广东省杨桃园桔小实蝇发生高峰期预测

于 鑫,曾 玲,梁广文,陆永跃 (华南农业大学昆虫生态研究室,广东广州510642)

摘要:根据 2003—2004 年多个地点的桔小实蝇 Bactrocera dorsalis (Hendel)监测数据和室内恒温条件下发育历期观察结果,采用地理信息系统技术和发育历期模型的方法,研究了广东省杨桃园桔小实蝇成虫 2 个发生高峰期地理分布规律和发生期预测技术.结果表明,广东省桔小实蝇成虫年度第1 个发生高峰期呈现由南向北、由西向东逐渐推迟的趋势,而最后一个发生高峰期基本表现为由北向南、由东向西逐渐推迟的规律.第1 个高峰最早是 3 月 20—24 日出现在湛江地区,最迟是 4 月 28 日—5 月 1 日出现在梅州、潮州、揭阳部分、汕头部分、韶关西北部的几个县区和清远东部的山区.最后一个高峰期出现时间和地区规律基本上与第1个高峰期相反.建立了当代桔小实蝇成虫发生高峰期预测下一代成虫发生高峰期的模型.对这 2 种预测方法的检验结果表明,两者均能较为准确地预测出相应的桔小实蝇成虫发生高峰期.

关键词: 桔小实蝇; 杨桃; 预测预报; 地理信息系统

中图分类号:S431.2

文献标识码:A

文章编号:1001-411X(2010)02-0028-04

Forecasting of the Peaks of *Bactrocera dorsalis* Adults in Starfruit Orchards in Guangdong Province

YU Xin, ZENG Ling, LIANG Guang-wen, LU Yong-yue (Laboratory of Insect Ecology, South China Agricultural University, Guangzhou 510642, China)

Abstract: Based on the data of *Bactrocera dorsalis* (Hendel) adults quantity collected from the starfruit orchards in different locations of Guangdong Province in 2003 – 2004, and development durations of different stages at different constant temperatures in laboratory, the distribution dynamics of two peaks of adult including the first and the last peaks in a year. The methods of GIS and development-duration-model were used in the study. The results revealed that the first peaks of the pest adults appeared earlier when it progressed from southern part to northern part, and from western part to eastern part of Guangdong Province, and the last peaks of the adults appeared oppositely to the first peaks. The model for forecasting the peaks based on the development durations was constructed. The two methods of GIS and the development duration model could forecast the fruit fly peaks correctly at starfruit orheards in Guangdong Province.

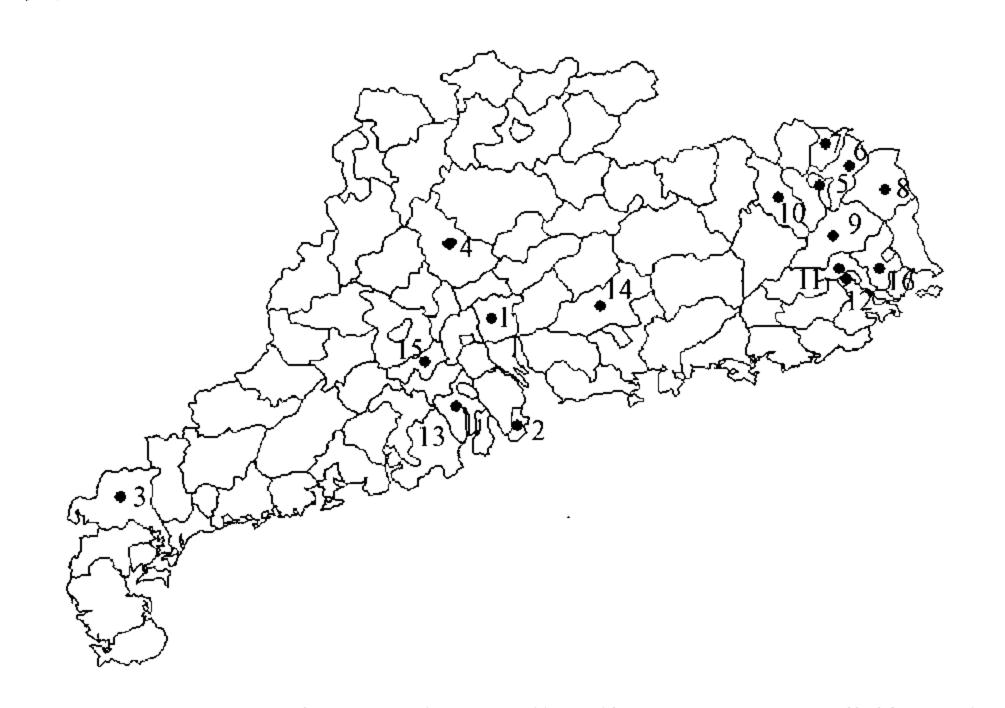
Key words: Bactrocera dorsalis (Hendel); starfruit; forecasting; GIS

