池养条件下卵形鲳鲹仔、稚鱼生长与摄食特性

甘炼,郭邦勇,刘丽,赵会宏,唐汇娟,梁柳华(华南农业大学动物科学学院,广东广州510642)

摘要:对人工培育的卵形鲳鲹 Trachinotus ovatus 早期发育阶段的摄食与生长特性进行了观察与分析,结果表明:每日8:00—10:00 及 16:00—18:00 卵形鲳鲹的饱满指数相对较高,卵形鲳鲹摄食节律属于晨昏型,仔鱼出膜后的13、18、23、28、35 日龄卵形鲳鲹的日摄食率分别为 43.04%、37.76%、37.64%、25.47%和 22.12%,呈现逐步下降趋势;卵形鲳鲹仔、稚鱼全长(L)与日龄(t)回归方程为 L = 0.022 $1t^2$ - 0.209 3t + 2.803 1, R^2 = 0.979 6, 体高(h)与日龄(t)回归方程为 h = 0.013 $3t^2$ - 0.169 0t + 1.515 1, R^2 = 0.980 6, 体质量(m)与日龄(t)回归方程为 m = 0.2 × 10 - 6 $t^{3.998\,8}$, R^2 = 0.939 8, 全长(L)与体质量(m)关系式为 m = 0.000 $4L^2$ + 0.004 8L - 0.023 2, R^2 = 0.992 3.

关键词:卵形鲳鲹; 仔鱼; 稚鱼; 生长; 摄食;

中图分类号:Q175

文献标识码:A

文章编号:1001-411X(2009)04-0074-04

Feeding Habits and Growth Characteristics of Larval and Juvenile *Trachinotus ovatus* in Pond

GAN Lian, GUO Bang-yong, LIU Li, ZHAO Hui-hong, TANG Hui-juan, LIANG Liu-hua (College of Animal Science, South China Agricultural University, Guangzhou 510642, China)

Abstract: Feeding habits and growth characteristics of larval and juvenile *Trachinotus ovatus* were studied in pond, and the results showed that the fullness index of *T. ovatus* was relatively higher at 8:00-10:00 and 16:00-18:00 in one day, Therefore, it showed that the daily feeding rhythm appeared to be morning-dusk feeding model. The daily feeding rates were 43.04%, 37.76%, 37.64%, 25.47% and 22.12% at the 13^{th} , 18^{th} , 23^{th} , 28^{th} , 35^{th} day, respectively, which had a gradually decrease trend. The relationship between total length and day age could be expressed as $L = 0.0221t^2 - 0.2093t + 2.8031$, $R^2 = 0.9796$, that between body height and day age as $h = 0.0133t^2 - 0.1690t + 1.5151$, $R^2 = 0.9806$, that between body mass and day age as $m = 0.2 \times 10^{-6}t^{3.9988}$, $R^2 = 0.9398$, and that between total length and body mass as $m = 0.0004L^2 + 0.0048L - 0.0232$, $R^2 = 0.9923$.

Key words: Trachinotus ovatus; larve; juvenile; growth; feeding

卵形鲳鲹 Trachinotus ovatus 俗名金鲳鱼,地方名称黄腊鲳、金鲳、黄腊鲹、卵鲹、短鳍鲳鲹、红三、红沙等,属硬骨鱼纲鲈形目鲹科鲳鲹亚科鲳鲹属. 该鱼肉无脊间刺,肉质细嫩,味鲜美,具有鲹类的特殊香味,历来被列为名贵食用鱼类. 该鱼广泛分布于世界各大洋,在东南亚、澳大利亚、日本、美洲热带和温带的

大西洋海岸、非洲西岸等地区均有分布. 在中国的东海、南海和黄海,广东、广西、海南、福建沿海均有一定的资源量^[1]、该鱼生长速度快,适应能力强,养殖成活率高等,当年放养7 cm 左右的苗种,经过4~5个月养殖,体质量可达400~500 g左右^[2]. 1990 年台湾卵形鲳鲹人工育苗获得突破^[3],集美大学水产学

院于1999年培育出 4~5 cm 幼鱼 25 万尾,取得育苗初步成功^[4]. 此后各地学者对其苗种培育、人工养殖、病害防治等方面进行了研究^[5-7]. 目前海南、广东和福建等地每年总产苗量已超过 2 千万尾,有力推动了卵形鲳鲹养殖的产业化发展. 虽然卵形鲳鲹的人工繁育已获得成功,但仍存在苗种成活率需进一步提高等问题,本文旨在对卵形鲳鲹早期生长与摄食进行研究,为加强卵形鲳鲹苗种培育提供一定的理论基础.

