氟苯尼考-β-环糊精包合物的研制

魏海涛,宋 敏,李亮华,骆 飚,曾振灵,黄显会 (华南农业大学兽医学院,广东广州510642)

摘要:选择饱和水溶液法制备氟苯尼考 $-\beta$ - 环糊精包合物;通过高效液相色谱法(HPLC)测定氟苯尼考 $-\beta$ - 环糊精包合物的溶解度和溶出度;采用差热分析法对氟苯尼考 $-\beta$ - 环糊精包合物进行物相鉴定. 结果表明,氟苯尼考 $-\beta$ - 环糊精包合物中氟苯尼考溶解度和溶出度明显增大,氟苯尼考 $-\beta$ - 环糊精包合物能显著提高氟苯尼考的水溶性.

关键词:氟苯尼考; β -环糊精;包合物;溶解度;溶出度

中图分类号:S859.5

文献标识码:A

文章编号:1001-411X(2009)04-0094-04

Preparation of Inclusion Complex of Florfenicol-\(\beta\)-Cyclodextrin

WEI Hai-tao, SONG Min, LI Liang-hua, LUO Biao, ZENG Zhen-ling, HUANG Xian-hui (College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China)

Abstract: Florfenicol- β -cyclodextrin was prepared by saturated water solution method; HPLC method was used to determine the solubility and dissolution rate of florfenicol- β -cyclodextrin; The differential thermal analysis (DTA) method was used to describe the status of Florfenicol in inclusion complex. The results showed that the solubility and dissolution rate of florfenicol- β -cyclodextrin were significantly raised compared with Florfenicol itself, florfenicol- β -cyclodextrin can significantly increase its water-solubility.

Key words: florfenicol; β -cyclodextrin; inclusion complex; solubility; dissolution rate

氟苯尼考(Florfenicol)是一种优良的动物专用广谱抗生素,兽医临床上广泛应用于敏感菌所致的畜禽细菌性疾病的治疗,且效果显著. 但因本品水溶性极差,造成药物在动物体内的吸收及生物利用度很低^[1],用药成本较高,且容易造成药物残留,并诱发耐药菌株的产生. 故提高该药的水溶性对于提高生物利用度具有重要意义. 目前,提高氟苯尼考水溶性的方法主要可分为2 大类:一是物理方法,包括加助溶剂微粉化、β - 环糊精包合^[2]、羟丙基 - β - 环糊精包合^[3]、固体分散体^[1,4]等;另一是化学方法,即将氟苯尼考制成无活性的前药^[5-7],进入动物体后代谢为氟苯尼考制成无活性的前药^[5-7],进入动物体后代谢为氟苯尼考发挥作用,其特征是水溶性远大于物理方法,但制备成本较高. β - 环糊精(β-Cyclodextrin, β-CD)分子可以改变客体分子的状态和稳定性^[8],环

糊精包合技术能够改善难溶性药物溶解度、提高生物利用度、增强药物稳定性、减少药物副作用,越来越受到人们的关注^[9]. 本试验选用包合物技术展开对难溶性药物氟苯尼考的研究,研制氟苯尼考 - β - 环糊精包合物,以提高氟苯尼考水溶性,为氟苯尼考新药开发和临床应用研究提供试验依据.

1 材料与方法

1.1 材料与仪器

氟苯尼考:98.0%,批号170062108,湖北中牧安达药业有限公司. β-环糊精:批号20040402,上海伯奥生物科技有限公司.溶出试验仪:RCY-808,天津科益达科技有限公司.高效液相色谱仪:LC-20AT,SPD-20A,SHIMADZU.差热热重联用仪:DTG-60,

收稿日期:2008-10-30

作者简介:魏海涛(1984—),男,硕士研究生,现在广东省动物保健品协会工作;通讯作者:黄显会(1969—),男,高级兽医师, E-mail:xhhuang@scau.edu.cn

基金项目:"十一五"国家科技支撑计划(2006BAD31B06);上海市科技兴农重点攻关项目(沪农科攻字(2006)第10-3号)

SHIMADZU.

