2 株猪圆环病毒 2 型分离毒株全基因组的 克 隆 及 序 列 分 析

何逸民*,孔留五*,罗玉均*,潘全会,曹宗喜,张桂红 (华南农业大学兽医学院,广东广州 510642)

摘要:参考 GenBank 发表的猪圆环病毒 2型(PCV2)全基因组序列,设计 2对引物,通过 PCR 技术扩增出 2 株 PCV2 流行株的全基因,并进行了序列测定分析. 结果表明,2个分离株基因组全长分别为 1767 bp 和 1768 bp,2个分离株之间的核苷酸相似性为 97.3%,与 GenBank 上已发表的 PCV2 分离株之间的相似性为 93.8%~99.3%.2个分离株的 ORF2 核苷酸序列相似性分别为 91.3%~99.6% 和 90.6%~98.0%,存在一定的变异.

关键词:猪圆环病毒2型;克隆;序列分析

中图分类号:S852.659.2

文献标识码:A

文章编号:1001-411X(2008)03-0080-05

Molecular Cloning, Sequencing and Analysis of the Complete Genome of two Porcine Circovirus Type 2 Isolates

HE Yi-min*, KONG Liu-wu*, LUO Yu-jun*, PAN Quan-hui, CAO Zong-xi, ZHANG Gui-hong (College of Veterinary Medicine, South China Agricultural University, Guangzhou 510624, China)

Abstract: According to the complete genome sequences of porcine circovirus type 2 (PCV2) published in GenBank, two pairs of primers were designed. The complete genome of two PCV2 isolates were amplified. The resultant PCR products were cloned into pMD18-T vectors, then the nucleotide sequences of the PCV2 complete genome were compared with that of other PCV. The results indicated that the genome of the two isolates were 1 767 bp and 1 768 bp in length, respectively, and nucleotide homology between the two cloned complete genome was 97.3%, nucleotide sequence similarities between the cloned PCV2 complete genome and the published PCV2 complete genome in GenBank were from 93.8% to 99.3%. Nucleotide sequence similarities of ORF2 were from 91.3% to 99.6% and from 90.6% to 98.0%, respectively.

Key words: porcine circovirus type 2; cloning; sequence analysis

自20世纪70年代 Tischer 等人^[1] 发现猪圆环病毒(porcine circovirus, PCV)以来,人们对 PCV 的了解和研究不断深入,发现由它引发的各种疾病对养猪业能造成各种严重的损失. 根据 PCV 的致病性与核酸序列的不同,将 PCV 分为 PCV1和 PCV2, PCV1被认为是 PK-15细胞培养的污染物,无致病性^[2],其基因组全长 1759 bp;而 PCV2却具有致病性,其基因组全长 1768 bp(或 1767bp),并被认为是近年来在

猪场广泛流行的断奶猪多系统衰竭综合症(postweaning multisystemic wasting syndrome, PMWS)的主要病原. PMWS主要感染7~15 周龄猪,患猪表现为渐进性消瘦,淋巴结肿大,皮肤苍白或有黄疸等症状^[3]. 发病率为5%~50%,死亡率接近100%,严重威胁世界各国的养猪业. 现已证实该病是由一种致病性PCV引起的,并将该圆环病毒命名为猪圆环病毒2型(PCV2)^[4-5]. 我国朗洪武等^[6]于1999年在

收稿日期:2007-05-15

作者简介:何逸民(1984—),男,硕士研究生;*同为第一作者; 通讯作者:张桂红(1968—),女,教授,E-mail: guihongzh@ scau edu cn

北京、河北等地某些猪场中也检测到 PCV2 的存在, 此后国内许多实验室也相继检测到该病毒. 目前, PCV2 基因组序列相对稳定,但是不同地区毒株的基 因组序列有一定的差异. 许多国内实验室进行的血 清学调查表明,PMWS已在我国大部分地区流行.本 研究采用 PCR 方法扩增到 2 株 PCV2 分离株的全序 列,并完成其序列测定;同时,为了研究 PCV 基因结 构和功能以及各 PCV 分离株之间的遗传变异和进化 的关系,将上述2株 PCV2 分离株用相关软件进行序 列分析,并将其与 GenBank 中已登录的 15 株 PCV 进 行多序列比对,绘制系统进化树. 通过全基因测序, 并与我国其他地区及世界其他各国 PCV 毒株序列的 分析比较,对这2个毒株的来源及与其他地区毒株 的关系作出了一定的解释. 分析 PCV2 毒株之间的 遗传发生关系和分子差异,探索 PCV2 变异规律,为 今后深入研究该病的分子生物学特性及开发有效的 免疫制剂提供科学依据.