1 材料与方法

1.1 亲鱼繁殖与仔、稚鱼培育

试验用鱼取自阳江鸿运海水育苗场,卵形鲳鲹亲鱼来源于该育苗场网箱培育,2006年4月25日人工繁殖出膜,鱼卵孵化后将卵形鲳鲹鱼苗置于2000 m²的土池中培育.土池使用10 d前用0.25 kg/m²生石灰清塘,清塘3 d后施发酵基肥1.0 kg/m²,并加注新鲜海水.鱼苗下塘前第3 d开始泼洒豆浆,以培育轮虫,且鱼苗下塘后的10 d内,每天早上10:00 从轮虫培养水泥池捕捞轮虫投至试验池塘.卵形鲳鲹鱼苗种放养密度为300 尾/m².苗种培育期间,池塘水体温度18~27℃,盐度为31‰.

1.2 生长发育测定

按陈伟洲等^[4]和 Kendall 等^[8]仔、稚鱼分期标准划分各发育阶段,取样时间为初孵仔鱼到稚鱼期,总共取样 35 d,每日龄随机抽取 30 尾,卵形鲳鲹进入幼鱼期不再取样. 所取样品在解剖镜(带目测微尺)下观察标本的外部形态特征,并测量所有标本的全长、体高. 用滤纸吸干标本水分后,在电子天平上称量 30 尾所取样本的总体质量,并计算体高与全长的比以及平均体质量. 全长、体质量和体高瞬时增长率计算公式如下:

全长瞬时生长率 = $(\ln L_2 - \ln L_1)/(t_2 - t_1) \times 100\%$,

体质量瞬时生长率 = $(\ln m_2 - \ln m_1)/(t_2 - t_1) \times 100\%$,

体高瞬时生长率 = $(\ln h_2 - \ln h_1)/(t_2 - t_1) \times 100\%$.

式中: t_1 、 t_2 为日龄; L_1 、 L_2 分别为 t_1 、 t_2 时的全长 (mm); m_1 、 m_2 分别为 t_1 、 t_2 时的体质量(g); h_2 、 h_1 分别为 t_1 、 t_2 时的体高(mm).

1.3 摄食节律观察

卵形鲳鲹孵化出膜后的第 13、18、23、28、35 d 取样,从取样日的早上6:00 开始取样,每间隔 2.0 h 取

样1次,共12次,每次取样30尾. 先用滤纸吸干鱼体表水分,10尾鱼为1组,测定每组的总体质量,剖腹取其胃肠,将其中的食物团取出称量,并观察肠胃充塞度及食物在肠胃中移动情况等. 计算每尾被测鱼的饱满指数和同一批鱼的平均饱满指数,作为卵形鲳鲹1d中某一时段的摄食强度指标.

在取鱼测定其饱满指数的同时,将一批饱食的鱼放入清水中饲养,每隔 1.0 h 随机取出 5 尾,解剖观察胃肠内容物移动情况,直至肠道排空,求得食物通过消化道的时间 $T^{[9]}$.

通过对卵形鲳鲹昼夜肠胃饱满指数的连续测定,了解卵形鲳鲹的摄食节律,由同一天中测得的各次饱满指数计算日平均饱满指数,并由此求得日摄食率.

 $k = m_{\rm f}/m_{\rm b} \times 100$, $k_{\rm a} = \sum k/12$, $k_{\rm d} = (24 \times k_{\rm a})/T$. 式中: k 为饱满指数; $k_{\rm a}$ 为日平均饱满指数,即同一天测得各次饱满指数的平均值; $m_{\rm f}$ 为食物团质量; $k_{\rm d}$ 为日摄食率,即单位体质量鱼日摄食量,百分比表示; $m_{\rm b}$ 为鱼体质量; T 为食物通过消化道时间.

1.4 数据处理

试验数据运用 Excel 和 SPSS 13.0 进行处理与分析,结果用 M ± S. E. 表示.

