR 引物 的设计原则,并借助计算机软件 DNAStar 进行辅助 分析,设计了 13 对 PCR 引物,13 对 Gal-1~Gal-13 引物(序列略)及引物 Olig-DT16(5′-TTTTTTTTTTTTTT-3′)分别由上海基康公司与上海博亚公司合成,引物序列,分别用于 13 个鸡  $\beta$ -防御素基因的扩增.
- 1.2.2 总 RNA 的提取 按照 TRIzol LS Reagent RNA 提取试剂盒使用说明书介绍的步骤,分别从鸡骨髓细胞、肝脏组织和肾脏组织中提取总 RNA.
- 1.2.3 鸡 β-防御素基因的 RT-PCR 扩增 反转录 (RT) 反应体系: RNA 5 μL, 5 × buffer 4 μL, dNTPs 4 μL, RNA 酶抑制剂 0.5 μL, Olig DT16 引物 0.5 μL, AMV 2 μL, DEPC 水补至 20 μL. 混匀后, 室温静置 10 min, 42 ℃保温 1 h, 冰浴 2 min, 反转录产物直接用于 PCR 扩增. PCR 反应体系为: 10 × buffer 10 μL, dNTPs 4 μL, 上下引物各 1.0 μL, cDNA 5 μL, Blend Taq 0.5 μL, 双蒸水补至 100 μL. PCR 程序: 94 ℃预变性 3 min; 94 ℃ 40 s, 58 ℃ 40 s, 72 ℃ 90 s, 30 个循环; 72 ℃后延伸 10 min. PCR 产物用 0.01 g/mL 的琼脂糖凝胶电泳进行检测.

Gal-1~Gal-7 基因从骨髓细胞 RNA 扩增, Gal-8、Gal-9、Gal-10 和 Gal-13 从肝脏组织 RNA 扩增,而 Gal-11 和 Gal-12 是从肾脏组织 RNA 中扩增.

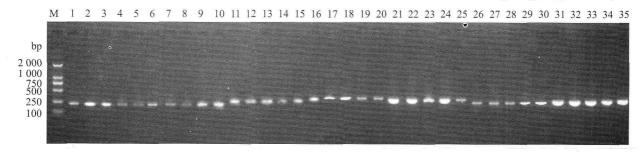
#### 1.3 PCR 产物的克隆与序列分析

PCR 产物经过凝胶纯化回收后,与载体 pMD18-T 在下列反应体系中连接:  $2 \times \text{buffer 5} \mu L$ , pMD18-T  $1 \mu L$ , 加尾的 PCR 产物  $3 \mu L$ , T4 连接酶  $1 \mu L$ , 混匀后,于4 ℃过夜连接,再将连接产物转化 DH5 $\alpha$  感受态细胞. 挑取单个的白色菌落,接种于 3 mL 含 Amp的 LB 液体培养基中,37 ℃振摇培养过夜,然后进行菌落 PCR,对于 PCR 鉴定阳性的菌落,抽提质粒进行酶切鉴定. 酶切鉴定正确的质粒送上海博亚生物技术有限公司测序,对所获得的 DNA 序列用 Blast 程序进行相似性检索比较.

### 1.4 广西黄鸡β-防御素基因 Gal-1 ~ Gal-13 的组织 分布

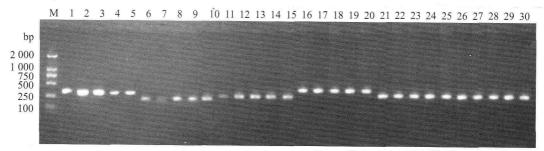
50 只1 日龄广西黄鸡饲养至30 日龄,随机取10 只鸡喉气管、肺脏、肝脏、十二指肠、肾脏、法氏囊组织,加入1 mL TRIzol LS 冷冻匀浆,吸入至1.5 mL 经DEPC 水处理的灭菌微量离心管中,室温静置 10 min,使组织样品充分裂解;加入 200 μL 氯仿,激烈摇动 15 s,室温静置 5 min;4 ℃,12 r/min 离心 15 min,取上清液于一新的1.5 mL 经 DEPC 水处理的

灭菌微量离心管中,加入500 μL 异丙醇,充分混匀, 室温放置 10 min;4 ℃, 12 000 r/min 离心 10 min,弃 上清液,沉淀用体积分数为70%乙醇洗涤1次;风 干,用 10 µL 经 DEPC 水处理的无 RNA 酶的三蒸水 溶解沉淀,直接用于 RT-PCR 或 - 80 ℃保存. 用 RT-PCR 方法扩增 β-防御素 Gal-1 ~ Gal-13 基因,检测各 基因在喉气管、肺脏、肝脏、十二指肠、肾脏、法氏囊 的分布情况.


