影响西番莲叶片养分含量相关因子的研究

冯奇瑞,姚 青,陈乃荣,倪耀源 (华南农业大学园艺学院,广东广州 510642)

摘要:为建立西番莲叶片营养诊断的采样标准,以'华阳'品种为试材,对影响叶片养分含量的相关因子进行了研究.结果表明:第10叶位的叶片氮含量最稳定,叶龄较大的叶片其氮、磷、钾含量显著降低;叶片的着生方位对养分含量没有影响;开花显著降低了叶片的氮和磷含量,而坐果不影响叶片的养分含量.

关键词:西番莲;叶片养分含量;影响因子

中图分类号:S666.01

文献标识码:A

文章编号:1001-411X(2010)03-0005-03

The Factors Affecting the Mineral Nutrient Contents in Leaves of Passion Fruits

FENG Qi-rui, YAO Qing, CHEN Nai-rong, NI Yao-yuan (College of Horticulture, South China Agricultural University, Guangzhou 510642, China)

Abstract: To establish the sampling criteria for the leaf nutritional diagnosis of passion fruit (*Passiflora edulis* Sims), the factors affecting the mineral nutrient contents in leaves were investigated with 'Huayang' as test cultivar. The results indicated that N content in the 10th leaf was the most stable, and the contents of N,P,K in older leaves decreased significantly. The leaf orientation did not affect the nutrient contents in leaves. Flowering significantly decreased the contents of N and P, while bearing did not.

Key words: passion fruits; nutrient contents in leaf; affecting factors

西番莲 Passiflora edulis Sims 为西番莲科西番莲 属多年生常绿藤本植物,原产于南美洲,主要分为黄果、紫果、黄果与紫果杂交种等 3 个类型. 西番莲的果实营养丰富,是国内外果汁生产领域中重要的果实种类. 近年来,国际市场对西番莲果汁的需求每年以15%~20%的速度增长,在我国南方省份也发展较快. 据统计,2007 年我国大陆地区的栽培面积达到0.233 万 hm²[1]. 目前制约西番莲进一步发展的重要因素是单产低,导致单位面积的经济效益较低. 庄西卿^[2]指出,西番莲在世界范围内均表现出产量低(尤其是春季),其原因与营养生长有密切的联系,因为花芽是从新生枝蔓的叶腋处产生的,营养生长的减少必然会导致产量的下降. 在许多果树作物上,叶片

营养诊断是指导施肥、促进营养生长、提高产量和品质的关键措施之一^[3-5].本研究从叶位、叶龄、方位、开花和坐果等因素入手,调查了这些因素对叶片养分含量的影响,为建立西番莲的叶片营养诊断的标准技术奠定基础.

1 材料与方法

以华南农业大学热带亚热带果园中篱架式栽培的黄果西番莲'华阳'品种 Passiflora edulis Sims cv. Huayang 为供试材料,研究叶位、叶龄、叶片着生方位、开花和坐果对叶片氮(N)、磷(P)、钾(K)含量的影响. 土壤 pH6. 0, w(有机质) 2. 1%.

叶位的影响:叶位的编号自顶端叶片向基部叶

收稿日期:2009-04-08

作者简介:冯奇瑞(1965—),男,讲师,硕士,E-mail:fengqirui@scau.edu.cn

基金项目:广东省农业标准项目(粤财农[2004]247 号);广东省科技计划项目(2008B021000047)

片顺序增加.于8月(第1次)和次年4月(第2次) 分别选取1株供试植株,每株选取4或5个非结果 蔓,单蔓重复,每蔓采集不同叶位的具柄叶片;次年5 月(第3次)选取6株供试植株,每株选取1个非结 果蔓,单株重复,每蔓采集不同叶位的具柄叶片.

叶龄的影响:选取 12 株供试植株,单株重复,每株分别取第 10 片叶(作为标准叶)、大 4 周的叶(第 1 次采样)、大 7 周的叶(第 2 次采样).

叶片着生方位的影响:在4—6月,选取2株供试植株,每15d分别从西南、西北、东北、东南4个方位取10片叶,取样4次,每个方位8个重复;在6—8月,选取2株供试植株,每15d分别从南、北2个方位取10片叶,取样4次,每个方位8个重复.

开花的影响:选取 12 株供试植株,单株重复,每株分别在 6 月 16 日(花前)和 6 月 29 日(盛花)采集标准叶.