1 材料与方法

1.1 材料

- 1.1.1 毒株及细胞 PCV2 毒株 HN 株、GZ 株及 PK15 细胞由华南农业大学兽医学院传染病实验室 提供.
- 1.1.2 引物 引物由上海生工生物工程技术服务有限公司合成.

检测引物 LA: 5' ATTGTATTCCTGGAGTTA3'; UA:5'CTTTCGTTTTCAGTCAAC3'.

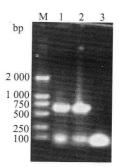
全长扩增引物 L1:5' CTCCCGCCATACCATA-AC3';F3:5'GCACCTCAGCAGCATGAA3'.

全长扩增引物 LP:5'CGCTCGTCATCGCATGC3'; Up:5'AGAAGGGCTGGGTTATCCGATA3'.

1.1.3 主要试剂及酶 Go Taq Green Master Mix 和 DNA 提取试剂盒分别为 PROMEGA 公司和上海生工生物工程技术服务有限公司产品;克隆载体 pMD18-T为 TaKaRa 公司产品;感受态细菌 TOP10 由华南农业大学兽医学院传染病实验室保存.

1.2 方法

- 1.2.1 病毒 DNA 的提取及鉴定 病毒 DNA 的提取 参照上海生工生物工程技术服务有限公司 DNA 抽提试剂盒说明书. 然后用检测引物(LA/UA)做 PCR 鉴定.
- 1.2.2 PCR 扩增 按常规方法提取 DNA 后,用设计的 2 对引物(L1/F3 和 LP/UP)分别做分段扩增,PCR 产物经 10 g/L 琼脂糖凝胶电泳,用凝胶成像分


析系统观察结果.

- 1.2.3 PCR产物克隆及重组质粒 PCR鉴定 用凝胶回收试剂盒回收特异的扩增片段,将回收的 PCR产物连接到 pMDl8-T载体上,反应体系:pMDl8-T载体1 μL,连接缓冲液(solution I)5 μL,同收 PCR产物4 μL,16 ℃水浴2 h,取5 L连接产物加入融化的TOP10 感受态细胞,轻轻旋转混匀,置冰浴上30 min,42 ℃水浴热休克90 s 后迅速置冰浴3~5 min.加人700 μL LB培养液,转移到37 ℃摇床振荡培养30~45 min.12 000 r/min 室温离心3 min,弃掉400 μL上清液.以余液再悬细胞,涂于 Amp 抗性的 LB琼脂培养基置室温,待液体被吸收后,倒置平皿于37℃过夜培养.重组质粒 PCR鉴定,产物用10 g/L琼脂糖凝胶电泳检查.
- 1.2.4 序列测定与分析 对质粒 PCR 鉴定为阳性的菌液进行 DNA 自动测序,序列测定由上海生工生物工程技术服务有限公司完成. 利用 DNAStar 软件包,分析 PCV2 分离株的基因组序列及推导的氨基酸序列,并与 GenBank 中的15 株 PCV 基因组序列按照 Clustal W Method 进行比对,并绘成系统进化树.

2 结果与分析

2.1 2 株 PCV2 分离株的 PCR 鉴定

用 PK15 细胞分离的 PCV2 病毒(3 代细胞毒) 提取病毒的 DNA,以此 DNA 为模板,以 LA 和 UA 为 引物进行 PCR 扩增,结果片段的扩增大小与预期结果相符,为 651 bp(图 1).