1.2 试验方法

1.2.1 氟苯尼考的含量测定 采用 HPLC 法. 色谱 柱:Hypersil BDS C18 柱(4.6 mm×250 mm,5 μm); 柱温:室温;流速:1.0 mL·min⁻¹;进样量:10 μL.

1.2.2 氟苯尼考 - β - 环糊精包合物 (Florfenicol-β-Cyclodextrin)的制备 氟苯尼考用少量乙醇溶解制 成饱和溶液 A,一定量的 β - 环糊精用蒸馏水在一定 温度下制成饱和溶液 B,恒温搅拌下,缓慢将溶液 A 滴入溶液 B 中,滴毕,继续搅拌一段时间,停止加热, 再冷却至室温,敞口搅拌4h,置冰箱中冷藏12h,析 晶,抽滤,用少量乙醇快速洗涤,于60℃真空干燥, 过 100 目筛,即得.

以氟苯尼考 -β-环糊精包合物的收得率和包 合率为考察指标,按 $L_9(3^4)$ 正交设计(表1)进行试 验,对其进行综合评分[综合评分=(收得率+包合 率)/2],使用最大极差法处理数据分高者优(表2). 收得率 = $\frac{m($ 氟苯尼考 - β - 环糊精包合物)}{m(氟苯尼考) + m(β - 环糊精) × 100%.

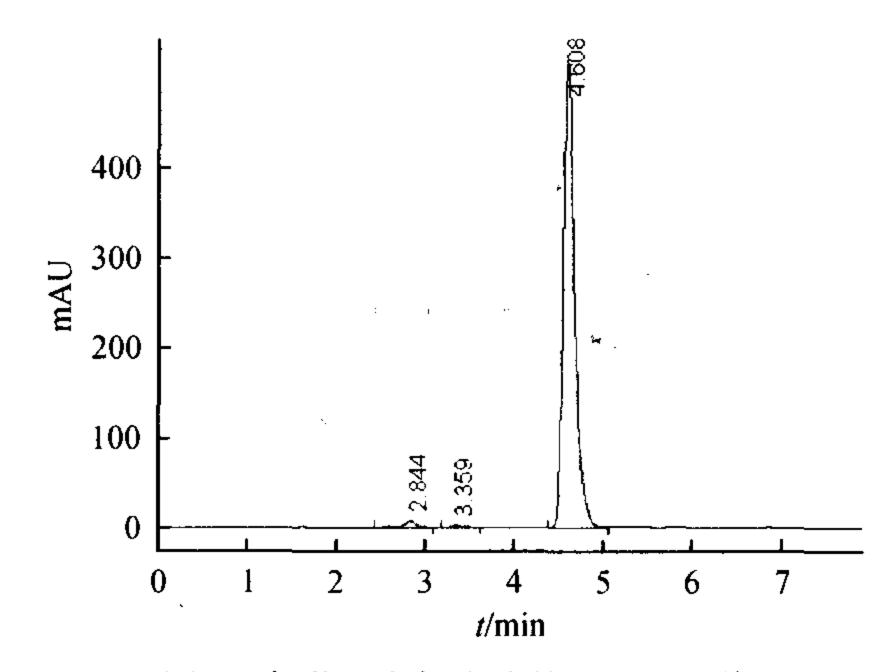
包合率 = $\frac{m($ 氟苯尼考 - β - 环糊精包合物中的氟苯尼考)}{m(氟苯尼考)

 $\times 100\%$.