2 结果

2.1 仔、稚鱼生长特性

卵形鲳鲹苗种培育期间,每天取样测定全长、体质量和体高生长数据,23 日龄前测鱼体总质量后求平均值,23 日龄后逐尾测体质量.

2.1.1 全长日变化 卵形鲳鲹孵化出膜后,其全长 (L)与日龄(t)变化如图 1,全长与日龄关系经分析的回归方程:L=0.022 $1t^2-0.209$ 3t+2.803 $1,R^2=0.979$ 6. 仔鱼期全长瞬时生长率为 7.79%,稚鱼期全长瞬时生长率为 8.13%,稚鱼期全长生长快于仔鱼期.

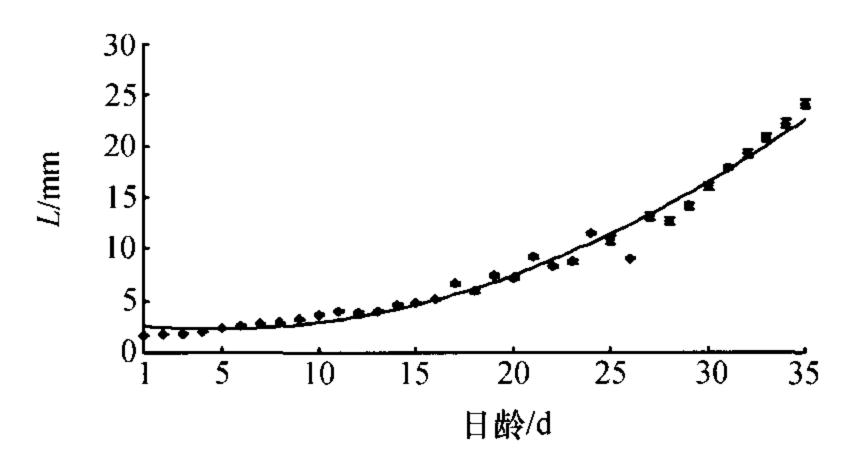


图 1 卵形鲳鲹仔、稚鱼全长(L)生长情况

Fig. 1 The body length (L) growth of *Trachinotus ovatus* larvae and juvenile in different day age

2.1.2 体高日变化 仔鱼体高从 5 日龄卵黄囊消失后 开始 测量, 仔鱼期体高瞬时生长率为13.13%, 稚鱼期体高瞬时生长率为9.09%, 进入稚鱼期后体高生长速度趋缓. 经回归分析, 得回归方程: h=0.013 $3t^2-0.169$ 0t+1.515 1, $R^2=0.980$ 6 (图 2).

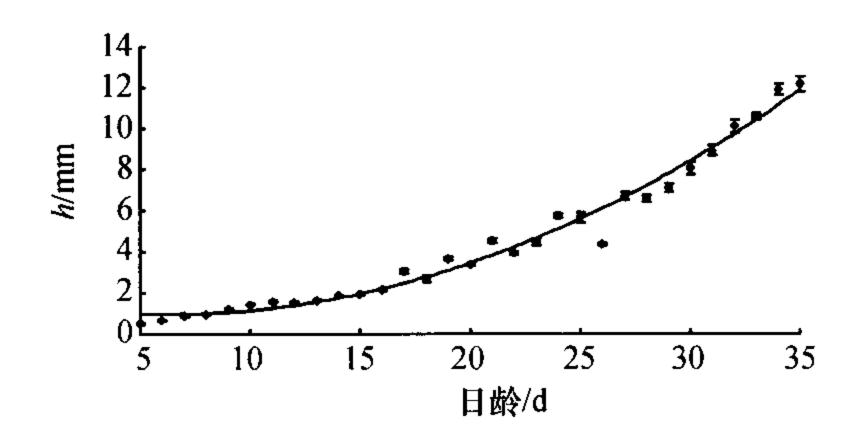


图 2 卵形鲳鲹仔、稚鱼体高(h)生长情况

Fig. 2 The body height (h) growth of *Trachinotus ovatus* larvae and juvenile in different day age

