因子分析法在文冠果优良单株选择中的应用

敖 妍

(中国林业科学研究院 林业研究所,北京 100091)

摘要:应用因子分析法,对文冠果 Xanthoceras sorbifolia 374 个单株的种子产量、果实鲜质量、结果数、百果质量、出籽率以及种子含油率进行分析,依性状累积方差贡献率达到 90.55% 以上,提出了 2 个反映文冠果产量、含油率的主因子及其函数式. 通过计算各单株的主因子得分值,选择出了综合经济性状优良的单株 37 株,并利用聚类分析方法将参试群体划分为 4 类. 其结果与单株的实际表型相近似.

关键词: 文冠果; 因子分析; 优良单株

中图分类号:S722.3

文献标识码:A

文章编号:1001-411X(2009)04-0070-04

Application of Factor Analysis in Superior Individual Plant Selection of *Xanthoceras sorbifolia*

AO Yan

(Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

Abstract: Seed production, fruit fresh mass, fruit number, mass of 100 fruits, seed ratio to fruit and seed oiliness ratio in 374 *Xanthoceras sorbifolia* individual plants were analyzed using factor analysis method. Two principal factors and their function equations were proposed based on more than 90.55% cumulative proportion. According to individual principal factors scores, 37 plants with superior integrated economical characters were selected. All individual plants were divided into 4 clusters using cluster analysis. The results conformed to the practical phenotype.

Key words: Xanthoceras sorbifolia; factor analysis; superior individual

文冠果 Xanthoceras sorbifolia,为无患子科文冠果属,落叶灌木或小乔木,是我国特有的木本油料植物.文冠果种子含油率较高,文冠果油的碳链长度主要集中在 C₁₇ ~ C₁₉之间,与普通柴油主要成分的碳链长度极为接近^[1]. 因此,文冠果适合作为生产生物柴油的原料. 另外,文冠果对土壤要求不严,耐瘠薄,喜光,也能耐半阴环境. 抗寒抗旱、耐盐碱. 是适合荒山、沙漠绿化的优良树种^[2]. 我国文冠果资源十分丰富,但目前大多林分产量较低,而且文冠果的广泛推广还迫切需要选择高产量、高含油率的优良单株,有效地开发利用现有资源的潜能,将对促进生态能源林的建设、改善生态环境具有重要的意义.

因子分析在选优及分类上有很多报道^[3-5],本文通过对文冠果的主要经济性状分析,探讨因子分析用于文冠果优种选择的可行性,旨在为文冠果优树选择提供理论依据.

1 材料与方法

1.1 材料与试验地概况

供试材料来自内蒙古赤峰市翁牛特旗经济林场的 41 年生文冠果. 翁牛特旗文冠果起源为实生播种苗,林分郁闭度 0.5~0.7,株行距 4 m×4 m,林地面积约 56 000 m²,健康状况良好,平均树高 3.2 m,胸径 9.27 cm.

试验地位于翁牛特旗中部,东经 119°00',北纬 42°57',海拔 623 m,土壤种类为沙质栗钙土,土层厚 60~100 cm,pH7.5~8.0,母岩类型为石灰岩.该地区属于大陆性气候,年温差较大并且干旱少雨.年均气温 5.9 °C,极端最高气温 36.9 °C,极端最低气温 -28.8 °C,年均降雨量 320 mm,年蒸发量在 2 100 mm 以上,生长期 130 d 左右,主要林下植被有麻黄草 *Ephedra equisetina*,碱草 *Elymus dahuricus* var. *dahuricus* 等.

1.2 调查方法与统计分析

在林分中,按对角线法设置 13 块标准地,选择树势强健、树姿开张、枝叶繁茂、结果枝粗壮、有侧芽结果和侧生小枝结果习性、抗性强、无病虫害、无机械损伤的单株为候选株,共选出 374 株候选株.测定项目包括出籽率、百果质量、果实鲜质量、结果数、种子产量、含油率.于2007年7月底至8月初果实成熟时采收,单株均单采单收,利用梯子和高枝剪采收每株全部果实,并收集地面落果.采后称单株果实鲜质量后将果实于阳光下晒至果皮微裂(利于去皮),去皮收集种子,再称单株种子质量.出籽率 = (种子质量/果实质量)×100%.百果质量 = (果实鲜质量/结果数)×100.种子含油率的测定参照国家标准^[6],采用武汉航空仪表有限公司生产的 HCY-10 核磁共振(NMR)含油量测量仪测定,重复 8 次.