坐果的影响:在6月选取7株供试植株,分别采集非结果蔓和结果蔓(1果/蔓,果龄30~40d)的标准叶;在8月选取8株供试植株,分别采集非结果蔓和结果蔓(2果/蔓,果龄25~35d)的标准叶.

所有采集的叶片用自来水冲洗后再用蒸馏水冲洗,80~85 ℃杀酶 30 min,60~70 ℃烘干至恒质量,粉碎后以浓硫酸-过氧化氢消煮,N、P、K 含量分别采用凯氏定氮法、钼锑抗比色法、火焰光度法进行测定^[6].

所得数据采用统计软件 SPSS 13.0 进行分析.

2 结果与分析

2.1 标准叶位的确定

由图1可以看出,随着叶位的增加,叶片的含氮量逐渐降低,表明叶片含氮量随着叶片的衰老而下降.这个趋势在单叶采样的第1次和第2次非常明显,而在单株采样的第3次表现较弱.不同叶位叶片含氮量的变异系数为1.06%~7.00%.3次采样中,低位和高位叶片含氮量的变异系数较大,表明幼嫩叶片和衰老叶片的含氮量不稳定;中位叶片含氮量的变异系数较小,尤其是第10位叶片(图1箭头所指)含氮量的变异系数在3次采样中均为最低,表明第10位叶片适于作为叶片营养分析的标准叶.

2.2 叶龄对叶片养分含量的影响

图2的结果表明,与标准叶(第10位叶片)相比,叶龄较大的叶片养分含量均有所下降,除第1次采样的含钾量外两者的差异都达到极显著水平.这个结果与图1的结果一致,即衰老叶片的养分含量下降,不适于叶片的营养分析.

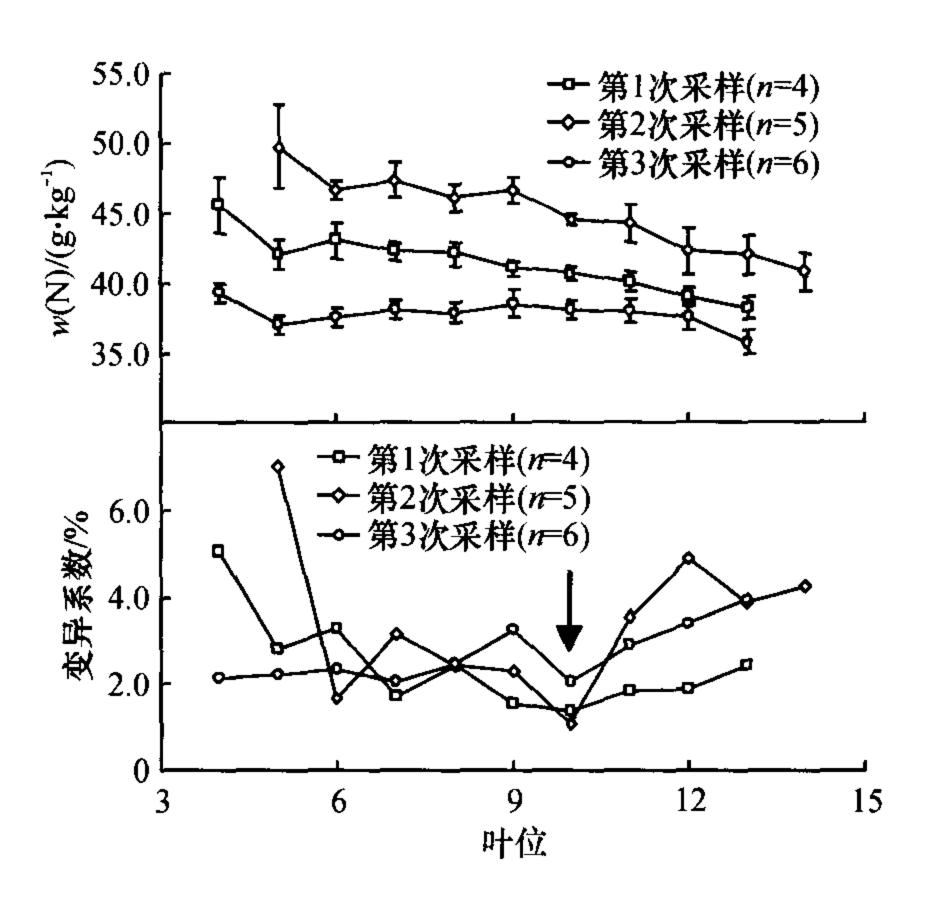
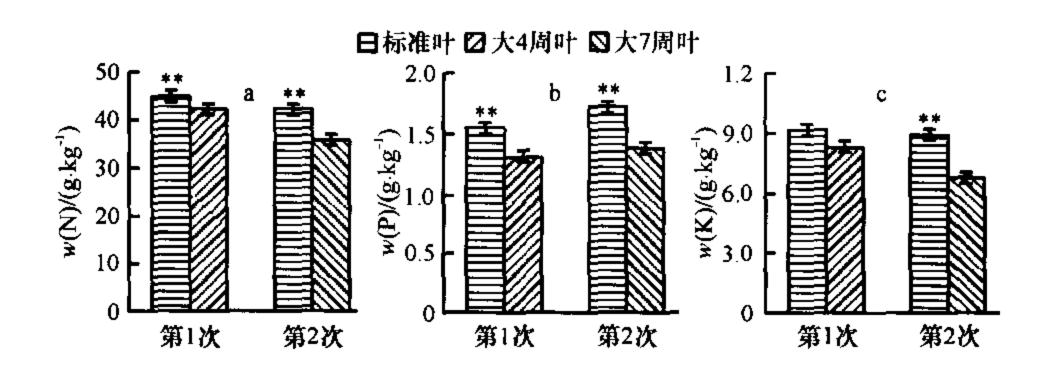