## 结果与分析

#### 2.1 鸡 β-防御素基因的 RT-PCR 扩增

mRNA 中扩增出广西黄鸡β-防御素基因 Gal-1 ~ Gal-13 编码区全长 cDNA, RT-PCR 产物于 0.02 g/mL 琼 脂糖凝胶电泳时,可以看到与预期长度相吻合的目 的电泳条带出现(图1、图2). PCR产物用于克隆、 测序.


### 2.2 鸡 β-防御素基因的序列测定

通过克隆、测序获得 13 个基因的 cDNA 核苷酸 序列,并提交到 GeneBank 中获得广西黄鸡  $\beta$ -防御素 Gal-1 ~ Gal-13 基因的注册号为: DQ858297 ~ DQ858310. Gal-1 的第 35、45、57 位氨基酸分别为 S、 S、Y; Gal-1(α)的第35、45、57位氨基酸分别为N、Y、 用所设计的特异性引物进行 RT-PCR,从组织 H. 除了Gal-3基因,其他克隆到的序列都为编码



M; DNA marker DL2000; 1 ~ 5; Gal-1; 6 ~ 10; Gal-2; 11 ~ 15; Gal-3; 16 ~ 20; Gal-4; 21 ~ 25; Gal-5; 26 ~ 30; Gal-6; 31 ~ 35; Gal-7 图 1 广西黄鸡 β-防御素 Gal-1~Gal-7 基因 RT-PCR 扩增结果

Fig. 1 RT-PCR product of Guangxi Yellow chicken  $\beta$ -defensin Gal-1 – Gal-7



M:DNA marker DL2000;1 ~5:Gal-8;6 ~10;Gal-9;11 ~15:Gal-10;16 ~20:Gal-11;21 ~25:Gal-12;26 ~30:Gal-13 图 2 广西黄鸡 β-防御素 Gal-8~Gal-13 基因 RT-PCR 扩增结果

Fig. 2 RT-PCR product of Guangxi Yellow chicken  $\beta$ -defensin Gal-8 – Gal-13

区全长片段,由信号肽、前片段和成熟肽组成.

### 2.3 鸡β-防御素基因核苷酸序列、氨基酸序列的比 较分析

将所测定的所有鸡β-防御素基因的核苷酸序列 通过 http://www.ncbi.nlm.nih.gov 网站的 BLAST 程序与 GenBank 中注册的核苷酸序列进行比较,结 果发现本研究所测定的13个基因的核苷酸序列与 GenBank 中注册的相应核苷酸序列的相似性为 97% ~100%. 对所测定的鸡β-防御素基因氨基酸序列进 行相似性比较分析,结果表明: Gal-1(α)基因氨基酸 序列的相似性为 96.9% ~ 100.0%; Gal-2 氨基酸序 列相似性为 96.9% ~ 100.0%; Gal-4 氨基酸序列相 似性为 96.9% ~ 98.4% ; Gal-5 基因氨基酸序列相似

性为95.5%~100.0%; Gal-7基因氨基酸序列相似 性为 97.0%~100.0%; Gal-9 氨基酸序列相似性为 97.1%~100.0%; Gal-11 氨基酸序列相似性为 99.0% ~ 100.0%; Gal-12 氨基酸序列相似性为 98.1% ~ 99.0%; Gal-13 氨基酸序列相似性为 98.1%~99.0%. 利用 DNAStar 软件对本试验所测 得的13种广西黄鸡防御素基因进行系统发育树分 析,结果如图 3. 可以看出 Gal-1 与 Gal-5、Gal-12、 Gal-2 在同一分支上, Gal-6、Gal-7、Gal-9、Gal-8 在同 一分支上, Gal-10、Gal-11、Gal-4 在同一分支, Gal-13 独在一分支上.

