小鼠锰超氧化物歧化酶在大肠杆菌中的表达和纯化

王 峰1,2,黄璐圆3

(1 暨南大学 药学院,广东 广州 510632;2 暨南大学 中药药效物质基础及创新药物研究广东省高校重点实验室, 广东 广州 510632;3 中国科学院 广州生物医药与健康研究院分子医学中心,广东 广州 510633)

摘要:为构建小鼠锰超氧化物歧化酶(SOD)的原核表达载体,在大肠杆菌中进行蛋白表达、纯化和功能检测,以小鼠肝脏 cDNA 为模板,利用 PCR 方法克隆小鼠锰 SOD 基因,PCR 扩增了 1 个长 600 bp 左右的基因片段,该片段编码由 198 个氨基酸组成的成熟的小鼠锰 SOD 蛋白. 将其插入 pET15b 载体中,经测序鉴定正确后,将重组质粒转化大肠杆菌 Rosetta-gami. 含有 pET15b-mMn-SOD 质粒的工程菌经过 IPTG 诱导能表达出相对分子质量约 25 000 的目的蛋白,超声破碎菌体,经 Ni-NTA 纯化后得到纯度约为 95% 的重组 mMn-SOD 蛋白. SOD 活性检测表明经过诱导表达的 mMn-SOD 比活力为 531.7 U/mg.

关键词:锰超氧化物歧化酶;表达;纯化;SOD 活性

中图分类号:Q78

文献标识码:A

文章编号:1001-411X(2010)03-0085-05

Expression of Mouse Manganese Superoxide Dismutase in *Escherichia coli* and Its Purification

WANG Feng^{1,2}, HUANG Lu-yuan³

(1 Collge of Pharmacy, Jinan University, Guangzhou 510632, China;

2 Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; 3 Center of Molecular Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510633, China)

Abstract: To construct prokaryotic expression vector of the mouse manganese superoxide dismutase (SOD) gene, and to detect the SOD activity of purified mMn-SOD protein, PCR was employed to clone the mouse manganese SOD gene using cDNA of mouse liver as template. A DNA fragment of 600 bp was cloned and sequence analysis indicated that it encoded a mature mouse manganese superoxide dismutase protein of 198 amino acid residues. The DNA fragment was inserted into pET15b vector. After sequencing identification, the recombinant plasmid was transformed into E. coli Rosetta-gami as host strain. When the engineering strain harboring pET15b-mMn-SOD plasmid was inducted with IPTG, an expected target protein with relative molecular mass of 25 000 was detected by SDS-PAGE. After crash with ultrasonography and purification with Ni-NTA affinity chromatography, the purity rate of purified mMn-SOD came up to 95%. SOD activity assay showed that the specific activity of the mMn-SOD was 531.7 U/mg.

Key words: manganese superoxide dismutase; expression; purification; SOD activity

超氧化物歧化酶(superoxide dismutase, SOD)根据其辅基部位结合的不同金属离子分为3类:锰超氧化物歧化酶(Mn-SOD),铁超氧化物歧化酶(Fe-SOD)和铜锌超氧化物歧化酶(Cu/Zn-SOD)[1].在正

常状态下,线粒体电子传递链是超氧化物的主要来源,大约 5% 的 O₂ 分子转变为超氧化物. 由于 Mn-SOD 定位于线粒体,因此被认为是抵御氧化压力的第一线,Mn-SOD 是最有效的具有抗肿瘤活性的抗氧

化酶之一^[2]. Mn-SOD 敲除的杂合小鼠衰老时线粒体 DNA 累积过量的损伤. 完全缺失 Mn-SOD 的小鼠在 出生后的几个星期死亡,并表现为多种表型,包括神经恶化、心脏畸形和广泛的线粒体损伤^[3]. Mn-SOD 在大多数细胞中组成型表达,在哺乳动物中有重要功能. 在一系列不同细胞株中的研究证实过表达 Mn-SOD 能延迟肿瘤的生长,在细胞内过表达 Mn-SOD 能减少细胞内的活性氧自由基,从一定程度上减轻自由基的伤害^[4-5]. 本试验克隆了小鼠锰超氧化物歧化酶(mouse manganese superoxide dismutase, mMn-SOD)基因,构建了原核表达载体,并在大肠杆菌中进行表达和纯化,测定了纯化蛋白的酶活性,这为进一步功能研究奠定了基础.