正交设计试验的因素和水平

Factors and levels of orthogonal design

	因素				
水平	n(氟苯尼考): n(β-环糊精) (A)	θ/°C (B)	<i>t</i> /h (C)	搅拌速度/ (r・min ⁻¹) (D)	
1	1:1	60	0.5	400	
2	1:2	70	1.0	600	
3	1:3	80	1.5	800	


- 1.2.3 物理混合物(Physical mixture)的制备 按处 方精密称取过 100 目筛的载体和氟苯尼考,以等量 递加法于乳钵中混匀,混合过筛,置于干燥器中保存 备用.
- 1.2.4 制备工艺重现性研究 按照正交试验确定 的优选制备工艺制备包合物 4 批,测定其收得率和 包合率,评价其重现性.
- 1.2.5 平衡溶解度试验 分别取过量氟苯尼考、包 合物以及物理混合物于去离子水中,常温下于磁力 搅拌4h,使之形成饱和溶液,取10 mL 离心(4000 r·min⁻¹)30 min,吸取上清液,适度稀释后 HPLC 测 定氟苯尼考的浓度.重复测定4次,比较氟苯尼考、 包合物以及混合物在水中的溶解度变化.

- 1.2.6 体外溶出度试验 取氟苯尼考原药、包合物 以及物理混合物适量(相当于氟苯尼考原药 100 mg),按照中华人民共和国兽药典 2005 年版 1 部附 录 97 第二法(桨法)考察药物溶出速率. 溶出介质为 经脱气处理的去离子水 900 mL,温度 37 ℃,转速 100 r·min⁻¹,分别与 2、5、10、20、30、45、60 min 定量 取样 5 mL,同时补充等量同温介质 5 mL,经 0.2 μm 微孔滤膜过滤, HPLC 测定药物浓度, 计算累积溶出 百分率. 同批样品测定 3 份,结果取平均值.
- 1.2.7 差热分析试验 (Differential thermal analysis, 升温范围: 30 ~ 400 ℃;升温速率: 10 DTA) ℃·min⁻¹;参比物:AL₂O₃;气氛:N₂;分别对氟苯尼 考、β-环糊精、物理混合物、氟苯尼考-β-环糊精 包合物进行 DTA 分析.

结果与分析

氟苯尼考的含量测定

由图 1 可见,氟苯尼考的 HPLC 保留时间为 4.6 min, 峰形好, 基本无拖尾. 以峰面积为横坐标, 质量 浓度为纵坐标进行线性回归,得到回归方程:y =4. 486 $7e^{-5}x - 3$. 459 0(r = 0.9997), 样品质量浓度 在 10~200 μg·mL⁻¹范围内与峰面积呈良好的线性 关系. 说明可以通过 HPLC 法测定氟苯尼考 $-\beta$ - 环 糊精包合物的溶解度和溶出度.

氟苯尼考标准液的 HPLC 图谱 Fig. 1 HPLC of Florfenicol standard solution

氟苯尼考 $-\beta$ - 环糊精包合物和物理混合物的 制备

- 2.2.1 氟苯尼考 $-\beta$ 环糊精包合物的制备 2可见,优选制备工艺为A,B,C,D,,即n(氟苯尼考): $n(\beta - \text{环糊精}) = 1:1, 包合温度 80 ℃, 饱和时间1 h,$ 搅拌速度 400 r·min⁻¹.
- 2.2.2 制备工艺重现性研究 由表3可知,按照正 交试验确定的优选制备工艺(A₁B₃C₂D₁)制备4批氟 苯尼考 - β - 环糊精包合物, 收得率为(81.74 ±

1.02)%,包合率为(86.28±1.75)%,说明在优选工 艺下制备氟苯尼考-β-环糊精包合物重现性良好.