桔小实蝇 Bactrocera dorsalis (Hendel)是世界性重要果蔬害虫,原产于东南亚,现已扩散到亚洲、北美洲、大洋洲及太平洋地区的数十个国家和地区.该虫寄主十分广泛,可以为害番石榴等 46 个科 250 多种果蔬植物,对多种重要经济性作物造成严重危害,

经济损失巨大,严重威胁发生地果蔬种植业^[1-5].目前已经基本阐明了该虫的生物学、生态学和种群动态规律^[1,6-12].自20世纪40年代以来,国内外对桔小实蝇的防治也有不少研究,主要防治措施包括检疫处理、农业防治、诱杀防治、化学防治、辐射不育、生

收稿日期:2009-01-20

作者简介:于 鑫(1979—),男,博士;通信作者:梁广文(1948—),男,教授,E-mail: gwliang@ scau. edu. cn;陆永跃 (1972—),男,副教授,E-mail:luyongyue@ scau. edu. cn


基金项目:公益性行业(农业)科研专项经费项目(200903047);国家科技支撑计划项目(2006BAD08A14)

物防治等[1,13-21].关于该虫在我国潜在的发生分布区域、传播扩散规律和风险性近年来有不少探讨[22-29]. 广东省地处低纬度的热带和亚热带区域,是我国热带水果的主要产地.目前,桔小实蝇在广东省分布广、危害严重,搞好防控工作、控害增收是急需解决的首要问题.对虫情进行准确的预测预报是做好防控工作的前提,而目前关于该虫的预测预报技术的研究国内外鲜见报道.本文在多个地区进行监测虫情的基础上,研究了广东省大区域范围内桔小实蝇在杨桃上发生期的预测预报方法,以期为该虫的防控工作提供依据.

1 材料与方法

1.1 数据来源

监测数据由广东省植物保护总站在广东省多个地区设立的虫情监测点提供.根据广东省杨桃 Averrhoa carambola 种植情况确定监测点,具体分布见图 1.

1:广州;2:珠海;3:廉江;4:清远;5:梅州梅江;6:梅县;7:蕉岭;8:大埔;9:丰顺;10:兴宁;11:揭东;12:揭阳;13:江门;14:博罗;15:佛山;16:潮安.

图 1 广东省杨桃园桔小实蝇监测点分布

Fig. 1 Locations where *Bactrocera dorsalis* was monitored in Guangdong

1.2 桔小实蝇动态监测与分析方法

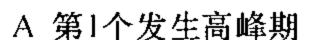
采用性引诱剂法诱集桔小实蝇的雄性成虫(性引诱剂有效成分为1%甲基丁香酚). 选择当地有代表性的杨桃园为监测点,果园面积10 hm²以上,每点设置20个诱测瓶. 将诱测瓶悬挂于果树上离地面约1.5 m 高的阴凉处的枝条上,两瓶间距约为50 m. 添加2 mL性引诱剂于诱测瓶内,每20 d补充1次性引诱剂,每5 d记录1次瓶中桔小实蝇的数量. 取20个诱测瓶中桔小实蝇总数的平均值为当次调查的结果^[26]. 应用 ArcGIS 8 Desktop 中距离反比权重模型(Inverse distance weighted,IDW),将监测点获得的虫

