Laplacian 谱半径和阶数相等的 c 圈图

刘木伙,李倩,文斌

(华南农业大学 理学院,广东 广州 510642)

摘要:设 G 是 1 个无向的简单图, ν 表示 G 的阶数, $m_c(\nu)$ 表示 ν 作为 G 的 Laplacian 矩阵的特征值的重数. 得到了 Laplacian 谱半径等于阶数的所有 c 圈图,研究了 c 与 $m_c(\nu)$ 之间的关系. 给出了当 G 是森林、单圈图、双圈图、三圈图、四圈图时 $m_c(\nu)$ 的取值范围,并确定了 $m_c(\nu)$ (\geq 1)在该取值范围内取不同值时的所有图.

关键词:Laplacian 矩阵; 谱半径; 单圈图; 双圈图

中图分类号:0157.12

文献标识码:A

文章编号:1001-411X(2010)01-0112-03

The c Cyclic Graph Whose Largest Eigenvalue of Its Laplacian Matrix Equals Its Order

LIU Mu-huo, LI Qian, WEN Bin

(College of Sciences, South China Agricultural University, Guangzhou 510642, China)

Abstract: G is a simple undirected graph of order $v. m_G(\nu)$ denotes the multiplicity of ν being an eigenvalue of Laplacian matrix. In this paper, the c cyclic graph whose largest eigenvalue of its Laplacian matrix equals ν is obtained, and the relation of c and $m_G(\nu)$ is studied. Moreover, the range of $m_G(\nu)$ is obtained when G is a forest, a unicyclic graph, a bicyclic graph, a tricyclic graph and a tetracyclic graph, respectively, and the graph is determined when $m_G(\nu)$ ($\geqslant 1$) takes different value in its range.

Key words: Laplacian matrix; spectral radius; unicylic graphs; bicyclic graphs

设 G = (V(G), E(G)) 为无向的简单图, ν 和 ε 分别表示 G 的阶数和边数,即 $\nu = |V(G)|, \varepsilon = |E(G)|.D(G) = \mathrm{diag}(d(v_1),d(v_2),\cdots,d(v_{\nu}))$ 和 A(G) 分别表示图 G 的度对角矩阵和邻接矩阵, L(G) = D(G) - A(G) 称为图 G 的 Laplacian 矩阵. 易见 L(G) 是实对称、半正定的且有特征值 G. 设 $\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_{\nu}(G) = 0$ 为 L(G) 的谱,也称 为图 G 的 Laplacian 谱. 特别的,称 $\lambda_1(G)$ 为 L(G) 的 谱半径,也称为图 G 的 Laplacian 谱平径. $m_G(\nu)$ 表示 ν 作为 G 的 Laplacian 矩阵的特征值的重数,显然 $0 \le m_G(\nu) \le \nu - 1$. 如果 $c = \varepsilon - \nu + p$,其中 p 表示 G 的连 通分支都是 1 棵树,则称 G 为 1 个森林. 由圈数 c 的

定义可知 c(G) = 0 当且仅当 G 是 1 个森林. 以下,分别用 $C_n \setminus P_n \setminus K_n$ 表示 n 阶的圈、路、完全图.

图的 Laplacian 矩阵的谱不但有着重要的图论意义,而且在物理、化学、生物和计算机网络中有着广泛的应用,所以引起了学者们的极大兴趣^[1-3]. 对于图的 Laplacian 谱的研究一般有 2 个方向,第 1 种是确定给定的图的 Laplacian 谱,第 2 种是由图的Laplacian 谱去确定对应的图. 对于后者研究较少,相关结果见文献[1-2]. 本文得到了 Laplacian 谱半径等于阶数的所有 c 圈图,研究了 c 与 $m_c(\nu)$ 之间的关系. 同时给出了当 G 是森林、单圈图、双圈图、三圈图、四圈图时 $m_c(\nu)$ 的取值范围,并确定了 $m_c(\nu)$ (\geq 1) 在该取值范围内取不同值时的所有图.