通过因子分析法进行育种指标的确定和综合评价[7-10],开展以高产、高含油率为目标的优良单株选育. 首先对参试单株各指标的测定值进行因子分析[11],根据入选累积贡献率得到对应于入选特征值的特征向量和因子载荷,确定主因子;根据载荷矩阵的方差最大旋转矩阵和相关系数矩阵的逆矩阵,确定各指标的权重,根据各主因子贡献率的大小,确定入选综合因子的权重;计算各主因子得分,并据此对参试单株进行综合评定并选择育种指标. 主因子得分=因子中的决定性指标的值×决定性指标所占的权重;综合得分= $\sum Y_i \times C_i$,其中, Y_i 表示第i个主因

子得分值, C_i 表示第 i 个主因子的贡献率.

根据筛选出的主因子计算所观测 374 个单株综合得分值对群体进行分层聚类,将观测群体划分为 4 类,其中高产、高含油率的一类可作为选择具有较高经济性状优树的依据.

以上运算过程由 SPSS 11.0 分析程序实现.

2 结果与分析

2.1 参试单株间性状变异分析

由表1可知,大部分文冠果单株间存在着较大的变异,其中,以种子产量间的变异最为显著(变异系数达1.06),果实鲜质量和结果数的变异也非常大,分别为1.02和0.95.这说明参试单株间产量差异比较大,良莠不齐.而种子含油率的变异系数较小(变异系数为0.12).由以上分析可知初选所得单株在6个不同性状上均存在较大差异,进行单株选择的空间较大.

表 1 参试单株间性状变异

Tab. 1 Variation in characters between individual plants

性状	平均值	- 标准差	变幅	极差	变异系数1)
出籽率/%	38.47	9.97	64.81 ~ 13.33	70.00	0.26
百果质量/g	2 980.61	1 103.36	7 500.00 ~ 1 000.00	6 500.00	0.37
果实鲜质量/g	745.62	760.47	5 090.00 ~ 20.00	5 070.00	1.02
结果数/个	25.65	24.35	163.00 ~ 1.00	162.00	0.95
种子产量/g	272.38	288.69	2 420.00 ~ 10.00	2 410.00	1.06
含油率/%	33.33	3.91	42.70 ~ 20.32	22.38	0.12

1)变异系数=标准差/平均值×100%

2.2 因子分析及主要选择指标的确定

特征根和贡献率是选择主成分的依据,将文冠果6个原性状指标即出籽率、百果质量、果实鲜质量、结果数、种子产量、含油率转化为6个因子.由表2看出,第1个因子的特征根为2.893,方差贡献率为48.216%,是最重要的主因子;第2个因子的特征根为1.465,方差贡献率为24.411%,代表了全部性状信息的24.411%,是仅次于第1主因子的重要主

表 2 各变量主因子贡献率

Tab. 2 Total variance explained

因子 —		初始值			旋转前主因子			旋转后主因子		
	特征根	贡献率/%	累计贡献率/%	特征根	贡献率/%	累计贡献率/%	特征根	贡献率/%	累计贡献率/%	
1	2.893	48.216	48. 216	2.893	48. 216	48. 216	2.845	47.424	47.424	
2	1.465	24.411	72.627	1.465	24.411	72.627	1.488	24.800	72.224	
3	1.076	17.925	90.552	1.076	17.925	90.552	1.100	18.329	90.552	
4	0.479	7.985	98.537							
5	0.049	0.824	99.362							
6	0.038	0.638	100.000							

each plant

因子. 第 3 个因子的特征根为 1.076, 方差贡献率为 17.925%. 其他因子的贡献率分别为 7.985%、 0.824%和 0.638%, 依次明显减少. 前 3 个因子的累积方差贡献率为 90.552%, 表明前 3 个因子已经把文冠果主要产量、含油率性状 90.552%的信息反映出来, 因此可以选取前 3 个因子为主因子, 并将其作为高产、高含油率文冠果单株选择的综合指标, 记 3 个主因子为 F_1 、 F_2 、 F_3 .

对因子载荷矩阵进行方差最大正交旋转,根据旋转后的因子载荷矩阵,可以确定不同主因子所代表的变量. 从表 3 可以看出, F_1 主要代表了种子产量(0.976),果实鲜质量(0.967)以及结果数(0.975)等指标,称之为产量因子,即 F_1 得分较高时产量必然较高. F_2 主要代表了百果质量(0.835)的指标,另外出籽率的绝对值也较大(0.866). F_3 以含油率(0.961)的绝对值最大,称之为含油率因子, F_3 得分较高则代表该株种子含油率也高.