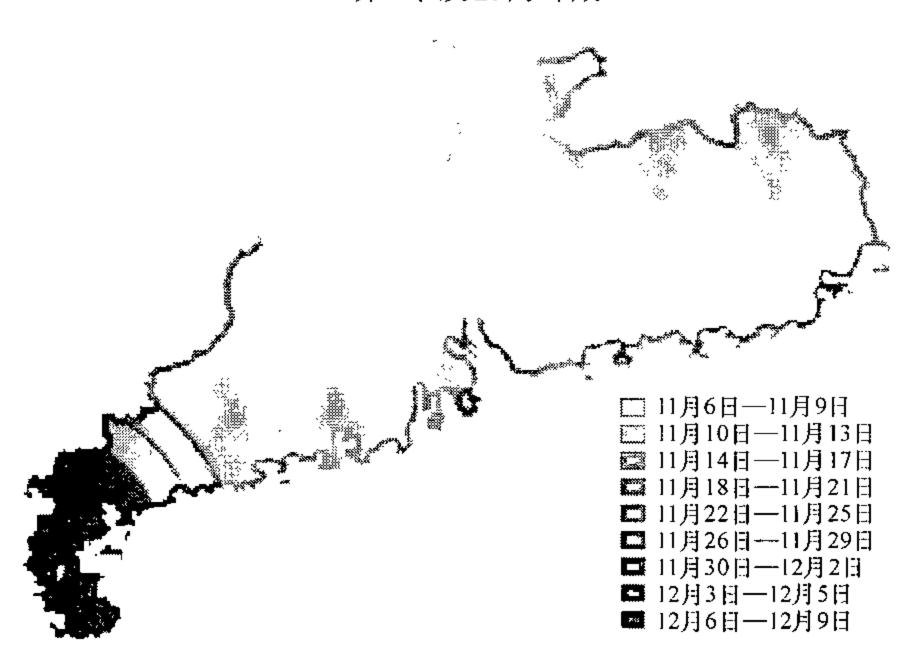
情数据进行空间插值分析,从而获得广东省境内桔小实蝇种群发生的空间动态图;应用 ArcView GIS 3.3 创建和编辑桔小实蝇空间动态图的属性数据库,并建立与地图数据的关联^[27].

1.3 发生期预测方法

发生期预测包括经验预测法和发育历期模型预测法. 经验预测法:根据 2003—2004 年度广东省范围内桔小实蝇的监测数据,结合 GIS 技术的成图功能,获得 2003—2004 年度桔小实蝇第 1 个发生高峰日和最后一个发生高峰日的空间动态图,通过该图对广东省每年桔小实蝇的第 1 个发生高峰期和最后一个发生高峰期进行预测. 历期模型预测法:根据林进添^[28]在人工气候箱中,测得不同恒温条件下桔小实蝇在杨桃上的发育历期,整理出不同温度下桔小实蝇成虫至下一代成虫的平均发育历期.


2 结果与分析


2.1 杨桃上桔小实蝇发生高峰期的经验预测


应用 GIS 技术预测出 2003—2004 年度广东省杨 桃上桔小实蝇第1个发生高峰期和最后一个发生高 峰期的空间分布图. 结果(图 2A)表明,广东省桔小 实蝇成虫年度第1个发生高峰期呈现由南向北、由 西向东逐渐推迟的趋势. 其中,最早出现第1个高峰 的地区是湛江的徐闻、雷州、廉江等地,时间是3月 20—24 日. 由湛江向东至云浮、佛山、中山、深圳— 线,第1个高峰出现的时间逐渐推迟,由3月25日推 迟到 4 月 18 日. 4 月 19—23 日出现第 1 个高峰的区 域范围较大,包括肇庆、佛山部分、东莞、河源、汕尾 等地.4月24-27日粤北、粤东的清远大部、韶关大 部、河源部分、揭阳大部、汕头部分地区出现第1个 高峰. 最迟出现第1个高峰的日期是4月28日—5 月1日,这些地区包括梅州、潮州、揭阳部分、汕头部 分、韶关西北部的几个县区和清远东部的山区. 总的 来说,粤西南地区桔小实蝇成虫第1个发生高峰时 间是在3月下旬,粤中南部地区是4月上旬,粤中部 地区是4月中旬,粤北和粤东地区是4月下旬.