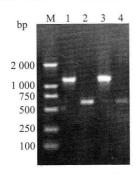
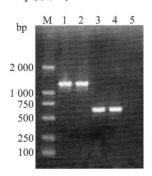

M:DNA marker DL2000;1:GZ 株;2:HN 株;3:阴性对照 M:DNA marker DL2000;1:GZ strain;2:HN strain;3:negative control

图 1 PCV2 毒株的 PCR 鉴定

Fig. 1 Identification of PCV2 by PCR amplification

2.2 2 株 PCV2 分离株全基因组扩增结果

以提取的病毒 DNA 为模板,以 UP 和 LP、L1 和 F3 为引物分别扩增出 2 个片段,结果这 2 个片段的 扩增大小与预期结果相符,分别为 632 bp 和 1 266 bp(图 2).



M:DNA marker DL2000;1 和2:GZ 株;3 和4:HN 株
M:DNA marker DL2000;1 and 2:GZ strain;3 and 4:HN strain
图2 PCV2 毒株全基因扩增的 PCR 产物

Fig. 2 Amplification products of PCV2 genome

2.3 重组质粒的菌液 PCR 鉴定

挑取单个的菌落做扩大培养,以扩大培养的菌液为模板,以 UP 和 LP, L1 和 F3 为引物分别做菌液 PCR 鉴定,结果和预期扩增的片段大小相符,分别为632 bp 和 1 266 bp(图 3).

M:DNA marker DL2000;1 和 3:GZ 株;2 和 4:HN 株;5:阴性对照 M:DNA marker DL2000;1 and 3:GZ strain;2 and 4:HN strain;5:negative control

图 3 重组质粒 PCR 鉴定

Fig. 3 Identification of recombinant plasmids by PCR

2.4 分离株序列测定与拼接

经上海生工生物工程技术服务有限公司用自动 测序仪双向测序得到 2 株 PCV2 流行株的全基因序 列,结果是 GZ 株的基因组全长为 1 767 bp, HN 株的 基因组全长为 1 768 bp. 与前人报道相一致^[7].

2.5 2 株 PCV2 分离株的全基因组核苷酸序列比较 及系统发育分析

应用 DNAStar 序列分析软件对分离株的核苷酸 全序列及 GenBank 中登录的国内外 14 株 PCV2 及 1 株 PCV1 参考毒株全基因核苷酸序列相比较,结果表 明:2 毒株的全基因核苷酸序列相似性是 97.3%,2 毒株和国内外其他地区 PCV2 的参考毒株相比较,核 苷酸序列相似性为 93.8%~99.3%(图 4);用 Clustal W Method 算法生成系统进化发育树(图 5),结果 表明, PCV1 和 PCV2 基因型差异较大, 明显分为 2 支, PCV1 和 PCV2 分离株之间只有75%左右的相似 性. PCV2 各个分离株之间在进化上存在着某些地 理位置上的相关性,分为2大主支.一支以北美洲国 家分离株为主,主要为加拿大和美国分离株;另外还 有日本、韩国、西班牙、中国及台湾毒株. 另一支以欧 洲国家的分离株为主,主要为法国分离株;另外也有 部分中国毒株. 本研究的 2 分离株与欧洲分离株的 相似性最高,分别在同一主支的2个分枝上.

2.6 2 毒株的 ORF2 的相似性分析

对 2 分离株和其他地区的 PCV2 的 ORF2 的相似性分析结果表明,2 分离株的 ORF2 之间核苷酸序列的相似性是 97.6%,与国内外其他地区的PCV2毒株ORF2之间的核苷酸序列存在较大差异,