# 2.4 鸡 β-防御素基因的序列与蛋白质结构分析

从表 1 可见. 除了 Gal-3 基因,其他克隆到的序

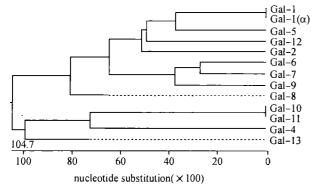



图 3 广西黄鸡 13 种 β-防御素基因的系统发育树分析 Fig. 3 Phylogenetic tree from the 13 chicken β-defensin genes of Guangxi Yellow chicken

列都为编码区全长片段,由信号肽、前片段和成熟肽组成;Gal-3 基因的第 1~129 和 204~387 碱基分别跟 Gal-1 基因的 89~129 和 311~494 碱基完全一样,它们的阅读框分别是 Gal-3:6~248 碱基, Cal-1:94~291 碱基,它们的成熟肽片断完全不同,为了保证引物的特异性,Gal-3 基因的上游引物落在了阅读框内,所扩增得到基因为第 29~300 位的核苷酸,编码 72 个氨基酸,由信号肽的后半部分 12个氨基酸残基、5 个氨基酸的原片段、38 个氨基酸的成熟肽组成. 除了 Gal-3 基因,其他克隆到的序列都为编码区全长片段,由信号肽、前片段和成熟肽组成.

表 1 广西黄鸡 β-防御素基因的序列与蛋白质结构分析

Tab. 1 Sequence and protein structure analyse of  $\beta$ -defensin genes of Guangxi Yellow chicken

|        |                                  |                                 | • •                          |                              |                              |  |
|--------|----------------------------------|---------------------------------|------------------------------|------------------------------|------------------------------|--|
| 基因     | 核苷酸序列(bp)<br>nucleotide sequence | 前体肽氨基酸数<br>amino acid amount of | 信号肽氨基酸数<br>amino acid amount | 前片段氨基酸数<br>amino acid amount | 成熟肽氨基酸数<br>amino acid amount |  |
| gene   |                                  | precursor peptide               | of signal peptide            | of propiece                  | of mature peptide            |  |
| Gal-1  | 198                              | 65                              | 20                           | 5                            | 40                           |  |
| Gal-2  | 195                              | 63                              | 20                           | 5                            | 41                           |  |
| Gal-4  | 321                              | 64                              | 20                           | 1                            | 38                           |  |
| Gal-5  | 300                              | 67                              | 20                           | 5                            | 41                           |  |
| Gal-6  | 249                              | 64                              | 20                           | 5                            | 38                           |  |
| Gal-7  | 248                              | 67                              | 20                           | 5                            | 41                           |  |
| Gal-8  | 351                              | 66                              | 20                           | 5                            | 41                           |  |
| Gal-9  | 240                              | 67                              | 20                           | 5                            | 41                           |  |
| Gal-10 | 298                              | 68                              | 20                           | 7                            | 40                           |  |
| Gal-11 | 404                              | 104                             | 20                           | 4                            | 42                           |  |
| Gal-12 | 335                              | 65                              | 20                           | 0                            | 40                           |  |
| Gal-13 | 312                              | 60                              | 20                           | 4                            | 36                           |  |

### 2.5 广西黄鸡β-防御素基因 Gal-1 ~ Gal-13 的组织 分布情况

从表 2 数据可以发现, Gal-1、Gal-2、Gal-4、Gal-5、Gal-6、Gal-7、Gal-10 的表达分布非常广泛, Gal-3、Gal-8、Gal-9、Gal-11、Gal-12、Gal-13 的分布少.

表 2 广西黄鸡 β-防御素基因的组织分布情况
Tab. 2 Tissue distribution of β-defensin genes of Guangxi
Yellow chicken

| 基因     | 肺脏   | 肝脏    | 喉气管                | 法氏囊   | 十二指肠     | 肾脏     |
|--------|------|-------|--------------------|-------|----------|--------|
| gene   | lung | liver | larynx and trachea | bursa | duodenum | kidney |
| Gal-1  | 10   | 10    | 10                 | 10    | 10       | 10     |
| Gal-2  | 10   | 10    | 6                  | 6     | 8        | 10     |
| Gal-3  | 0    | 0     | 1                  | 0     | 0        | 0      |
| Gal-4  | 10   | 6     | 6                  | 5     | 10       | 10     |
| Gal-5  | 9    | 1     | 8                  | 10    | 10       | 10     |
| Gal-6  | 8    | 9     | 5                  | 5     | 10       | 10     |
| Gal-7  | 9    | 8     | 10                 | 6     | 10       | 10     |
| Gal-8  | 0    | 10    | 0                  | 0     | 0        | 0      |
| Gal-9  | 0    | 9     | 0                  | 0     | 0        | 10     |
| Gal-10 | 10   | 10    | 10                 | 10    | 10       | 10     |
| Gal-11 | 0    | 0     | 0                  | 0     | 0        | 10     |
| Gal-12 | 0    | 10    | 0                  | 0     | 0        | 10     |
| Gal-13 | 0    | 10    | 0                  | 0     | 0        | 0      |
|        |      |       |                    |       |          |        |