2.1.3 体质量日变化 卵形鲳鲹仔稚鱼体质量测

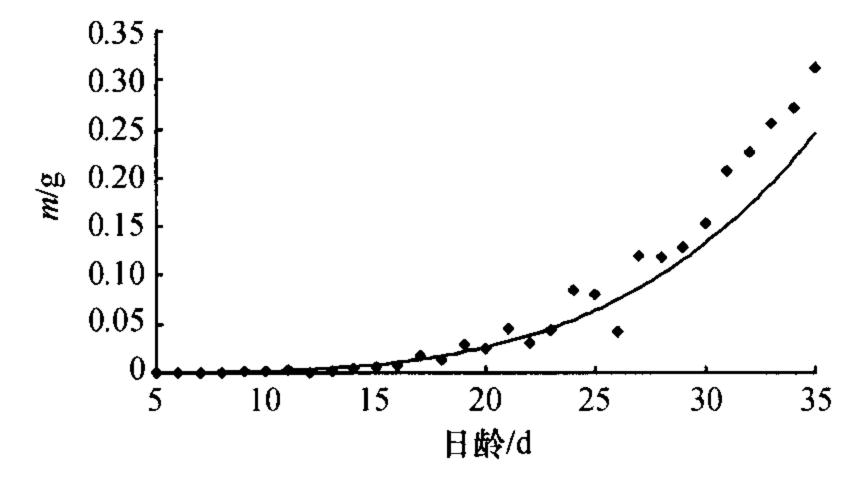


图 3 卵形鲳鲹体质量(m)生长情况

Fig. 3 The body mass (m) growth of *Trachinotus ovatus* larvae and juvenile in different day age

量从 5 日龄开始,体质量生长见图 3,经过回归分析得方程: $m = 0.2 \times 10^{-6} t^{3.9988}$, $R^2 = 0.9398$. 仔鱼期体质量瞬时生长率为 27.01%,稚鱼期体质量瞬时生长率为 20.26%,仔鱼期体质量增长速度快于稚鱼期.

$$m = 0.000 \ 4L^2 + 0.004 \ 8L - 0.023 \ 2$$
, $R^2 = 0.992 \ 3$;
 $m = 0.3 \times 10^{-4} L^{3.181 \ 2}$, $R^2 = 0.959 \ 9$.

两种回归方程的全长与体质量相关关系均非常显著,但是抛物线方程的 *R* 值高于幂函数方程,所以选用抛物线方程(图 4).

2.2 仔稚鱼摄食节律

根据不同时段饱满指数结果计算(见表 1),试验表明:13、18、23、28、35 日龄卵形鲳鲹日摄食率分别为 43.04%, 37.76%、37.64%、25.47%和22.12%,呈现逐步下降趋势.

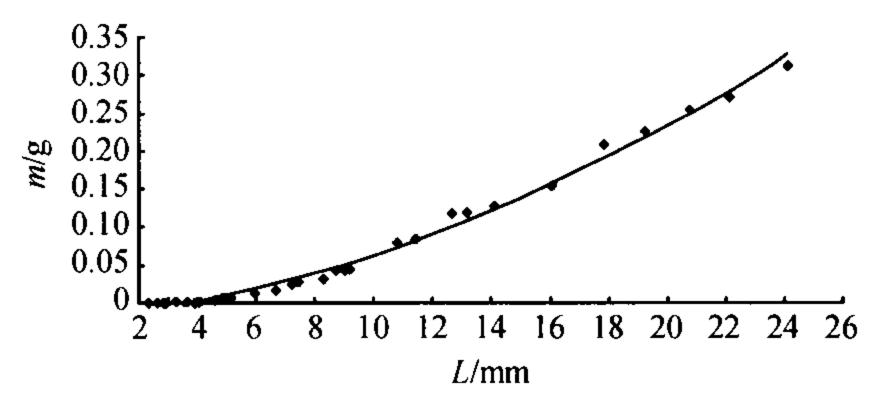


图 4 卵形鲳鲹全长(L)与体质量(m)关系

Fig. 4 The relationship between body length (L) and body mass (m) of *Trachinotus ovatus* larvae and juvenile

表 1 卵形鲳鲹不同测定时间段饱满指数昼夜变化

Tab. 1 Changes of fullness coefficient on different time point of each day in its different developing period