收稿日期:2007-11-12

作者简介: 刘木伙(1981—),男,助教,E-mail: liumuhuo@ scau. edu. cn

基金项目:广东省自然科学基金(53000084);华南农业大学校长基金(4900-K08225)

1 一些引理

如果 $V(H) \subseteq V(G)$ 且 $E(H) \subseteq E(G)$,则称 H是 G 的子图. 特别的,如果 H 是 G 的子图,且 V(H) = V(G),则 H 称为 G 的生成子图. 如果 $V(G) = V_1 \cup V_2 \cup \cdots \cup V_k$, $V_i \cap V_j = \emptyset(i \neq j)$,且对任意的 $u \in V_i$, $v \in V_j$, $(u,v) \in E(G)$ 当且仅当 $i \neq j$,则称 G 为完全 k 部图. 此时记为 $G = K_{a_1,\cdots,a_k}$,其中 $|V_i| = a_i$, $1 \leq i \leq k$. 引理 $\mathbf{1}^{[1]}$ 当 $1 \leq k \leq \nu - 1$, $m_G(\nu) \geq k$ 当且仅当 G 有 1 个完全 k+1 部的生成子图.

由引理1可知,如果 $\lambda_1(G) = \nu$,则 G 有 1 个完全二部的生成子图,故 G 连通. 于是,当 G 是 1 个满足 $\lambda_1(G) = \nu$ 的 c 圈图时有

$$\varepsilon = \nu + c - 1. \tag{1}$$

设 G_1 和 G_2 为 2 个图,将 G_1 的每一个顶点和 G_2 的每一个顶点用边相连,所得的图称为 G_1 和 G_2 的联,记为 $G_1 \vee G_2$. tK_1 表示 t 个顶点组成的没有边的图. 1 个星图(记为 $K_{1,n-1}$) 是指 $K_{1,n-1} = K_1 \vee ((n-1)K_1)$.

引理 $2^{[3]}$ 若 G 是 1 棵树,则 $\lambda_1(G) = \nu$ 当且仅当 $G \cong K_{1,\nu-1}$.

符号 G + te 表示由 G 任意地添加 t 条边所得到的图类. [t]表示不小于 t 的最小整数, [t]表示不大于 t 的最大整数.

2 主要结果

定理 1 若 G 是 1 个 c 圈图,则 $\lambda_1(G) = \nu$ 当且仅当 $G \cong K_1 \vee H$,其中 $|E(H)| = c, \nu \geqslant \lceil (3 + \sqrt{8c + 1})/2 \rceil$ 或者 $G \cong K_{a,b} + \lceil c - (a - 1)(b - 1) \rceil e$,其中 $\lceil (3 + \sqrt{8c + 1})/2 \rceil \leqslant \nu \leqslant c + 3, 2 \leqslant a \leqslant \lfloor \nu/2 \rfloor$, $(a - 1)(b - 1) \leqslant c$ 且 $\nu = a + b$.

证明 充分性:只须注意此时 G 有 1 个完全二部生成子图,由引理 1 可知 $\lambda_1(G) = \nu$.

必要性:若 $\lambda_1(G) = \nu$,由式(1)可知 $\nu + c - 1 =$ $\varepsilon \leq \nu(\nu - 1)/2$,故 $\nu \geq \lceil (3 + \sqrt{8c + 1})/2 \rceil$.由于 $\lambda_1(G) = \nu$,由引理1可知 $G = G_1 \vee G_2$.令 $\nu(G_1) = a$, $\nu(G_2) = b$,显然 $\nu = a + b$.不妨设 $b \geq a \geq 1$,则 $1 \leq a \leq \lfloor \nu/2 \rfloor$.

当a=1,此时 $G=K_1 \lor H$.由式(1)可知|E(H)|=c成立.