表 3 各变量旋转因子矩阵
Tab. 3 Rotated component matrix

	主因子						
指标	\overline{F}_1	\boldsymbol{F}_2	F_3				
出籽率	-0.059 190	-0.866 340	0.237 695				
百果质量	0.041 541	0.835 468	0.325 137				
果实鲜质量	0.967 336	0. 187 431	0.051 997				
结果数	0.975 287	-0.056 110	-0.068 870				
种子产量	0.975 898	0.028 997	0.077 618				
含油率	0.029 807	0.017 908	0.961 262				

如果分别用 X_1 、 X_2 、 X_3 、 X_4 、 X_5 、 X_6 表示百果质量、果实鲜质量、结果数、种子产量、出籽率、含油率 6 个变量,则根据因子得分的系数矩阵,可列出前 1、3 主因子的函数表达式为:

 $F_1 = 0.071X_1 + 0.341X_2 + 0.327X_3 + 0.335X_4 - 0.067X_5 + 0.030X_6$;

 $F_3 = 0.121X_1 - 0.007X_2 - 0.067X_3 + 0.048X_4 + 0.396X_5 + 0.867X_6.$

可以看出, F_1 的表达式中果实鲜质量、结果数、种子产量的系数较大, F_3 的表达式中含油率的系数最大.

2.3 优良单株选择

根据选优目标,即高产、高含油率优树的筛选,计算各单株第1主因子与第3主因子的得分值,以方差贡献率为权重,求出各单株的综合得分,再以综合得分的大小排序.根据评分原则按照10%的入选率,入选的37个单株的第1主因子(F_1)与第3主因子(F_3)的得分和综合得分排序见表4.

表 4 第 1,3 主因子得分以及参试单株综合评价得分 Tab. 4 Scores of F_1 and F_3 and synthesis evaluation score of

	each p	nanı			_		
单株编号	F_1	F_3	总分1)	单株编号	\boldsymbol{F}_1	F_3	总分1)
02_13_03	6.44	0.22	2.94	01_23_15	0.87	2.58	1.05
01_13_04	5.74	1.38	2.85	02_16_09	2.42	-0.10	1.04
02_28_4	2.34	1.23	1.86	01_11_05	2.22	0.45	1.04
02_12_8	2.96	-0.14	1.73	02_7_5	2.19	-0.67	1.01
02_19_36	3.96	0.10	1.72	01_15_08	1.65	0.28	0.99
02_16_37	2.41	1.61	1.60	01_12_16	2.52	0.00	0.98
02_14_15	3.18	0.70	1.58	02_7_4	2.13	0.43	0.96
01_19_49	2.60	-0.89	1.51	02_13_07	2.58	=0 ³ 1	0.93
02_8_6	3.17	-0.29	1.50	01_26_38	0.91	1.41	0.91
02_8_8	1.97	1.21	1.46	02_17_23	1.60	-0.60	0.91
02_17_22	2.54	0.48	1.43	02_14_29	1.49	-0.04	0.88
02_12_05	3.36	-0.31	1.37	02_16_03	0.85	0.89	0.84
02_19_32	2.53	1.09	1.22	02_17_20	1.39	-0.44	0.82
02_4_3	2.86	-0.49	1.15	02_16_11	0.52	1.86	0.81
02_7_7	1.40	0.40	1.13	02_19_31	1.34	-0.07	0.75
02_12_07	2.42	1.02	1.12	01_7_11	1.66	-0.69	0.74
02_19_30	1.06	1.60	1.10	02_3_3	1.24	0.45	0.73
01_22_11	1.79	-0.14	1.09	02_22_04	1.15	1.80	0.72
02_8_9	1.31	1.45	1.05			<u>.</u>	

1)总分 = F_1 得分× F_1 贡献率(48.22%) + F_3 得分× F_3 贡献率(17.93%)

2.4 聚类分析

根据第1主因子和第3主因子的得分值对所观测的374个单株进行分层聚类,结果见表5.

表 5 所有单株 F_1 、 F_3 主因子聚类分析结果 Tab. 5 Result of all plants' F_1 and F_3 cluster analysis

		_		
	逐类类别	单株数	F ₁ 均值	F ₃ 均值
	I	2	6.09	0.80
	${\rm I\hspace{1em}I}$	35	2.05	-0.32
	Ш	320	-0.24	0.15
	IV	17	-0.41	-2.30

由聚类分析结果(表 5)可知, F_1 的得分均值顺序为 I > III >

3 讨论与结论

研究表明,所有观测单株在各性状上存在着较大的变异,种子产量间的变异最大.