J			-	1 0 1	
测定时间	13 日龄	18 日龄	23 日龄	28 日龄	35 日龄
00:00	12.59 ± 1.25	9.77 ± 0.89	9.11 ± 0.97	11.27 ± 2.01	8.57 ± 0.77
2:00	10.93 ± 2.02	8.50 ± 1.23	7.23 ± 1.14	9.20 ± 1.08	5.12 ± 1.21
4:00	8.57 ± 1.11	7.18 ± 1.45	5.21 ± 0.78	6.50 ± 0.81	3.01 ± 0.82
6:00	7.72 ± 2.13	6.13 ± 1.38	2.22 ± 0.65	7.84 ± 1.20	4.12 ± 0.56
8:00	12.00 ± 1.32	12.76 ± 2.01	4.65 ± 1.45	10.67 ± 1.06	8.11 ± 0.68
10:00	13. 14 \pm 2. 55	13.66 ± 1.49	11.23 ± 1.41	11.60 ± 0.98	8.12 ± 1.02
12:00	10.53 ± 1.23	8.09 ± 1.22	10.11 ± 1.56	7.34 ± 1.21	7.12 ± 1.11
14:00	8.58 ± 1.07	6.06 ± 1.04	8.23 ± 1.28	6.63 ± 0.98	5.34 ± 0.49
16:00	10.84 ± 0.98	9.32 ± 1.51	5.12 ± 1.33	10.57 ± 1.25	4.22 ± 0.56
18:00	12.34 ± 1.25	11.72 ± 1.72	6.20 ± 1.52	11.30 ± 1.27	5.18 ± 0.87
20:00	11.51 ± 1.75	10.49 ± 1.34	10.12 ± 1.35	12.19 ± 1.52	9.27 ± 1.17
22:00	10.39 ± 1.22	9.21 ± 2.01	9.78 ± 1.46	8.15 ± 1.11	9.22 ± 0.98
日平均饱满指数	10.76	9.44	9.41	7.43	6.45
日摄食率/%	43.04	37.76	37.64	25.47	22. 12

在仔、稚鱼阶段,卵形鲳鲹 13、18、23、28、35 日龄出现2个摄食高峰,上午8:00—10:00 以及下午16:00—18:00 之间均呈现上升趋势,表明该2个阶段卵形鲳鲹均在摄食,推测卵形鲳鲹摄食节律属于晨昏型.

3 讨论

3.1 卵形鲳鲹仔、稚鱼生长

卵形鲳鲹出膜后鱼体细长型,4 日龄开口摄食仔鱼的体高为全长的 22.3%,仔鱼期体高瞬时增高率为 13.13%;进入稚鱼期后 15 日龄后尾椎骨分叉,体高逐步增高,为全长的 40.2%,体型呈现椭圆形,21 日龄后稚鱼体高平均为全长的 50%,体态基本与成鱼相似,稚鱼期体高瞬时增高率为 9.09%;35 日龄后进入幼鱼期.

卵形鲳鲹仔鱼期全长瞬时增长率为 7. 79%, 稚鱼期为 8. 13%, 呈现上升趋势; 仔鱼期体质量增长率为 27. 01%, 稚鱼期为 20. 26%, 与全长增长率相反,呈现逐步下降趋势. 全长、体高、体质量生长均符合二次方程, 且相关性较好. 许多学者对鱼类全长与体质量进行了拟合, 获得了各种鱼类全长与体质量的生长方程, 如 $m = aL^b$ 、m = a + bL、 $m = a + bL^2$ 、 $m = ae^{bL}$ 和 $m = ae^{bL}$ 等[10]. 在卵形鲳鲹仔稚鱼的生长中,全长与体质量的关系属于抛物线函数.

陈伟洲^[4]研究表明,卵形鲳鲹出膜后,在水温为23~24℃经过20 d 的人工培育进入幼鱼期,而本次培育的卵形鲳鲹在水温为18~27℃时要经过35 d 才达到幼鱼期,发育速度要远慢于前者,结果差异较大,可能是由于培育时的温度、盐度、水体中的饵料生物不同造成的. 对真鲷 Pagrosomus major 仔、稚、幼鱼的生长情况研究,同样发现当水温在12~22℃时,经60 d 培育,平均全长仅20 mm;水温为21~26℃,经39 d 培育,平均全长为25.0 mm;而当水温为23~27℃时,经55 d 培育,平均全长可达49~62 mm,不同的培养温度下鱼体生长发育受到极大影响^[11].