广东省桔小实蝇成虫年度最后一个高峰发生期基本表现为由北向南、由东向西逐渐推迟的规律.其中,粤西地区一般是12月上旬,中南部地区是11月下旬,中部其他地区是11月中下旬,粤北地区是11月上旬,粤东地区是11月下旬至12月初(图2B).

根据以上研究结果,确定广东省杨桃上桔小实蝇第1个高峰期和最后一个高峰期的出现时间作为经验范围值,并使用2005年几个地点的成虫发生高峰期对这几个值进行检验,结果见表1.表1的结果

B 最后一个发生高峰期

图 2 广东省杨桃上桔小实蝇成虫发生高峰期分布预测 Fig. 2 Distribution of the infesting peaks of *Bactrocera dorsalis* adults in starfruit orchards in Guangdong

显示,2005年广州、博罗、揭阳、丰顺和兴宁实际观察到的桔小实蝇成虫第1个和最后一个高峰期均在预测的经验值范围内,说明所得经验值符合桔小实蝇实际发生情况.

表 1 桔小实蝇 2 个发生高峰实测值与预测值比较 Tab. 1 Comparison of the observed and predicted values of first and last peaks of *Bactrocera dorsalis* adults

地区	第1个发生高峰期		最后一个发生高峰期		
	实测值	预测值	实测值	预测值	
广州	04-29	04-2705-01	11-08	11-06—11-09	
博罗	04-19	04-19—04-23	11-16	11-1411-17	
揭阳	04-20	04-1904-23	11-28	11-26—11-29	
梅县	04-30	04-2805-01	11-28	11-26—11-29	
丰顺	04-30	04-2805-01	11-27	11-26—11-29	
兴宁	04-30	04-2805-01	11-27	11-2611-29	

2.2 杨桃上桔小实蝇发生期的历期模型预测

根据不同恒温条件下杨桃上桔小实蝇世代历期^[29],使用 SAS 8. 01 软件进行拟合,组建了应用当代桔小实蝇成虫发生高峰期预测下一代成虫发生高峰期的模型: $D_{n+1} = D_n + L_n + 0$. 8, $L_n =$

9. 043 $2e^{34.8111/T}$, P < 0.01. 式中, D_{n+1} 、 D_n 分别为下一代、当代桔小实蝇在杨桃上的发生高峰日; L_n 为桔小实蝇在杨桃上的世代历期; n 为桔小实蝇代次; T 为温度(℃).

对方程 L_n = 9. 043 $2e^{34.81117}$ 的拟合值和实测值进行 χ^2 检验: χ^2 = 2. 467 < $\chi^2_{0.05}$ (图 3),因此所建模型可很好拟合世代历期和温度之间的关系. 应用该模型,根据当代桔小实蝇成虫发生高峰期和温度条件可以预测出下一代成虫的发生高峰期.

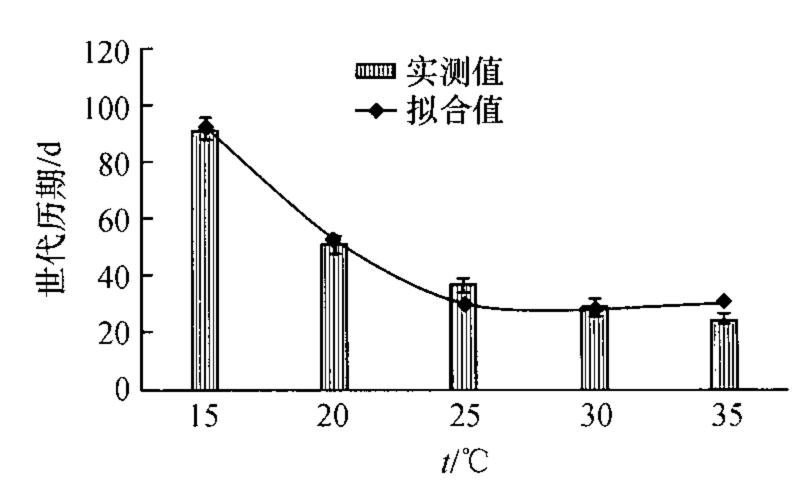


图 3 不同温度下桔小实蝇的世代历期

Fig. 3 The generation durations of *Bactrocera dorsalis* fed on starfruit at different temperatures