1 材料与方法

1.1 材料

限制性内切酶 SmaI、T₄ 连接酶、dNTP 为 TaKaRa 公司产品; KOD-plus 聚合酶为 Toyobo 公司产品; PCR 纯化试剂盒、异丙基-β-D-硫代半乳糖苷(Isopropyl β-D-thiogalactoside, IPTG)、抗生素为鼎国公司产品; Ni-NTA 为 QIAGEN 公司生产; BCA 蛋白质定量测定试剂盒为上海申能博彩公司生产; SOD 活力检测试剂盒为上海申能博彩公司生产; SOD 活力检测试剂盒为南京建成公司产品; 引物合成于上海英骏公司; 其他试剂均为国产分析纯. 大肠杆菌克隆菌株 DH5α及表达菌株 Rosetta-gami 为暨南大学中药药效物质基础及创新药物研究广东省高校重点实验室保存.

1.2 方法

1.2.1 引物设计及序列分析 采用引物设计软件 Primer5.0,根据小鼠基因序列(GenBank 登录号 NM_013671)设计引物.mSOD2 FP:5'AAGCACAGCCTC-CCAGACCT 3',mSOD2 RP:5'TCACTTCTTGCAAGCT-GTGTATCTT3',T₇P 引物:5' TAATACGACTCACTATAGG3'.

用 Vector NTI 9 软件分析核苷酸及其推导的氨基酸序列,序列 BLAST^[6] 比较分析在 GenBank 数据库中进行. 在 NCBI 网站上运行 BLASTN 后寻找与之高度相似的基因组 BAC 克隆,记录 cDNA 与基因组BAC 克隆的匹配情况,同时对其中的可疑部分作适当的手工校正. Clustal X (1.81) [7]和 GeneDoc 用来对 mMn-SOD 蛋白序列进行多重序列联配分析.

1.2.2 小鼠锰超氧化物歧化酶基因的扩增及表达载体构建 (1) PCR 扩增 mMn-SOD 基因:以小鼠肝组织 cDNA 为模板,mSOD2 FP/RP 加磷引物,PCR 扩增目的片段. PCR 反应体系为: $10 \times buffer 8 \mu L$, $25 mmol/L MgSO_4 4 \mu L$, $10 mmol/L dNTP 8 \mu L$, $20 \mu mol/L P1 2 \mu L$, $20 \mu mol/L P2 2 \mu L$, $20 \mu mol/L P2 2 \mu L$, $20 \mu mol/L P2 2 \mu L$

酶 4 μL,加水至 80 μL. PCR 反应条件如下:94 ℃变性 5 min 后,进行 30 个循环,程序为:94 ℃变性 30 s, 57 ℃退火 30 s 和 72 ℃延伸 40 s. (2) PCR 产物回收及连接反应:从琼脂糖凝胶上切下含目的片段的电泳条带,按胶回收试剂盒使用说明书进行 PCR 产物回收. 取回收的 PCR 产物 4 μL,pET15b 载体 1 μL,5 × buffer 2 μL, T_4 DNA 连接酶 1 μL, T_4 DNA 连接酶 1 μL, T_4 DNA 连接的 1 μL, T_4 DNA 注意的 2 μ

1.2.3 蛋白的诱导表达 平板上挑取单菌落接种于 5~10 mL 含 Amp 的 LB 培养基,于 37 ℃、220 r/min培养过夜. 按 1:100 的比例接种二级菌,于 37 ℃、220 r/min培养 2.0~2.5 h,直至 $D_{600 \text{ nm}}$ 为 0.5 左右. 然后加入 IPTG 至终浓度 0.5 mmol/L,混匀,于 28 ℃、220 r/min 诱导表达 16 h. 于 4 ℃、12 000 r/min离心 5 min 收集诱导表达后的菌体. 将菌体总蛋白进行 12% SDS-PAGE 电泳检测.