表 2 $L_9(3^4)$ 正交试验结果

Tab. 2 Results of orthogonal experiment

试验号	A	В	С	D	收得率/%	包合率/%	综合评分
1	$\mathbf{A_1}$	B_1	C_1	D_1	49.50	65.73	57.62
2	$\mathbf{A_1}$	B_2	C_2	D_2	75.21	89.22	82.22
3	$\mathbf{A_1}$	B_3	C_3	D_3	82.64	89. 23	85.94
4	A_2	B_1	C_2	D_3	27.75	24.96	26.36
5	$\mathbf{A_2}$	B_2	C_3	D_1	55.22	47.68	51.45
6	$\mathbf{A_2}$	B_3	C_1	D_2	69.67	59.02	64.35
7	$\dot{A_3}$	\mathbf{B}_1	C_3	D_2	29.85	4.19	17.02
8	A_3	B_2	C_1	D_3	45.42	4.93	25. 18
9	$\mathbf{A_3}$	B_3	C_2	D_1	68.57	46.15	57.36
K_1	75.26	33.67	49.05	55.48			
K_2	47.39	52.95	55.31	54.53			
K_3	33. 19	69.22	51.47	45.83			
R	42.07	35.55	6. 26	9.65			<u></u>

表 3 工艺重现性验结果

Tab. 3 Results of reproducibility

试验号	收得率/%	包合率/%
1	79.11	83.27
2	83.91	89.38
3	81.31	83.22
4	82.64	89.23
$\bar{x} \pm SE$	81.74 ± 1.02	86.28 ± 1.75

2.3 平衡溶解度试验

由表 4 可见, 氟苯尼考 - β - 环糊精包合物和物理混合物在水中的溶解度均较氟苯尼考有所增加, 但氟苯尼考 - β - 环糊精包合物效果更加明显, 其在水中的溶解度平均约为氟苯尼考原药的 5.78 倍, 较大提高了氟苯尼考的水溶性.

Tab. 4 Solubility of florfenicol, florfenicol- β -cyclodextrin and physical mixture

编号	溶解度/(mg・mL ⁻¹)			包合物溶解度:
	氟苯尼考原料	混合物	包合物	— 氟苯尼考溶解度
1	1.470 1	6. 134 6	8.558 6	5.82
2	1.507 3	6.167 9	8.712 2	5.78
3	1.502 9	6. 145 3	8.9138	5.93
4	1.4814	6.149 5	8.311 8	5.61
$\tilde{\boldsymbol{x}}$	1.4904	6. 149 3	8.624 1	5.78

2.4 体外溶出度试验

由图 2 可知,制备的氟苯尼考 - β - 环糊精包合物溶出情况良好,在 30 min 时,包合物的累积溶出度达 90%,为氟苯尼考的 3 倍多,可见包合物能明显增强难溶性药物氟苯尼考的溶出速率. 但是 30 min 前,

氟苯尼考 $-\beta$ - 环糊精包合物溶出速率要略低于物理混合物,这是由于物理混合物中难溶性药物分散在水溶性的 β - 环糊精中,增大了药物的可润湿性从而加快溶出,说明物理混合物也对难溶性药物的溶出有相当大的促进作用.