若 $a \ge 2$,由 $b \ge a \ge 2$,得 $\varepsilon > \nu - 1$. 于是 $c \ge 1$,否则与式(1)矛盾. 又由式(1)有 $a(\nu - a) \le \varepsilon = \nu +$

c-1,即 $\nu \le c/(a-1) + a + 1$. 注意到函数 f(x) = c/x + x在 $[1,\sqrt{c}]$ 上严格递减,在 $[\sqrt{c} + \infty]$ 上严格递增. 故当 $2 \le a \le \lfloor \nu/2 \rfloor$ 时, $\nu \le \max\{c + 3, c/(\lfloor \nu/2 \rfloor - 1) + \lfloor \nu/2 \rfloor + 1\}$. 于是 $\nu \le \max\{c + 3, 2 + \lfloor \sqrt{4c + 1} \rfloor\}$. 当c = 1时, $c + 3 = 2 + \lfloor \sqrt{4c + 1} \rfloor$. 当 $c \ge 2$ 时, $c + 3 \ge 2 + \lfloor \sqrt{4c + 1} \rfloor$. 从而, $\nu \le c + 3$.

又因为G是1个c 圈图,且 $\nu = a + b$,由式(1)有 $\nu + c - 1 = \varepsilon(G_1 \vee G_2) \ge ab$,故 $G \subseteq K_{a,b} + [c - (a - 1)(b - 1)]e$.

文献[3]中给出了所有 Laplacian 谱半径等于阶数的树,即给出了 c=0, $\lambda_1=\nu$ 的所有图. 文献[1]中确定了 Laplacian 谱半径等于阶数的单圈图、双圈图、三圈图,即给出了当 c=1, 2, 3 时, $\lambda_1=\nu$ 的所有图. 本文将给出 c=4, 5 时 $\lambda_1=\nu$ 的所有图, c=6, 7 ··· 不再一一列举.

推论 1 若 G 是 1 个四圈图,则 $\lambda_1(G) = \nu$ 当且仅当 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 4, \nu \ge 5$ 或者 $G \subseteq K_{2,4} + e$ 或者 $G \subseteq K_{3,3}$ 或者 $G \subseteq K_{2,5}$.

推论 2 若 G 是 1 个五圈图,则 $\lambda_1(G) = \nu$ 当且仅当 $G \subseteq K_1 \vee H$,其中 $|E(H)| = 5, \nu \ge 5$ 或者 $G \subseteq K_{2,4} + 2e$ 或者 $G \subseteq K_{3,3} + e$ 或者 $G \subseteq K_{2,5} + e$ 或者 $G \subseteq K_{2,6}$.

下面研究 $c 与 m_c(\nu)$ 之间的关系.

定理 2 设 G 是 1 个 c 圈图. 若 $m_G(\nu) = k$,则 $c \ge k(k-1)/2$. (2)

当 $c \ge 1$ 时,不等式(2)中等号成立当且仅当 $G \cong K_{k+1}$.

证明 当 k = 0 时,式(2)显然成立. 当 $k \ge 1$ 时,由引理 1 可知 G 连通且至少有 1 个 K_{k+1} 作为子图,由式(1)有

 $\nu + c - 1 = \varepsilon \geqslant k(k+1)/2 + \nu - 1 - k,$ 即

$$c \geqslant k(k-1)/2$$
.

故式(2)成立.

当 $c \ge 1$ 时,若 $G \subseteq K_{k+1}$,则 $m_G(k+1) = k$. 由式 (1) 可知 $(k+1) + c - 1 = \varepsilon = k(k+1)/2$,故 c = k(k-1)/2成立. 反之,若 c = k(k-1)/2,由于 $c \ge 1$,故 $k \ge 2$. 由引理 1 可知 G 有 1 个完全 k+1 部的生成子图 $K_{a_1,\cdots,a_{k+1}}$,则对任意的 $i \in \{1,2,\cdots,k+1\}$,都有 $a_i = 1$. 否则,若存在 $a_i \ge 2$,则 $\nu + c - 1 = \varepsilon > k(k+1)/2 + \nu - 1 - k$,即 c > k(k-1)/2,矛盾. 从而, $G \subseteq K_{k+1}$.

定理3 若 G 是 1 个森林,则 $0 \le m_c(\nu) \le 1$,且

 $m_G(\nu) = 1$ 当且仅当 $G \subseteq K_{1,\nu-1}$.

证明 由定理 2 可知, $0 \le m_G(\nu) \le 1$. 若 $m_G(\nu) = 1$,则由引理 1 可知 G 连通,即 G 为 1 棵树. 由引理 2 可知 G $\subseteq K_{1,\nu-1}$. 反之,当 G $\subseteq K_{1,\nu-1}$,由于 $K_{1,\nu-1}$ 的Laplacian 谱为 $\{\nu,1,1,\cdots,1,0\}$,故 $m_G(\nu) = 1$.