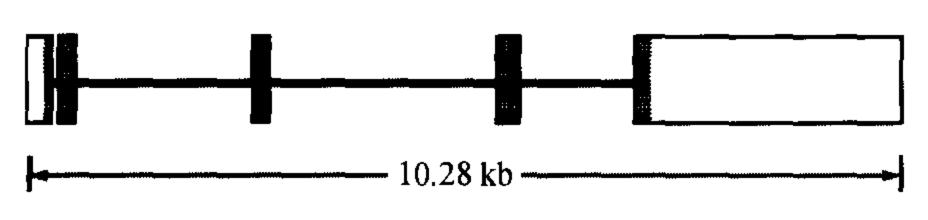
1.2.4 蛋白质的纯化 将菌体超声破碎上清加入 1 mL 50%的 Ni-NTA 树脂浆,4 ℃温和混匀 30 min. 然后 2 000 r/min 离心 30 s 把树脂沉淀下来,取上清 SDS-PAGE 电泳检测,剩余丢弃. 再用 3 mL Wash buffer(50 mmol/L NaH₂PO₄,300 mmol/L NaCl,20 mmol/L 咪唑,pH 8.0)清洗 3 次,2 000 r/min 离心 30 s,小心地 弃去上清. 最后用 1 mL Elution buffer (50 mmol/L NaH₂PO₄,300 mmol/L NaCl,250 mmol/L 咪唑,pH 8.0)洗脱 3 次,2 000 r/min 离心 1 min,把上清转移 到 1 个新的离心管.

1.2.5 活性测定 使用 BCA 蛋白质定量测定试剂 盒测定样品蛋白质浓度,按试剂盒说明书进行操作.

使用 SOD 测试盒测定总 SOD 活力,按试剂盒说明书配制相关试剂和进行操作. 计算公式:

抑制率 = (对照品 D_{λ} - 样品 D_{λ})/对照品 D_{λ} × 100%;

总 SOD 活力(U/mL) = 抑制率×2×反应液总量/所取样品量;

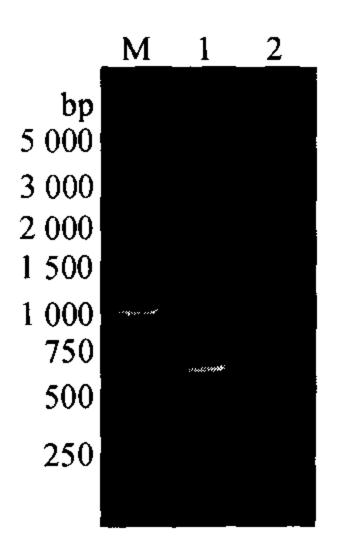

蛋白总 SOD 活力(U/mg) = 总 SOD 活力/蛋白质量浓度.