3.2 卵形鲳鲹摄食节律与日摄食率变化

Helfman 将鱼类的摄食分为白昼摄食、夜晚摄食、晨昏摄食和无明显节律 4 种类型^[12]. 自然条件下,许多鱼类仔鱼和幼鱼的摄食均表现出明显的昼夜节律性. 本试验结果表明,卵形鲳鲹仔、稚鱼期属于晨昏摄食型鱼类,且其摄食活动均偏向白天,与真鲷仔、稚鱼^[11]、浅色黄姑鱼 Nibea chui^[13]相似. 但与革胡子鲇 Clarias lazera^[14]、黄颡鱼 Pelteobagrus fulvid-kraco^[15]等一些营底栖生活的淡水鱼类有差异.

本试验中卵形鲳鲹 13,18,23,28,35 日龄日摄

食率分别为 43.04%, 37.76%, 37.64%, 25.47% 和 22.12%, 日摄食率随着生长发育而逐步下降, 与其他鱼类均相似[12,15]. 目前在卵形鲳鲹苗种的培养过程中, 为补充生物饵料不足而投饵鳗鱼粉状饲料[12], 应根据日摄食率随时调整投饵量, 考虑到仔稚鱼摄食能力较差, 日投喂量应高于日摄食率 10%~15%左右可能比较合适, 以避免饵料浪费及污染水体,或者投饲不足. 根据卵形鲳鲹苗种的摄食节律, 投喂饵料时间宜在上午8:00—10:00 以及下午16:00—18:00.

参考文献:

- [1] 朱元鼎,张春霖,张有为,等.南海鱼类志[M].北京:科 学出版社,1962:392-394.
- [2] 杨火盛. 卵形鲳鲹人工养殖试验[J]. 福建水产,2006 (108):39-41.
- [3] 陈世杰. 台湾人工繁殖海水鱼苗种名辑录[J]. 福建水产,1995(1):81.
- [4] 陈伟洲,许鼎盛,王德强,等. 卵形鲳鲹人工繁殖及育苗技术研究[J]. 台湾海峡,2007,26(3):435-442.
- [5] 李庆欣. 卵形鲳鲹在热带海区的网箱养殖试验[J]. 南海研究与开发,1994(4):48-51.
- [6] 方永强,戴燕玉,洪桂英.卵形鲳鲹早期卵子发生显微及超微结构的研究[J].台湾海峡,1996,15(4):407-411.
- [7] 王江勇,郭志勋,黄剑南,等.一起卵形鲳鲹幼鱼死亡原因的调查[J].南方水产,2006,2(3):54-56.
- [8] KENDALL A W, Jr, AHLSTROM E H, MOSER H G. Early life history stages of fishes and their characters [M]// MDSER H G. Ontogeny and systematics of fishes. Lawrence: Allen Press, 1984:11-22.
- [9] 李宽意,王春忠,刘正文,等.大口胭脂鱼鱼种的摄食节律和日摄食率[J].大连水产学院学报.2006,21(3):290-293.
- [10] KNIGHT W. Asymptotic growth: An example of non-sense disguised as mathematics [J]. J Fish Res Board Can, 1968, 25:1303-1307.
- [11] 张雅芝,陈而兴.春季生殖真鲷仔、稚、幼鱼的摄食与生长[J].海洋科学,1996,45:254-262.
- [12] HELFMAN G S. Fish behavior by day-night and twilight [M]//PITCHER. T J. The Behavior of teleost fishes. Baltimore Maryland: The Jhons Hopkins University Press, 1986:366-387.
- [13] 张雅芝,胡家财,谢仰杰.浅色黄姑鱼早期发育阶段的摄食习性与生长特性[J].热带海洋学报,2006,25(5):74-79.
- [14] 汪留全,程云生. 池养条件下革胡子鲶仔幼鱼摄食习性与生长的初步研究[J]. 水产学报,1990,14(2):105-113.
- [15] 王春芳,谢从新,马俊.黄颡鱼早期发育阶段的摄食节律及日摄食量[J].水产学杂志,2001,14(2):66-68.

【责任编辑 柴 焰】