应用模型对广州等地桔小实蝇发生高峰进行预测,并与实际发生高峰期进行比较. 结果(表 2)表明,总体上预测的日期比实际发生的日期有所提前,平均提前 $0.8\,d$,因此,将模型校正为: $D_{n+1}=D_n+L_n+0.8$, $L_n=9.043$ $2e^{34.811\,1/T}$,(P<0.01). 应用该校正模型对广州等地桔小实蝇发生高峰进行预测. 结果(表 2)表明,预测的日期与实际发生的日期更为接近,预测值在实际值 ± 1 d 的范围内.

表 2 历期模型预测法对杨桃园桔小实蝇发生高峰期的预测 结果

Tab. 2 The predicted values of the infesting peaks of *Bactrocera dorsalis* at starfruit orchards by generation-duration model

地点	t∕°C	当代	下代高峰期1)		误差 ²⁾ /d	
		高峰期	实际值	预测值	I	II
广州	29.30	2003-07-13	08-12	08-11	- 1	+0.5
广州	28.30	2004-06-02	07-05	07-02	- 3	-1.0
珠海	28.50	2003-08-30	09-30	09-29	-3	-1.0
韶关	28.60	2004-07-21	08-22	08-20	- 2	-0.5
丰顺	25.60	2004-04-30	05-30	06-02	+3	+1.0

1)下代高峰期的年份与当代高峰期同行相同;2) I:原模型误差, II:模型校正后误差, -:提前, +:滞后.

3 结论

本文应用 GIS 技术揭示了广东省区域范围内杨 桃园桔小实蝇第1个发生高峰期和最后一个发生高 峰期的空间分布变化规律,并以此为依据建立了该 虫年度2个发生高峰期的经验预测方法.这对于了 解大区域范围内桔小实蝇发生的空间规律,建立该 虫虫情预测预报方法是一个有益的尝试.如果能够 在更大范围内建立监测点,系统跟踪调查获得多年 度种群数量动态的数据,所得研究结果将更具科学 性和实用性.

根据发育历期或者世代间虫态的发生期作发生期短期预测是虫情测报中常用的一种预测预报方法.本文在研究不同温度条件下杨桃上桔小实蝇各虫态发育历期的基础上,建立的应用当代成虫发生高峰期预测下一代成虫的模型可以获得较为准确的结果.但是,由于桔小实蝇具有成虫寿命长、产卵期长的生物学特性,加之,现有的野外成虫监测方法的局限性,因此,如何确定野外该虫成虫的发生峰期是一个重要的技术问题.如能采用陆永跃等^[26]提出的改进的方法,并在大范围、定点系统进行桔小实蝇监测,所获得的该虫的预测预报结果将更为准确、更具代表性.

参考文献:

- [1] 梁广勤,梁国真,林明,等.实蝇及其防除[M].广州:广东科技出版社,1993:93-104.
- [2] 林进添,曾玲,陆永跃,等. 桔小实蝇生物学特性及防治研究进展[J]. 仲恺农业技术学院学报,2004,7(1):60-67.
- [3] 刘玉章.台湾东方果实蝇及瓜实蝇之研究及防治回顾 [C]//中华植物保护学会.昆虫生态与瓜果实蝇研究研讨 会专刊.台湾:中华植物保护学会,2000:1-21.
- [4] CLANCY D W, MARUCCI P E, DRESNER E. Importation of natural enemies to control the oriental fruit fly in Hawaii [J]. Journal of Economic Entomology, 1952, 45:85-90.
- [5] WANG S J. The fruit flies (Diptera: Tephritidae) of the east asian region [J]. Acta Zoolaxonomica Sinica, 1996, 21 (suppl.):53-54.
- [6] 和万忠,孙兵召,立翠菊,等.云南河口县桔小实蝇生物 学特性及防治[J].昆虫知识,2002,39(1):50-52.
- [7] 吕欣,韩诗畴,徐洁莲,等.广州桔小实蝇(Bactrocera dorsalis(Hendel))发生动态及气象因子[J].生态学报,2008,28(4):1850-1856.
- [8] 陈鹏,叶辉.云南六库桔小实蝇成虫种群数量变动及其影响因子分析[J].昆虫学报,2007,50(1):38-45.
- [9] 任璐,陆永跃,曾玲. 桔小实蝇自然种群蛹和越冬成虫的耐寒性[J]. 昆虫学报,2007,50(6):588-596.
- [10] 任璐,陆永跃,曾玲,等. 寄主对桔小实蝇耐寒性的影响 研究[J]. 昆虫学报,2006,49(3):447-453.
- [11] HANSEN J D, JAMES D, ARMSTRONG J W, et al. Thermal death of oriental fruit fly (Diptera: Tephritidae) third instarts in developing quarantine treatments for papayas