								per	cent	idei	ntity								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		
1		95.7	95.7	75.7	96.6	96.0	93.9	95.3	95.7	96.0	95.6	96.0	96.2	96.1	95.5	95.8	96.1	1	AY713470GER
2	4.4		97.3	76.2	95.2	95.7	93.8	95.4	95.4	99.3	95.3	99.0	99.5	99.3	95.4	99.2	99.1	2	GZ
3	4.5	2.8		75.2	95.3	95.1	93.1	94.8	94.7	97.5	94.7	97.4	97.6	97.5	94.6	97.4	97.5	3	HN
4	26.9	26.2	27.6		75.6	76.0	75.4	75.9	75.9	76.5	75.7	76.5	76.5	76.5	76.0	76.5	76.6	4	NC_006266USA
5	3.5	5.0	4.8	27.0		96.4	94.2	96.6	96.0	95.4	96.1	95.4	95.7	95.7	95.8	95.2	95.5	5	AB072302Japan
6	4.1	4.4	5.1	26.4	3.8		95.7	98.4	99.0	95.9	99.6	96.0	96.1	96.2	99.0	95.9	96.0	6	AF027217CAN
7	6.3	6.4	7.2	27.3	6.1	4.5		95.4	95.1	94.0	95.4	94.1	94.2	94.3	95.2	93.9	94.2	7	AF364094TW-CH
8	4.9	4.7	5.4	26.5	3.5	1.7	4.8		97.9	95.6	98.2	95.7	95.9	95.9	97.7	95.6	95.7	8	AF381176CHN
9	4.4	4.7	5.5	26.5	4.2	1.0	5.1	2.2		95.6	98.9	95.6	95.9	95.9	98.9	95.6	95.7	9	AY094619USA
10	4.1	0.7	2.6	25.7	4.7	4.2	6.3	4.5	4.5		95.7	99.4	99.7	99.6	95.6	99.4	99.4	10	AY181945CHN
11	4.5	4.8	5.5	26.8	4.1	0.5	4.8	1.9	1.1	4,4		95.6	95.8	95.9	98.7	95.5	95.7	11	AY181948CHN
12	4.1	0.9	2.6	25.7	4.7	4.1	6.1	4.4	4.4	0.6	4.4		99.6	99.4	95.6	99.2	99.9	12	AY122275CHN
13	3.9	0.5	2.4	25.8	4.4	4.0	6.0	4.3	4.3	0.3	4.3	0.4		99.7	95.9	99.5	99.6	13	AF055394FRA
14	4.0	0.7	2.5	25.8	4.4	3.9	5.9	4.2	4.3	0.4	4.3	0.5	0.3		95.9	99.4	99.5	14	AF538325 CHN
15	4.6	4.7	5.6	26.5	4.4	1.0	5.0	2.4	1.1	4.5	1.4	4.4	4.3	4.3		95.6	95.7	15	AF544024KOR
16	4.3	0.7	2.7	25.7	4.9	4.2	6.3	4.4	4.5	0.5	4.6	0.7	0.5	0.6	4.5		99.3	16	AJ293869UK
17	4.1	0.9	2.6	25.6	4.7	4.1	6.1	4.4	4.4	0.6	4.4	0.0	0.4	0.5	4.4	0.7		17	AF201311FRA
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		

图 4 PCV2 基因组的核苷酸序列的相似性比较 Fig. 4 Sequence similarities for PCV2

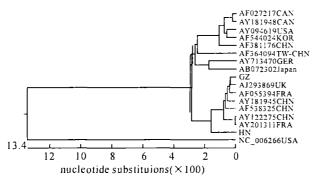


图 5 PCV2 毒株的系统发育树 Fig. 5 Phylogenetic tree of PCV2

其相似性是 90.6% ~ 99.6%,其中 GZ 株 ORF2 与法国株(AF201311FRA)的 ORF2 相似性最高 99.6%,与中国台湾株(AF364094TW-CHN)的 ORF2 的相似性最低 91.3%; HN 株的 ORF2 与法国株(AF055394FRA)的 ORF2 相似性最高 98.0%,与美国株(AY094619USA)的 ORF2 相似性最低 90.6%.

3 讨论

猪圆环病毒 2 型是引起 PMWS 的主要病因之一,随着研究的深入,发现 PCV2 所诱发的疾病范围不断扩大,除 PMWS 外,它还与非典型的 PRRS、猪皮炎/肾病综合征、猪增生性/坏死性皮炎、仔猪先天性震颤及母猪流产有关,但在这些疾病中 PCV2 起多大作用尚不太清楚. 有人推测不同症状的 PCV 感染可能与 PCV2 的 ORF2 基因变异有关^[8]. PCV2 对机体的影响主要是诱导 B 淋巴细胞凋亡,导致猪的免疫抑制,从而并发或继发其他细菌、病毒感染,加之各种环境因素,如拥挤、空气污浊、各种年龄猪混养及其他各种应激因素的影响而使病情加重,导致死亡率大大增加. 因此,建立一套完整的 PCV2 检测方法和在猪群中开展血清学调查相当重要.