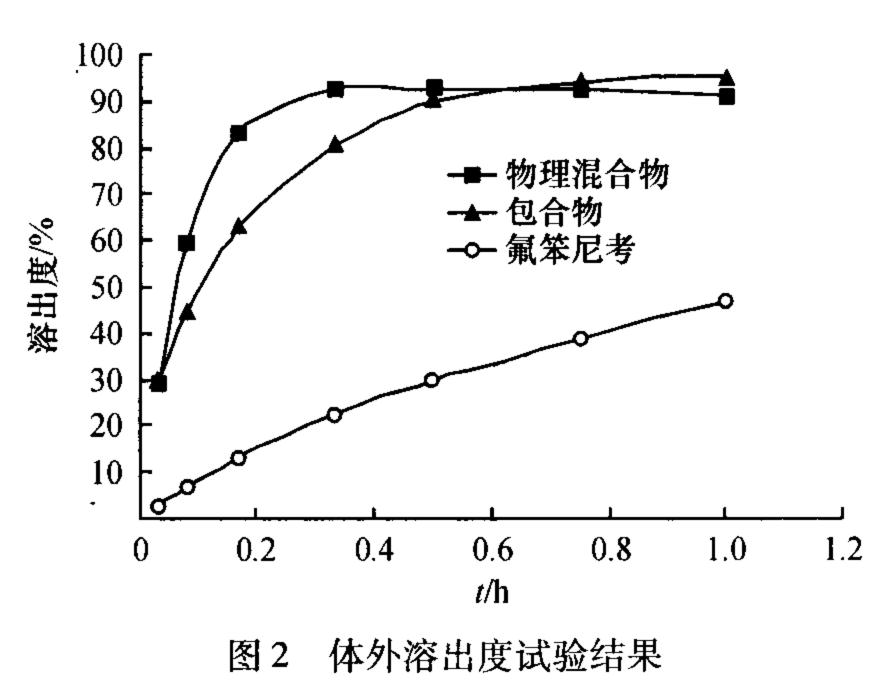
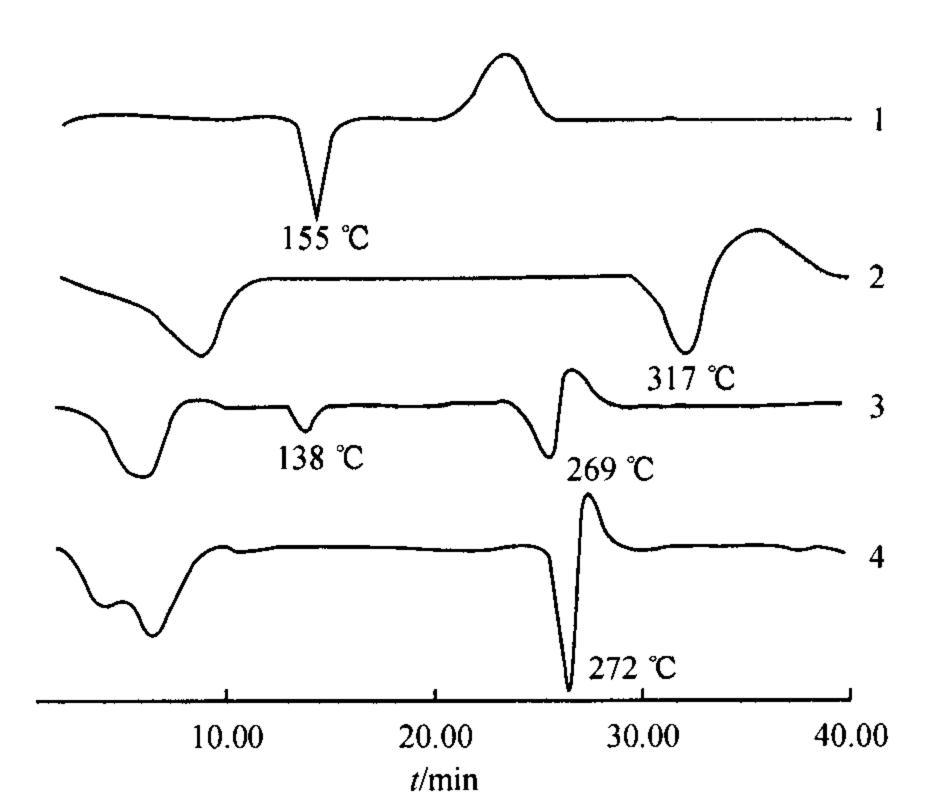



Fig. 2 Results of dissolution rate test

2.5 差热分析试验

1: 氟苯尼考; $2:\beta$ - 环糊精; 3: 物理混合物; 4: 氟苯尼考 - β - 环糊精包含物

图 3 差热分析试验结果 Fig. 3 Results of DTA test

3 结论

采用饱和水溶液法成功制备了氟苯尼考 $-\beta$ - 环糊精包合物,优选制备工艺为:n(氟苯尼考): $n(\beta)$ - 环糊精) = 1:1,包合温度 80 $^{\circ}$ 、饱和时间 1 h,搅

拌速度 $400 \text{ r} \cdot \text{min}^{-1}$. 在此条件下制备了 4 批氟苯尼 考 $-\beta$ – 环糊精包合物, 收得率为 (81.74 ± 1.02) %,包合率为 (86.28 ± 1.75) %,制备工艺简单, 重现性良好, 具有推广应用价值.