- [J]. Journal of Economic Entomology, 1990, 83 (1) 160-167.
- [12] YANG P J, JAMES R, ROBERT V D. Tepheritid fruit flies in China historical background and current status [J]. Pan-Pacific Entomologist, 1994, 70(2):159-167.
- [13] 陈健忠,董耀仁. 五种植物叶片萃取物对东方果实蝇 *Bactrocera dorsalis*(双翅目:果实蝇科)之诱引效果[J]. 中华昆虫,2000,20(1):37-44.
- [14] 蒋小龙,任丽卿,肖枢,等. 桔小实蝇检疫处理技术研究 [J]. 西南农业大学学报,2002,24(4):303-306.
- [15] 曾玲,陆永跃,林进添,等. 桔小实蝇的防治策略和技术 [C]//成卓敏. 中国植物保护学会 2006 年学术年会 "科技创新与绿色植保". 北京:中国农业科学技术出版 社,2006:19-23.
- [16] 欧阳革成,杨悦屏,钟桂林,等.矿物油乳剂作用下橘小实蝇的产卵拒避及触角电位反应[J].昆虫学报,2008,51(4):390-394.
- [17] 吕欣,陆永跃,曾玲,等. 杨桃园桔小实蝇防治指标研究 [J]. 植物保护学报,2007,34(5):471-474.
- [18] 林进添,曾玲,梁广文,等. 病原线虫对桔小实蝇种群的控制作用[J]. 昆虫学报,2005,48(5):736-741.
- [19] JEFFREY N L, STIBICK. Natural enemies of true fruit flies (Tephertidae) [J]. Natural Enemies of True Fruit Flies, 2004,3:86.
- [20] KALIA V. Chemical control of oriental fruit fly *Dacus dorsalis* (Hendel) [J]. Indian Journal of Entomology, 1995, 57(1):68-70.
- [21] MAKHMOOR H D, SINGH S T. Effective concentration of methyl eugenol for the control of guava fruit fly, *Dacus dorsalis* Hendel in guava orchard[J]. Annals of Plant Protection Sciences, 1998, 6(2):165-169.
- [22] 陈鹏,叶辉,母其爱. 基于荧光标记的怒江流域桔小实蝇(*Bactrocera dorsalis*)的迁移扩散[J]. 生态学报,2007,27(6):2468-2476.
- [23] 周国梁,陈晨,叶军,等. 利用 GARP 生态位模型预测桔 小实蝇(*Bactrocera dorsalis*) 在中国的适生区域[J]. 生态学报,2007,27(8);3362-3369.
- [24] 侯柏华,张润杰.基于 CLIMEX 的桔小实蝇在中国适生 区的预测[J].生态学报,2005,25(7):1569-1574.
- [25] 李白尼,张润杰.基于网络的入侵害虫风险评估与预警系统一以桔小实蝇为例[J].中山大学学报:自然科学版,2008,47(12):108-113.
- [26] 陆永跃,曾玲,梁广文,等.对性引诱剂监测桔小实蝇雄成虫技术的改进[J].昆虫知识,2006,43(1):123-125.
- [27] 秦其明. ARC/INFO 地理信息系统使用指南[M]. 北京: 北京大学出版社,1995:64-120.
- [28] 林进添. 桔小实蝇生物学生态学及控制技术研究[D]. 广州:华南农业大学资源环境学院,2003.
- [29] 李志红,梁广勤,梁帆,等. GIS 技术与实蝇监测[J]. 江 西农业大学学报:自然科学版,2002,24(3):401-405.

【责任编辑 周志红】