2 结果

2.1 mMn-SOD 基因的序列分析、PCR 扩增和表达 载体构建

mMn-SOD 基因有 5 个外显子和 4 个内含子,基因跨度为 10.28 kb, mMn-SOD 基因结构示意图如图

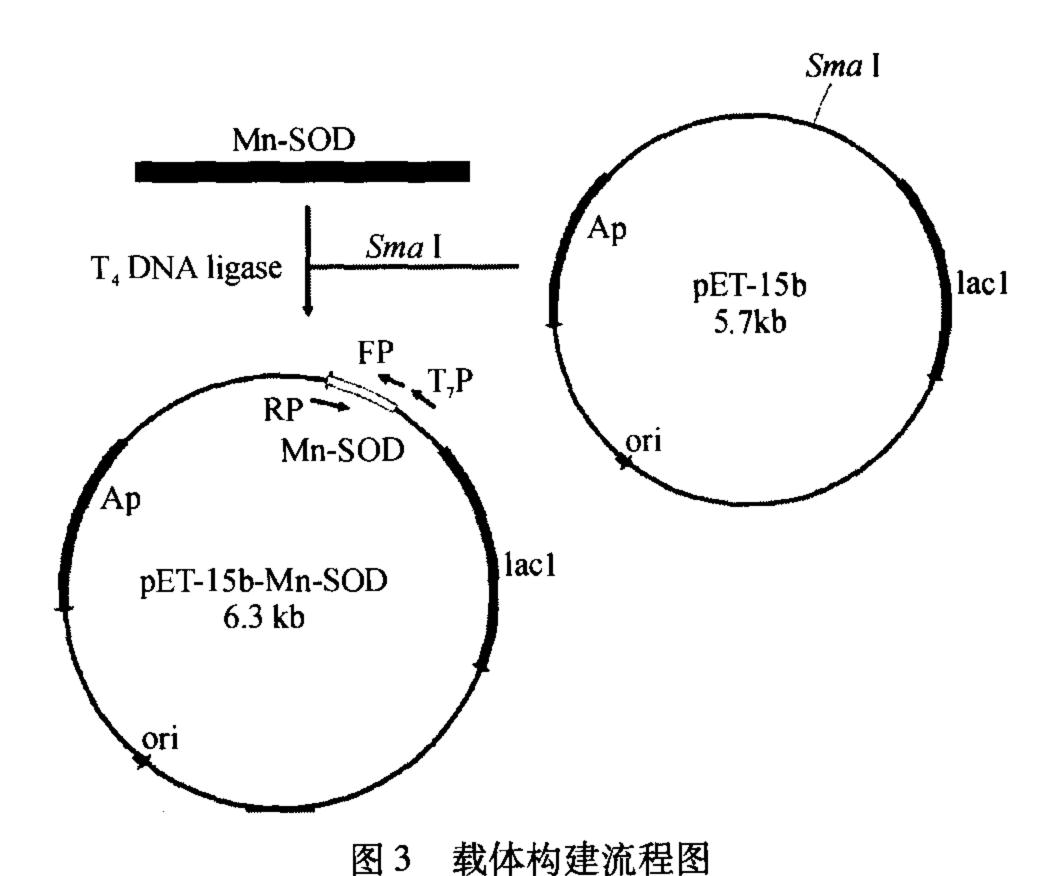
1 所示. 将 mMn-SOD 的 mRNA 序列与其基因组序列 与锰离子结合的活性位点[8]. 进行比对分析,结果表明所有内含子和外显子交接 区都符合"GT-AG"规则.