采用因子分析法将文冠果的 6 个主要经济性状转化为 3 个主因子,3 个主因子提供了原性状90.55%的信息,且具有明确的生物学意义,F₁ 为产量因子,F₂ 为百果质量因子,F₃ 为含油率因子.根据高产、高含油率单株选择的目标,以将 F₁ 和 F₃2 个指标同时考虑求出的各单株的综合得分为标准,筛选出的 37 个优良单株是同时具有高产、高含油率 2 个特性的单株,符合选择目标.同时将所有观测单株分为 4 类,可以根据不同的选优目标进行选择.

从 20 世纪 70 年代中期,人们相继展开了一系 列文冠果的选育工作,并取得了一定的进展.前人对 文冠果的早期选育、优良单株的选择等方面进行的 研究表明,文冠果早期选育是可行的[12-13],选出了不 少优良单株. 但前人对文冠果优良单株选择主要采 用的是制定优树选择标准以及8株对照法等[14-18]. 本研究将因子分析用于高产、高含油率文冠果优良 品种的选择,既能把握品种的综合性状表现,又能简 化选择程序,较人工打分选优快捷,克服了人为的主 观打分误差,且指标权重的确定更具有科学性和客 观性. 笔者实地调查发现, 文冠果长期处于野生状 态,粗放型的管理以及人们的大量砍伐使得早期选 出的优良单株无从查起,因此文冠果的选育工作已 迫在眉睫. 本研究将参试单株的综合得分排序, 其结 果与品种的实际表型相近. 但所选 37 个单株性状的 稳定性以及母本的性状是否能在子代中表现出来, 仍需在实践中连续观测和进一步检验,以确保所选 优树的准确性.

致谢:本研究在中国林业科学研究院林业所王涛院士指导下完成,在此深表谢意!

参考文献:

- [1] 牟洪香. 木本能源植物文冠果(Xanthoceras sorbifolia Bunge.)的调查与研究[D]. 北京:中国林业科学院林业研究所,2006:59-61.
- [2] 李瑞平,张永信,王鑫.北方干旱半干旱地区退耕还林重

- 点树种——文冠果[J]. 河北林业科技,2003(1):51-52.
- [3] 雷小华,涂炳坤,王茂丽,等.主成分分析在香椿性状评价和优良单株选择中的运用[J].华中农业大学学报,2006,25(4):441-444.
- [4] 涂炳坤,郭刚奇,徐正红,等.油桐数量性状的主成分分析及分类[J].华中农业大学学报,1994,13(3):296-300.
- [5] 韩凤鸣,牛立新,张延龙,等.百合性状的主成分分析 [J].西北林学院学报,2006,21(2):90-92.
- [6] 王以群,鲍元奇,张颖. GB/T15690—1995 油籽含油量 核磁共振测定法[S]. 北京:中国标准出版社,1995:1-8.
- [7] 陈斐.油桐33个家系的因子分析与选优研究[J].浙江 林业科技,1999,18(3):18-23.
- [8] 郭军战,张龚,成密红,等. 葛藤优良单株选择[J]. 西北 林学院学报,2006,21(3):50-53.
- [9] 郭宝林,杨俊霞,李永慈,等.主成分分析法在仁用杏品种主要经济性状选种上的应用研究[J]. 林业科学,2000,36(6):53-56.
- [10] 朱道圩,海沃德猕猴桃杂种 F₁ 实生群体表型变异的主成分分析与优良单株选择[J]. 果树科学,1996,13 (4):215-218.
- [11] 裴鑫德. 多元统计分析及其应用[M]. 北京:北京农业 大学出版社,1991:196-216.
- [12] 廖礼科,雷开寿,文冠果早期选优的初步探讨[J].陕西 林业科技,1981(6);31-32.
- [13] 党拴印, 文冠果优良单株选择的可能性及其增产潜力 [J]. 陕西林业科技,1981(6):33-34.
- [14] 翁牛特旗乌丹经济林场,辽宁省熊岳农业科学研究所. 文冠果优树评选标准及优良单株介绍[J].辽宁林业科技,1975(5):10-12.
- [15] 辽宁省文冠果科研协作组. 文冠果优树评审会议纪要 [J]. 辽宁林业科技,1978(1):45-45.
- [16] 内蒙古林学院林学系. 文冠果优良单株——内林 53 号 [J]. 林业科技通讯,1980(7):4-5.
- [17] 董云岚. 文冠果优树选择法[J]. 河南农林科技,1982 (1):30-33.
- [18] 安守琴, 贾桂霞. 文冠果优良无性系选择[J]. 内蒙古林 学院学报,1987(2):52-59.

【责任编辑 李晓卉】