图 1 不同叶位叶片的含氮量及变异系数

Fig. 1 Nitrogen contents in leaves at different position and their coefficient of variation

**表示标准叶和叶龄较大的叶片之间差异达到极显著水平 (P < 0.01, t 检验).

图 2 不同叶龄叶片养分含量的比较(n=12)

Fig. 2 Comparison of mineral nutrient contents in leaves of different ages (n = 12)

2.3 方位对叶片养分含量的影响

由表1可以看出,4个方位采样的叶片 N、P、K 质量分数分别为 44.0、2.30、10.0 g/kg,差异未达到显著水平.从南北2个方位采样的叶片数据也与这个结论相吻合(表2).表明叶片的养分含量并不因采样方位的不同而产生显著变化.

表 1 不同方位叶片的养分含量

Tab. 1 Mineral nutrient contents in leaves of different orientations $w/(g \cdot kg^{-1})$

	方位	N	P	K
	西南	43.9 ± 0.6a	$2.30 \pm 0.09a$	$10.2 \pm 1.0a$
	西北	$43.9 \pm 0.6a$	$2.21 \pm 0.10a$	$10.0 \pm 1.0a$
	东北	$44.2 \pm 0.7a$	$2.38 \pm 0.10a$	$10.4 \pm 1.0a$
_	东南	43.9 ± 0.6a	2.31 ± 0.10a	10.2 ± 1.0a

1)同列数据后凡是有一个相同字母者,表示差异不显著(P = 0.05, Duncan's 法).

表 2 南北方位叶片中养分含量1)

Tab. 2 Mineral nutrient contents in leaves of south and north orientations $w/(g \cdot kg^{-1})$

方位	N	P	K
南	41.9 ± 1.1	2.07 ± 0.06	8.9 ± 0.6
北	41.1 ± 0.9	1.97 ± 0.05	9.8 ± 0.6

1)同列中2个数据的差异未达到显著水平 (P=0.05,t检验).

2.4 开花坐果对叶片养分含量的影响

和花前相比,盛花期的叶片中 N 和 P 的含量明显降低,两者的差异达到极显著水平,但是 K 的含量未受影响(表3). 这表明开花对叶片的养分含量有影响,花期不是叶片营养分析的适宜采样期.