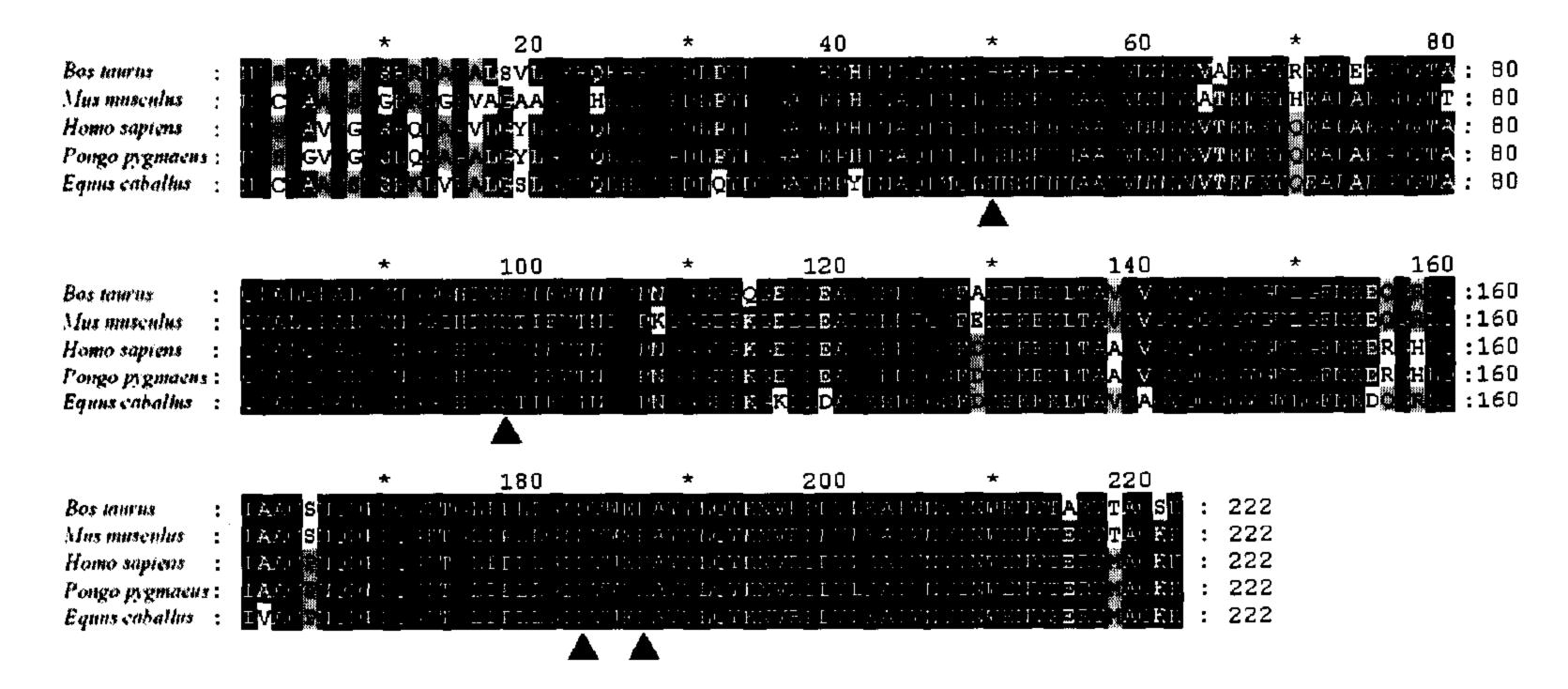

方框代表外显子,横线代表内含子,阴影部分代表编码区.

mMn-SOD 的基因结构示意图

Genomic structure of mMn-SOD gene

以小鼠肝组织 cDNA 为模板,用 KOD-plus 聚合 酶和加磷引物进行 PCR 扩增,如图 2 第 1 泳道,得到 大小为600 bp 左右的特异扩增片段,第2泳道为用 Sma I 酶切载体 pET15b 所得到 5.7 kb 左右的线性 化载体片段. 原核表达载体构建路线如图 3 所示,将 载体与 PCR 扩增片段割胶回收后连接、转化. 为鉴定 重组子外源片段插入方向,分别使用 T7P、mSOD2 FP 引物组合和 T7P、mSOD2 RP 引物组合进行 PCR 扩 增,若T7P、mSOD2 RP 引物组合能扩出 750 bp 左右 的条带,说明插入方向为正向.将阳性克隆送上海英 骏公司测序,结果表明 mMn-SOD 与载体邻接序列与 预期一致,读码框正确无误.


序列分析表明 mMn-SOD 基因编码由 222 个氨 基酸组成的 mMn-SOD 前体蛋白,其中 N 端 24 个氨 基酸为线粒体定位信号肽,切除后变成由 198 个氨 基酸组成的 mMn-SOD 成熟蛋白. mMn-SOD 全蛋白 氨基酸序列与人、黑猩猩、马和牛等其他物种的相似 性为89%~90%左右(图4),这些 Mn-SOD 蛋白均 包含His-50、His-98、Asp-183和His-187 4个保守的


M:DNA marker DL5000;1:mMn-SOD 基因扩增片段;2:pET15b/Sma I 载体酶切片段.