在本研究中,应用 PCR 技术成功克隆出了 PCV2 的全基因组,通过测序并进行序列分析,结果表明 GZ 株的基因组全长为1767 bp,HN 株的基因组全长为1768 bp,然而并没有证据表明两者的致病性和所引起的临床症状有所差别. PCV1 与 PCV2 型内的相似性都在90%以上,2 株 PCV2 与其他14 株 PCV2之间的核苷酸序列相似性为93.8%~99.3%,2分离株之间的核苷酸相似性为97.3%;而型间的核苷酸序列相似性则低于80%^[9],其中 GZ 株、HN 株与PCV1(NC_006266USA)的核苷酸序列相似性分别为76.2%、75.2%. 从系统进化树分析,PCV2 存在2个大的分支,分别以欧洲分离株和美洲分离株为代表,并且2个大的分支上又存在有明显的小的分枝,在

进化树中,中国分离株之间关系比较复杂,分散程度 很高,我国很多的分离株与美洲、欧洲各国的亲缘关 系都很接近,本试验的 GZ 株和 HN 株都在以欧洲分 离株为代表的分支上. 这些数据都表明尽管各 PCV2 分离株基因组之间总体上比较保守,但随地理分布 不同还是存在一定程度的变异,可能与我国许多省 市从流行 PCV2 病的国家先后引进种猪有一定的关 系[10-11]. 2 分离株都包含了 11 个 ORF, 其中 ORF1 和 ORF2 是 2 个最重要的阅读框. ORF1 主要编码病 毒的复制蛋白(Rep),位于病毒核苷酸的正链上第 51~995 位处,编码 314 个氨基酸,是 PCV2 中最大 的阅读框,与病毒的复制转录有关. ORF2 编码病毒 的主要结构蛋白,位于 PCV2 基因组的负链上的第 1 034~1 735 位,大部分由 702 个核苷酸组成,推导 出 233 个氨基酸, 编码蛋白的相对分子质量大小约 为 27 800. 其 N 端的 41 个氨基酸与 PCV2 在细胞核 内的定位有关[12]. ORF2 编码病毒的衣壳蛋白与病 毒人侵宿主的组织亲嗜性有关,所以 ORF2 的变异可 能会导致病毒在宿主体内的分布和致病性发生改 变. PCV2 的 ORF2 编码序列比较分析表明,GZ 株与 HN 株的 ORF2 之间核苷酸序列的相似性是 97.6%, 与国内外其他地区的 PCV2 毒株 ORF2 之间的核苷 酸序列存在一定差异,其相似性是90.6%~99.6%, 存在着3个主要变异区域(59~90位,121~136位 和 190~210 位氨基酸),其中有 2 个(59~90 位和 121~136 位氨基酸)与免疫表位(65~87 位和113~ 147 位氨基酸)相关,这些表位暴露于免疫压力下,有 可能会发生突变,导致新的毒株出现,这为疾病的预 防和控制带来了更大的难度[13-15].

本研究结果明确了目前我国 PCV2 流行毒株基 因组的分子学特征,毒株之间的变异度不大,对于进 一步开展我国 PCV2 分子流行病学和所致疾病的预 防与控制都具有重要的指导意义.

参考文献:

- [1] TISCHER I, RASCH R, TOCHTERMANN G. Characterization of papovavirus and picomavirus-like particles in permanent pig kidney cell lines [J]. Zentralbl Bakteriol, 1974,226(2):153-167.
- [2] TISCHER I, MIELDS W, WOLFF D, et al. Studies on epidemiology and pathogenicity of porcine circovirus [J].
 Arch Virol, 1986, 91 (3-4):271-276.
- [3] HARDING J C, CLARK E G. Recognizing and diagnosing post-weaning multisystemic wasting syndrome (PMWS) [J]. Swine Health Prod, 1997, 5:201-203.