表 3 开花、结果对叶片养分含量的影响

Tab. 3 The effects of flowering and bearing on the mineral nutrient contents in leaves $w/(g \cdot kg^{-1})$

				0 -0 /
采样期	叶片	N	P	K
开花期	花前	36.9 ± 1.1 **	1.74 ± 0.06 **	$9.1 \pm 0.7^{\rm ns}$
	盛花	33.8 ± 1.1	1.60 ± 0.05	8.6 ± 0.7
每蔓1果期	结果蔓	41.6 ± 1.3^{ns}	$1.84 \pm 0.05^{\text{ns}}$	9.3 ± 1.1^{ns}
	非结果蔓	41.9 ± 1.3	1.87 ± 0.05	10.9 ± 1.3
每蔓2果期	结果蔓	29.6 ± 1.1^{ns}	2.30 ± 0.10^{ns}	8.8 ± 0.9^{ns}
	非结果蔓	30.6 ± 0.4	2.39 ± 0.10	9.9 ± 0.8

1) ** 表示相同采样期同列中2个数据的差异达到极显著水平(P<0.01,t检验),ns表示差异不显著(P>0.05,t检验).

从表3还可以看出,不论是每蔓1果还是每蔓2果,结果蔓的叶片中N、P、K含量均与非结果蔓的叶片中养分含量相似,差异没有达到显著水平.可见,坐果对叶片的养分含量没有影响,这一点与开花不同,也表明在坐果期采样时,结果蔓和非结果蔓的叶片均适于采样.

3 讨论与结论

本研究的结果表明,对于'华阳'品种而言,尽管幼嫩叶片的含氮量最高,但是第 10 叶位的叶片氮含量最稳定,因此,宜作为叶片营养诊断时采样的标准叶位.这与前人^[7-8]的报道基本一致.进而可以推测,随着季节的不同,西番莲叶片成熟所需的时间不同,可能导致不同季节采样的标准叶位也不相同.

叶龄对叶片养分含量的影响与叶位的影响是一致的,这是因为叶龄越大则叶位越大,那些叶龄大于标准叶(或者叶位大于标准叶)的叶片通常是趋于衰

老的叶片,N、P、K 等易于移动的养分已经启动向外转移的过程. 盛花期的叶片养分含量降低,在很大程度上是由于开花的消耗,这种现象在'赤霞珠'葡萄上也有报道^[9]. 此外,本研究还发现坐果没有影响叶片养分含量,这可能是因为坐果一方面会竞争叶片中的养分,但是发育的果实同时也是一个强有力的库,刺激了根系对养分的吸收,两者刚好抵消.

叶片养分含量的稳定性是叶片营养诊断的前提之一,这必然要求进行叶片营养诊断时应该在适宜的时期采集适宜的叶片. 根据本研究的结果,在黄果西番莲的叶片营养诊断中,采样的标准叶位应为第10片叶,采样时期应该避免花期,采样方位没有特别限制. 值得提出的是,本研究仅以 N、P、K 为研究对象,其他养分的叶片营养诊断的采样标准需要进一步加以研究.

参考文献:

- [1] 郑文武,郑颂,刘永华. 我国西番莲生产现状及发展探讨[J]. 中国热带农业,2008(6):8-9.
- [2] 庄西卿. 世界西番莲研究近况营养与施肥[J]. 福建热作科技,1990(3):26-30.
- [3] SRIVASTAVA A K, HUCHCHE A D, RAM L, et al. Yield prediction in intercropped versus monocropped citrus orchards [J]. Scientia Horticulturae, 2007, 114(1):67-70.
- [4] FAILLA O, STRNGARI G, PORRO D, et al. Determination of leaf standards for apple trees and grapevines in northern Italy[J]. Developments in Plant and Soil Sciences, 1993, 53:37-41.
- [5] BOGONI M, FAILLA O, PANIONT A, et al. Leaf diagnosis in genotype x environmentt interaction studies for the assessment of viticultural aptitudes of a territory [J]. Acta Horticulturae, 1995, 383:143-158.
- [6] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社,2000.
- [7] FREITAS M S M, MONNERAT P H, VIEIRA I J C, et al. Flavonoids and mineral composition the leaf in yellow passion fruit plant in function of leaves at positions in the branch [J]. Ciência Rural, 2007, 37(6):1634-1639.
- [8] KOTUR S C, SINGH H P, YADAV I S. A note on the standardisation of leaf sampling technique in purple passionfruit (*Passiflora edulis* Sims) [J]. South Indian Horticulture, 1983, 31(1):32-33.
- [9] 马建军,王同坤,齐永顺,等.赤霞珠葡萄生长期矿质营养元素的含量变化[J].河北科技师范学院学报,2007,21(1):8-12.

【责任编辑 周志红】