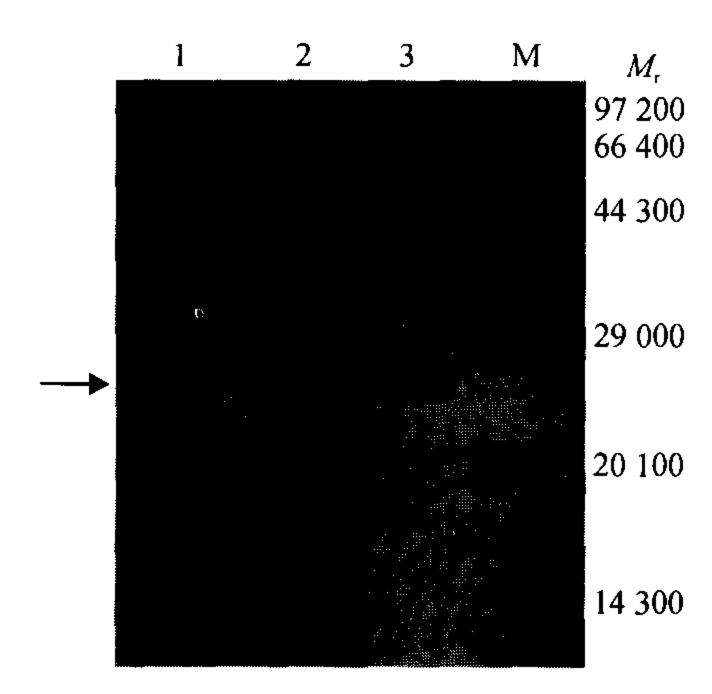
mMn-SOD 基因的 PCR 扩增及载体的酶切

PCR amplification of mMn-SOD gene and digestion of the Fig. 2 vector

Schematic representation of vector construction

▲表示保守的锰离子结合位点.

图 4 各物种 Mn-SOD 蛋白氨基酸序列对比


Amino acid sequence alignment of the Mn-SOD from different organisms

mMn-SOD 蛋白的表达和纯化

经 0.5 mmol/L IPTC 诱导 16 h,诱导表达的菌体

经过超声破碎,离心取上清进行 SDS-PAGE 电泳,如 图 5 所示,表达出 1 条相对分子质量约为25 000的目

的蛋白条带,与目的蛋白的预期相对分子质量一致. 经灰度扫描分析,目的蛋白约占总蛋白的 55%,目的蛋白得到高效可溶性表达.将此上清直接与 Ni-NTA 树脂混合,进行非变性条件下的 Ni-NTA 亲合层析纯化,如图 5 所示,用 Wash buffer 洗涤下来的洗脱液中基本不含目的蛋白(第 2 泳道),最终用 Elution buffer洗脱下来的目的蛋白基本没有杂蛋白(第 3 泳道),目的蛋白的纯度约在 95%以上.

M:蛋白质质量标准;1 超声破碎上清液;2 洗脱液;3 纯化 mMn-SOD. 图 5 mMn-SOD 蛋白的表达和纯化

Fig. 5 Expression and purification of mMn-SOD

2.3 **SOD** 活性检测

用南京建成公司 SOD 测试盒测得纯化 mMn-SOD 的 $D_{570 \text{ nm}}$ 为 0. 297,而负对照 $D_{570 \text{ nm}}$ 为 0. 522,根据公式计算抑制率为 43. 1%,测得蛋白质量浓度为 0. 18 μ g/ μ L,换算得出重组 mMn-SOD 的 SOD 比活力为531. 7 U/mg,这表明通过基因工程途径得到的重组小鼠锰超氧化物歧化酶是有活性的.