- [4] MEEHAN B M, MCNEILLY F, TODD D, et al. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs[J]. J Gen Virol, 1998, 79(9):2171-2179.
- [5] HAMEL A L, LIN L L, NAYAR G P. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs[J]. J Virol, 1998, 72(6): 5262-5267.
- [6] 郎洪武,张广川,吴发权,等. 断奶猪多系统衰弱综合征 血清抗体检测[J]. 中国兽医科技,2000,30(3):3-5.
- [7] FENAUX M, HALBUR P G, GILL M, et al. Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with post-weaning multisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2[J]. J Clin Microbiol, 2000, 38 (7):2494-2503.
- [8] 张朝政,由振强,卢觅佳,等. 猪Ⅱ型圆环病毒浙江分离 株全基因组的克隆与序列分析[J]. 浙江大学学报:农 业与生命科学版,2005,31(6):777-782.

- [9] CHEUNG A K, BOLIN S R. Kinetics of porcine circovirus type 2 replication [J]. Arch Virol, 2002, 147(1):43-58.
- [10] 王忠田,郭鑫,杨汉春,等. 六株猪圆环病毒 2 型国内分离株的全基因组序列测定与分析[J]. 农业生物技术学报,2005,13(1):56-60.
- [11] 全滟平,崔尚全,宋木霞,等. 猪圆环病毒 2 型分离株的 基因组克隆、序列测定与分析[J]. 畜禽业:南方养猪, 2006,02:10-14.
- [12] LIU Q, TIKOO S K, BABIUK L A. Nuclear locatization of the ORF2 protein encoded by porcine circovirus type 2 [J]. Virology, 2001, 285(1):91-99.
- [13] 张应国,张文东,宋建领,等. 猪圆环病毒基因组结构及 其分子特征研究进展[J]. 动物医学进展,2006,27(7): 6-10.
- [14] 刘光清,云涛,倪征,等. 猪圆环病毒致病性的分子基础[J]. 中国兽医学报,2006,26(4):457-464.
- [15] 黄伟坚,连慧香,尹业师,等.6 株猪圆环病毒2型流行毒株全基因组克隆及序列分析[J]. 动物医学进展,2006,27(7):66-73.

【责任编辑 柴 焰】

(上接第74页)

- [3] 王武,石张东,甘炼. 瓦氏黄颡幼鱼最适蛋白质的研究 [J]. 上海水产大学学报,2003,12(2):185-188.
- [4] 王武,刘利平,张克俭,等. 瓦氏黄颡鱼人工繁殖的初步研究[J]. 水产科技情报,2001,28(5):195-197.
- [5] 王 武,甘炼,张东升,等. 盐度对瓦氏黄颡鱼生存和生长影响[J]. 水产科技情报,2004,31(3):121-124.
- [6] 王云花. 鳔等睾吸虫在黄颡鱼体内寄生的初步研究 [J]. 重庆水产,2000(1):44-45.
- [7] 彭福峰,邵世秋. 黄颡鱼的常见疾病及其防治[J]. 内陆 水产,2000,25(7):38.
- [8] 邹社校. 黄颡鱼幼鱼蛋白质需要量的研究[J]. 湖北农 学院学报,1999,19(2):143-145.
- [9] 刘景祯,刘丙阳.黄颡鱼仔鱼摄食习性研究[J].水利渔业,2000,20(1):20-21.
- [10] 王令玲, 仇潜如, 邹世平, 等. 黄颡鱼生物学特点及其

繁殖和饲养[J]. 淡水渔业,1989(6):23-25.

- [11] WOLF G W, MOAV R. The regression of weight gain of initial weight in carp I: Methods and result [J]. Aquaculture, 1972, 1:7-28.
- [12] WOLF G W, MOAV R. Genetic testing of commom carp in cage II: Influence of variation in initial weight on weight gain [J]. Aquaculture, 1993, 109;245-256.
- [13] EKNATH A E, TAYAMEN M M, PALADADE VERA M S, et al. Genetic improvement of farmed tilapias the growth performance of eight strains of *Oreochranis niloticus* tested in different farm environment [J]. Aquaculture, 1993,111:171-188.

【责任编辑 柴 焰】