定理 4 若 G 是 1 个单圈图,则 $0 \le m_c(\nu) \le 2$,且

① $m_G(\nu) = 1$ 当且仅当 $G \hookrightarrow K_1 \lor H$,其中 $E(H) \mid = 1, \nu \geqslant 4$ 或者 $G \hookrightarrow C_4$;

 $2m_G(\nu)=2$ 当且仅当 $G \cong K_3$.

证明 由定理 2 可知, $0 \le m_c(\nu) \le 2$. 若 $m_c(\nu) = 1$,则由定理 1 可知 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 1, \nu \ge 3$ 或者 $G \subseteq C_4$. 反之,当 $G \subseteq C_4$,由于 C_4 的 Laplacian 谱为 $\{4,2,2,0\}$,故 $m_c(\nu) = 1$ 成立.若 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 1, \nu \ge 4$,此时 G 有 1 个完全二部的生成子图,但没有完全三部的生成子图,由引理 1 可知 $m_c(\nu) = 1$ 成立.注意当 $m_c(\nu) = 2, c = 1$ 时,式(2)取等号.结合定理 2 和上述讨论可知①,②成立.

定理 5 若 G 是 1 个双圈图,则 $0 \le m_c(\nu) \le 2$,且

① $m_G(\nu) = 1$ 当且仅当 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 2, \nu \ge 5$ 或者 $G \subseteq K_{2,3}$;

② $m_G(\nu) = 2$ 当且仅当 $G \subseteq K_2 \vee (2K_1)$.

证明 由定理2 可知, $0 \le m_c(\nu) \le 2$. 当 $1 \le m_c(\nu) \le 2$,由定理1 可知 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 2, \nu \ge 5$ 或者 $G \subseteq K_2 \lor (2K_1)$ 或者 $G \subseteq K_{2,3}$. 直接计算可得 $K_2 \lor (2K_1)$ 的 Laplacian 谱为 $\{4,4,2,0\}$, $K_{2,3}$ 的 Laplacian 谱为 $\{5,3,2,2,0\}$. 而当 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 2, \nu \ge 5$ 时,G 有完全二部的生成子图但 没有完全三部的生成子图,由引理1 可知 $m_c(\nu) = 1$ 成立. 综上所述,结论成立.

定理 6 若 G 是 1 个三圈图,则 $0 \le m_c(\nu) \le 3$,且

① $m_G(\nu) = 1$ 当且仅当 $G \subseteq K_1 \vee H$,其中 $|E(H)| = 3, \nu \ge 6$ 或者 $G \subseteq K_1 \vee P_4$ 或者 $G \subseteq K_1 \vee K_2$ ($K_3 \cup K_1$)或者 $G \subseteq (2K_1) \vee (K_1 \cup K_2)$ 或者 $G \subseteq K_{2,4}$;

② $m_G(\nu) = 2$ 当且仅当 $G \cong K_2 \vee (3K_1)$;

 $\Im m_c(\nu) = 3$ 当且仅当 $G \cong K_4$.

证明 由定理2可知 $0 \le m_G(\nu) \le 3$. 当 $1 \le m_G(\nu) \le 3$, 由定理1可知 $G \subseteq K_1 \lor H$,其中 $|E(H)| = 3, \nu \ge 4$ 或者 $G \subseteq K_{2,3} + e$ 或者 $G \subseteq K_{2,4}$. 等价的当 $1 \le m_G(\nu) \le 3$, $G \subseteq K_1 \lor H$,其中 $|E(H)| = 3, \nu \ge 6$ 或者 $G \subseteq K_1 \lor P_4$ 或者 $G \subseteq K_1 \lor (K_3 \cup K_1)$ 或者 $G \subseteq (2K_1) \lor (K_1 \cup K_2)$ 或者 $G \subseteq K_2 \lor (3K_1)$ 以自由Laplacian 谱为 $\{5,4,3,2,6\}$ $\{5,4,3,2,6\}$ 以 $\{6,1\}$ 的 Laplacian 谱为 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 的 Laplacian 谱为 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 的 Laplacian 谱为 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 的 Laplacian 谱为 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 的 Laplacian 谱为 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 以 $\{6,1\}$ 的 Laplacian 谱为 $\{6,1\}$ 以 $\{6,1\}$