3 讨论

Mn-SOD 作为新型酶制剂具有重要的医用价值和潜在的临床应用前景,因而越来越受到人们的重视. 在细胞中过表达 Mn-SOD 能减少离子辐射带来的氧化损伤,小鼠在以 30 或 35 Gy 单剂量照射后,单次皮下注射腺相关病毒(Adenoassociated virus,AAV)介导的 Mn-SOD 能明显缓解急性皮肤损伤,这可以作为放射性治疗和抗放射性意外损伤的对策^[9]. 在细胞内过表达 Mn-SOD 能减少细胞内的活性氧自由基,改善细胞内的氧化应激状态,从一定程度上减轻自由基对组织的伤害. 在一系列不同细胞株中的研究证实过表达 Mn-SOD 能延迟肿瘤的生长. 在用包裹 Mn-SOD 基因的脂质体进行基因治疗发现,Mn-SOD 能通过提高细胞的抗氧化能力来抑制

口腔癌的发生^[10],通过细胞转染过量表达 Mn-SOD 能抑制 HER2/neu 介导的乳腺癌^[4]. 分离提取的或重组的 Mn-SOD 能消除细胞内过多的活性氧自由基,从而减少氧化应激损伤、抑制肿瘤的形成. 从大蒜中提取的 Mn-SOD 能减少细胞内的自由基水平,并能抑制小鼠黑素瘤和猪内皮细胞的细胞增殖^[11]. Chen 等^[12]报道 rhMn-SOD 能明显抑制小鼠肿瘤的生长,这种抑制作用与剂量在一定范围内成正比. rhMn-SOD 与阿霉素联合使用能增强阿霉素的抗肿瘤作用,但不增加细胞毒性.

从动物血、微生物和动植物组织中分离提取 SOD 是一种生产 SOD 的途径,生产中有可能因产品 质量等问题导致交叉感染、疾病传播等重大医疗 事故,也存在因未知病毒导致疾病传播的潜在风险. 由于Mn-SOD 存在于线粒体内,在天然提取上较 Cu/Zn-SOD及 Fe-SOD 困难,产率也较低. 因此,通过 基因工程途径生产 Mn-SOD 不但可以大幅提高产 量,而且克服了血制品 SOD 外源感染危险性的缺陷. 本试验采用 Rosetta-gami 大肠杆菌作为宿主细胞,该 宿主菌相对于 BL21(DE3)等其他大肠杆菌增加了稀 有密码子 tRNA,保证了目的基因在拥有稀有密码子 时能正常表达,提高了表达效率.大肠杆菌表达蛋白 时容易形成包涵体,在37℃表达时蛋白合成速度太 快以至于没有足够的时间进行正确折叠是形成包涵 体的重要原因之一[13]. 王义华等[14] 在大肠杆菌 JM109 中表达拟南芥 Mn-SOD,表达产物占菌体总蛋 白的69%,且以不溶的包涵体形式存在,经变性、纯 化、复性后,纯化 Mn-SOD 的比活力为 200 U/mg. 因 此,本研究采用低温 28 ℃ 过夜表达,降低目的蛋白 表达的速度, mMn-SOD 蛋白主要以可溶性形式表 达,存在于超声破碎上清液中,从而避免了后期纯化 时繁琐的变性、复性过程,大大简化纯化步骤.本研 究采用小量 Ni-NTA 树脂亲合层析法,该方法不需昂 贵的 AKTA 设备系统,只需离心机等简单设备便可 简单、方便、快速、高效地纯化目的蛋白.

致谢:感谢暨南大学211项目资助!

参考文献:

[1] ZELKO I N, MARIANI T J, FOLZ R J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression [J]. Free Radic Biol Med, 2002, 33(3):337-349.