氟苯尼考 - β - 环糊精包合物在水中的溶解度 平均约为氟苯尼考原药的 5.78 倍,大大改善了难溶 性药物氟苯尼考的溶解度和溶出度. 差热分析试验 表明,氟苯尼考 - β - 环糊精包合物形成一种新的物 相.

本试验成功制备了氟苯尼考 - β - 环糊精包合物,极大提高了药物的溶解度和溶出度,并且制定了其 HPLC 检测方法,为进一步将氟苯尼考 - β - 环糊精包合物制成理想剂型打下良好基础.

参考文献:

- [1] 洪涛,欧阳五庆. PVPK 氟苯尼考固体分散体的制备及体外溶出速率的研究[J]. 黑龙江畜牧兽医,2005,6:65-67.
- [2] 魏小藏,刘卫,周小顺,等. 氟苯尼考-β-环糊精包合物的制备研究[J]. 中南药学,2006,4(6):406-409.

- [3] 邓利斌,欧阳五庆,景俊年,等. 氟苯尼考-2-羟丙基-β-环糊精包合物制备工艺[J]. 武汉工业学院学报,2005,24(1):10-13.
- [4] 王笃学. 氟苯尼考-PEG6000 固体分散体的研制及其药效学研究[D]. 吉林: 吉林大学农学部畜牧兽医学院, 2005.
- [5] SCOTT H J, SUNIL P V. Florfenicol prodrug having improved water solubility: US, 2005/0182031[P], 2005-08-18.
- [6] 哈克SJ,潘塞尔SV. 具有改善水溶性的氟苯尼考前 药:中国,CN1897954[P]. 2007-01-17.
- [7] YERRAMILLI M, ROBERT H S. Compositions containing prodrugs of florfenicol and methods of use: US, 2005/0014828[P],2005-01-20.
- [8] BENDER M L, KOMIYAMA M. Cyclodextrin reactivity and structure concepts in organic chemistry [M]. Berlin: Springer, 1978:6-96.
- [9] MASAKO O, HIROSHI S, MIEHIYA K, et al. β-Cyclodextrin as a suitable solubilizing agent for in situ absorption study of poorly water-soluble drugs [J]. International Journal of Pharmaceutics, 2004, 280:95-102.

【责任编辑 柴 焰】

欢迎订阅 2010 年《华南农业大学学报》

《华南农业大学学报》是华南农业大学主办的综合性农业科学学术刊物.本刊主要报道农业各学科的科研学术论文、研究简报、综述等,设有农学·园艺·土壤肥料、植物保护、生物学、林业科学、动物科学与兽医学、农业工程与食品科学、信息科学、基础科学、综述、简报等栏目.本刊附英文目录和英文摘要.读者对象主要是农业院校师生、农业科研人员和有关部门的专业干部.

本刊为《中国科学引文数据库》、《中国科技论文统计源(中国科技核心期刊)》及《中国学术期刊综合评价数据库》等固定刊源,并排列在中国科学引文数据库被引频次最高的中国科技期刊 500 名以内. 被《中文核心期刊要目总览》遴选为综合性农业科学核心期刊、植物保护类核心期刊. 为美国《化学文摘》、美国《剑桥科学文摘》、俄罗斯《文摘杂志》、英国《CABI》、英国《动物学记录》、《中国生物学文摘》及国内农业类文摘期刊等国内外多家著名文摘固定刊源.

国内外公开发行、季刊、A4幅面. 每期124页,定价10.00元,全年40.00元、自办发行,参加全国非邮发报刊联合征订发行,非邮发代号:6573.

订阅办法:订阅款邮汇至:300385 天津市大寺泉集北里别墅17号,全国非邮发报刊联合征订服务部.

《华南农业大学学报》编辑部