# 3 讨论

防御素相对分子质量 3 000 ~4 000,为带正电荷的阳离子多肽,具有广谱抗菌功能. 国内外学者<sup>[5-6,8-9]</sup>陆续克隆了不同品种鸡  $\beta$ -防御素基因,由于鸡品种的差异,防御素的分布表达也不一致,如Higgs 等<sup>[10]</sup>从 Cobb 500 肉鸡中扩增的 Gal-13 基因序列的阅读框比 Xiao 等<sup>[8]</sup>报道的在 3′端少了 87 个碱基,由于 Xiao 等<sup>[8]</sup>并未提及他们试验鸡的品种,还未能确定这种差异是否由品种差异引起的. 本研究扩增到的广西黄鸡  $\beta$ -防御素 Gal-13 基因,测序结果与 Higgs 等<sup>[10]</sup>报道的完全相同.

从防御素基因在广西黄鸡的肺脏、肝脏、喉气管、法氏囊、十二指肠和肾脏6个组织中的分布表达情况可以发现,Gal-1、Gal-2、Gal-4、Gal-5、Gal-6、Gal-7、Gal-10的表达分布非常广泛,Gal-3、Gal-8、Gal-9、Gal-11、Gal-12、Gal-13的分布少. 该结果与其他学者得到的试验结果并不完全一致[1]. 在所选择的6个

组织中,Brockus等[11]在肾脏中并未检测到 Gal-1 基因的表达,在喉气管组织、肾脏、法氏囊中他们并未检测到 Gal-2 基因,Xiao等[8]并未在肾脏中检测到 Gal-4 基因,Gal-5 基因的表达和本试验检测结果的不同之处在肾脏、肝脏和胃肠道,Gal-6 基因表达的不同之处在喉气管,Gal-7 基因除了法氏囊组织与本试验检测结果相同外,其他组织均不同,Gal-8 基因表达检测的结果一致,Gal-9 基因 Xiao等[8]除了肝脏检测到之外,在肺脏和法氏囊也检测到了,但他们并未在肾脏中检测到. Xiao等[8]也并未在喉气管、肾脏、胃肠道中检测到 Gal-10 基因,相反,他们在法氏囊组织中检测到了 Gal-12,但本试验并未检测到.

本研究利用 RT-PCR 技术成功地克隆出广西黄鸡的  $\beta$ -防御素共 13 个 cDNA 片段,丰富了鸡防御素乃至哺乳动物防御素基因资源库,为以后研究鸡防御素的结构、功能、多样性及其进化关系奠定基础,也体现了对广西黄鸡这种优质鸡保种的重要性.

#### 参考文献:

- [1] SUGIARTO H, YU P L. Identification of three novel ostricacins: an update on the phylogenetic perspective of β-defensins [J]. Int J Animicrob Ag, 2006, 27:229-235.
- [2] LABADIE O W, PICMAN J, HINCKE M T. Avian antimicrobial proteins: structure, distribution and activity [J]. World Poultry Sci, 2007, 63:421-438.
- [3] SUGIARTO H, YU P L. Avian antimicrobial peptides: the defense role of β-defensins [J]. Biochem Biophysica Res Commun, 2004, 323:721-727.

- [4] ZASLOFF M. Antimicrobial peptides of multicellular organisms [J]. Nature, 2002, 415:389-395.
- [5] HARWIG S S, SWIDEREK M, KOKRYAKOV V N, et al. Gallinacin-1: cysteine-rich antimicrobial peptides of chicken leukocytes[J]. FEBS Lett, 1994, 342:281-285.
- [6] EVANS E W, BEACH G G, WUNDERLICH J, et al. I-solation of antimicrobial peptides from chicken heterplhils
  [J]. Leuko Biolo, 1994, 56:661-665.
- [7] LYNN D J, HIGGS R, GAINES S, et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken[J]. Immunogenetics, 2004, 56:170-177.
- [8] XIAO Y, HUGHES A L, ANDO J, et al. A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: Implications for the origin and evolution of mammalian defensins [J]. BMC Genomics, 2004, 5:56.
- [9] 谢青梅,陈燕珊,马静云,等.广西黄鸡β-防御素 Cal-4 基因克隆和体内的诱导表达[J].中国兽医科学, 2006, 36(08):428-432.
- [10] HIGGS R, LYNN D J, GAINES S, et al. The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens[J]. Immunogenetics, 2005, 57:90-98.
- [11] BROCKUS C W, JACKWOOD M W, HARMON B G. Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow [J]. Anim Genet, 1998, 29;283-289.

【责任编辑 柴 焰】