- OBERLEY T D. Mitochondria, manganese superoxide dismutase, and cancer [J]. Antioxid Redox Signal, 2004, 6 (3):483-487.
- [3] HUANG Ting-ting, CARLSON E J, RAINERI I, et al. The use of transgenic and mutant mice to study oxygen free radical metabolism[J]. Ann N Y Acad Sci, 1999, 893:95-112.
- [4] CHUANG Tzu-chao, LIU Jah-yao, LIN Chi-tsai, et al. Human manganese superoxide dismutase suppresses HER2/neu-mediated breast cancer malignancy [J]. FEBS Lett, 2007,581(23):4443-4449.
- [5] EPPERLY M W, WEGNER R, KANAI A J, et al. Effects of MnSOD-plasmid liposome gene therapy on antioxidant levels in irradiated murine oral cavity orthotopic tumors [J]. Radiat Res, 2007, 167(3):289-297.
- [6] ALTSCHUL S F, MADDEN T L, SCHAFFER A A, et al. Gapped BLAST and PSI-BLAST; a new generation of protein database search programs [J]. Nucleic Acids Research, 1997, 25(17):3389-3402.
- [7] THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24):4876-4882.
- [8] BORGSTAHL G E, PARGE H E, HICKEY M J, et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-he-

- lix bundles[J]. Cell, 1992, 71(1), 107-118.
- [9] YAN Shi-qing, BROWN S L, KOLOZSVARY A, et al. Mitigation of radiation-induced skin injury by AAV2-mediated MnSOD gene therapy [J]. J Gene Med, 2008, 10 (9): 1012-1018.
- [10] EPPERLY M W, WEGNER R, KANAI A J, et al. Effects of MnSOD-plasmid liposome gene therapy on antioxidant levels in irradiated murine oral cavity orthotopic tumors [J]. Radiat Res, 2007, 167(3):289-297.
- [11] SFAXI I H, FERRARO D, FASANO E, et al. Inhibitory effects of a manganese superoxide dismutase isolated from garlic (*Allium sativum* L.) on *in vitro* tumoral cell growth [J]. Biotechnol Prog, 2009, 25(1):257-264.
- [12] CHEN Che-sheng, ZHAO Qing, WANG Jia, et al. Enhanced anti-tumor effects achieved in a murine tumor model using combination therapy of recombinant human manganese superoxide dismutase and adriamycin [J]. Biochem Biophys Res Commun, 2008, 370 (4): 663-668.
- [13] 张婷婷,叶波平.包涵体蛋白质的复性研究进展[J]. 药物生物技术,2007,14(4):306-309.
- [14] 王义华,徐梅珍,党云琨,等. 拟南芥 MnSOD 的原核表 达、纯化及抗体制备[J]. 生物技术通讯,2004,15(2): 13-15.

【责任编辑 柴 焰】

(上接第60页)

- [13] 龙良鲲,姚青,黄永恒,等.粤北大宝山重金属污染土壤中 AM 真菌的研究[J]. 华南农业大学学报,2009,30 (2):117-120.
- [14] PRASENJIT B, SUMATHI S. Uptake of chromium by Aspergillus foetidus [J]. Material Cycles and Waste Management, 2005, 7(2):88-92.
- [15] 赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究.环境科学学报,2005,25 (2):186-191.
- [16] SMIT E, LEEFLANG P, WERNARS K. Detection of shifs in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis [J]. FEMS Microbiology Ecology, 1997,23(3):249-261.

- [17] 陈素华,孙铁珩,周启星,等.微生物与重金属的相互作用及其应用研究[J].应用生态学报,2002,13(2);239-242.
- [18] ERIKSSON J E. The influence of pH soil type and time on adsorption and uptake by plants of cadmium added to the soil[J]. Water, Air and Soil Pollution, 1989, 48:317-335.
- [19] 韩露,张小平,刘必融,等. 香根草对土壤中几种重金属离子富集能力的比较研究[J]. 生物学杂志,2005,5:20-23.
- HU Qing, DOU Min-na, QI Hong-yan, et al. Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE[J]. Environmental Sciences, 2007, 19:1114-1119.

【责任编辑 李晓卉】