0}, $K_1 \lor (K_3 \cup K_1)$ 的 Laplacian 谱为 $\{5,4,4,1,0\}$, $K_2 \lor (3K_1)$ 的 Laplacian 谱为 $\{5,5,2,2,0\}$, $K_{2,4}$ 的 Laplacian 谱为 $\{6,4,2,2,2,0\}$, K_4 的 Laplacian 谱为 $\{4,4,4,0\}$. 而当 $G \subseteq K_1 \lor H$,其中|E(H)| = 3, $\nu \ge 6$ 时,G 含有完全二部的生成子图,但不含有完全三部的生成子图,由引理 1 可知 $m_G(\nu) = 1$ 成立. 综合上述讨论,结论成立.

类似的可以得到

定理 7 若 G 是 1 个四圈图,则 $0 \le m_c(\nu) \le 3$,且

① $m_G(\nu) = 1$ 当且仅当 $G \subseteq K_1 \vee H$, 其中 $|E(H)| = 4, \nu \ge 7$ 或者 $G \subseteq K_1 \vee (K_1 \cup (K_1 \vee (K_1 \cup K_2)))$ 或者 $G \subseteq K_1 \vee (K_2 \cup K_3)$ 或者 $G \subseteq K_1 \vee (K_1 \cup K_2)$ 或者 $G \subseteq K_1 \vee P_5$ 或者 $G \subseteq (2K_1) \vee ((2K_1) \cup K_2)$ 或者 $G \subseteq K_{3,3}$ 或者 $G \subseteq K_{2,5}$ 或者 $G \subseteq K_1 \vee H_1$,其中 H_1 为 P_4 外添加一顶点使之与 P_4 的 1 个二度点相连所 得的图:

 $2m_G(\nu) = 2$ 当且仅当 $G \hookrightarrow C_4 \vee K_1$ 或者 $G \hookrightarrow K_2 \vee (K_1 \cup K_2)$ 或者 $G \hookrightarrow K_2 \vee (4K_1)$;

③不存在四圈图,使得 $m_g(\nu)=3$.

对于一般的c圈图有

定理 8 若 G 是 1 个 c 圈图,则

$$0 \leqslant m_c(\nu) \leqslant \lfloor (1 + \sqrt{8c + 1})/2 \rfloor.$$

当 $\nu \geqslant c + 4$ 时, $m_c(\nu) = 1$ 当且仅当 $G \cong K_1 \lor H$,其中|E(H)| = c.

证明 由定理 2 可知, $0 \le m_G(\nu) \le \lfloor (1 + \sqrt{8c + 1}) / 2 \rfloor$ 成立. 当 $\nu \ge c + 4$ 时,由定理 1 可知 $G \subseteq K_1 \lor H$,其中 |E(H)| = c 成立. 反之,当 $G \subseteq K_1 \lor H$,其中 |E(H)| = c,则 G 含有完全二部的生成子图,但不 含有完全三部的生成子图,由引理 1 可知 $m_G(\nu) = 1$.

由定理1和定理8可得

推论3 设 $k \in \{2,3,\cdots,\lfloor (1+\sqrt{8c+1})/2 \rfloor\}$,则最多只有有限个 c 圈图 G 使得 $m_c(\nu) = k$.

参考文献:

- [1] LIU Bo-lian, CHEN Zhi-bo, LIU Mu-huo. On graphs with largest Laplacian index [J]. Cze Math J, 2008, 58 (4): 949-960.
- [2] CVETKOVIC D M, DOOB M, SACHS H. Spectra of graphs-theory and applications [M]. Berlin: V E B Deutscher Verlag der Wissenschaften, 1980.
- [3] GUTMAN I. The star is the tree with greatest Laplacian eigenvalue [J]. Kragujevac J Math, 2002, 24:61-65.

【责任编辑 李晓卉】