10 年生粗皮桉种源家系选择分析

廖柏勇1,刘丽婷1,2,莫晓勇1,武海霞1,陈文平3

(1 华南农业大学 林学院, 广东 广州 510642; 2 江西省林业科学院, 江西 南昌 330031; 3 国营雷州林业局, 广东 遂溪 524348)

摘要:以粗皮桉种源、家系试验林 1~5 年生和 10 年生的树高、胸径的调查数据为基础,进行种源、家系间性状差异性分析,估算出 2 个性状各个年龄段的遗传力. 采用最佳线性无偏预测法(BLUP)估算历年树高、胸径性状的育种值,用最小方差聚类分析法(WARD)对育种值开展种源、家系 2 个层次的选择分析. 结果表明:粗皮桉前 5 年树高、胸径在家系间的差异性都达到了显著水平,疏伐后,家系间差异性表现不显著. 2 个性状遗传力以 2 年生最高,分别为 0.147、0.094.分析估算的育种值,14 个种源中,澳大利亚种源 18749、17861、18750 和 17860 表现最好,具有引种优势;244 个家系中,250、233 等 17 个优良家系表现最好. 它们将是粗皮桉进一步进行遗传改良的基础.

关键词:粗皮桉;种源;家系;育种值;最佳线性无偏预测法

中图分类号:S722.5

文献标志码:A

文章编号:1001-411X(2011)04-0072-06

The Selection Analysis of 10-Year-Old *Eucalyptus pellita*Provenance and Family

LIAO Bo-yong¹, LIU Li-ting^{1,2}, MO Xiao-yong¹, WU Hai-xia¹, CHEN Wen-ping³
(1 College of Forestry, South China Agricultural University, Guangzhou 510642, China;

2 Jiangxi Academy of Forestry Sciences, Nanchang 330031, China; 3 Leizhou Forestry Bureau, Suixi 524348, China)

Abstract: Based on the height (H) and diameter at breast height (DBH) of 1-to 5-year-old and 10-year-old Eucalyptus pellita provenance and family trial forest, the difference of traits in different families and provenance was analyzed. Then the heritabilities of two traits in different years were estimated. Breeding values (BV) for both traits in many years were estimated by Best Linear Unbiased Predict (BLUP), which were used to choose superior provenances and families by the Ward's Minimum Variance Cluster Analysis (WARD). The results showed that the difference was significant among families for two traits in 1 to 5 years, but not significant after thinning. It gave the highest heritabilities of each trait at the age of 2, of 0.147 and 0.094 respectively. Besides, Australia provenances 17860,17861,18749, and 18750 had growth advantage in 14 provenances. Seventeen superior families including No. 233 and No. 250 were selected out from 244 families, which provided fundamental materials for long term breeding of Eucalyptus pellita.

Key words: Eucalyptus pellita; provenance; family; breeding value; best linear unbiased predict

粗皮桉 Eucalyptus Pellita 为桃金娘科 Myrtaceae 桉树属树种,天然分布于印度尼西亚的伊里安岛和巴布亚新几内亚西南部交界处以及澳大利亚昆士兰州约克角半岛,从昆士兰弗雷泽岛附近到新南威尔

士州巴特门斯湾南部地区.该树种因树皮厚、抗逆性强、木材密度表现良好等优点而被广泛引种中国适生地区[1-2].随着我国桉树人工林受到自然灾害的影响越来越多.通过种间杂交提高桉树品种抗性,受到

桉树育种学者的一致重视^[3-4]. 而粗皮桉作为同尾叶桉 E. urophylla、巨桉 E. grandis 等同一亚属树种^[5-6],将是桉树种间杂交重要的育种材料. 印度尼西亚对粗皮桉的研究已经进入改良代种子园研究阶段^[7-9]. 我国粗皮桉引种资源丰富,如何对初级种子园进行合理选择利用,并建立改良代种子园,将是今后的研究重点^[10-11]. 本文采用最佳线性无偏预测法(BLUP)估算各年龄粗皮桉种源、家系育种值,并进行选择分析,为建立我国粗皮桉改良代种子园提供理论依据.

1 材料与方法

1.1 试验点概况

试验地位于广东遂溪县城月镇雷州林业局迈进

林场,北纬 21°50′,东经 110°30′;年平均气温 23. $^{\circ}$ C,最热月 7月,平均气温 28 $^{\circ}$ C,最冷月 1月,平均气温 15 $^{\circ}$ C;年降水量 1885 mm,5—9 月为雨季,降雨量约占全年的 80%. 造林地为雷林 1号桉采伐迹地. 林地平整.土壤为沙质砖红壤. 较瘠薄.

1.2 参试种源家系和田间试验

试验林 1998 年 6 月建立,参试粗皮桉种源共 14 个,家系 244 个(表1). 试验采用完全随机区组设计,6 次重复,单行 4 株小区,株行距 2 m×3 m. 整地方式为机械带状全垦. 造林前施海泥(3 000 kg/hm²)和雷林 1 号肥(750 kg/hm²)作基肥,以后每年施雷林 2 号肥作追肥.

表 1 参试粗皮桉种源家系概况

Tab. 1 General information of Eucalyptus pellita provena
--

编号	种源编号	种源产地1)(国家/地区名)	家系/个	纬度	经度	海拔/m
1	17848	Australia/Mossman, Qld.	3	17°05′S	145°31′E	600
2	17854	Indonesia/Bupul-Muting	12	7°21′S	140°36′E	40
3	17860	Australia/SSW Kuranda	10	16°56′S	145°36′E	425
4	17861	Australia/NW Kuranda	25	16°41′S	145°32′E	440
5	18197	PNG/S of Kiriwo WP	39	8°25′S	141°30′E	45
6	18199	PNG/Serisa	26	8°36′S	141°26′E	45
7	18313	Australia/Starcks Station	4	15°05′S	145°12′E	30
8	18314	Australia/El Arish	9	17°50′S	146°03′E	50
9	18596	Australia/NW Ingham	6	18°36′S	146°08′E	15
10	18597	Australia/S Cardwell	19	18°25′S	147°56′E	15
11	18598	Australia/Cardwell-Kennedy	14	18°15′S	145°55′E	30
12	18599	Australia/Julatten	47	16°37′S	145°28′E	425
13	18749	Australia/Daintree	7	16°15′S	145°21′E	25
14	18750	Australia/Wonga-Daintree	23	16°16′S	145°22′E	15

1) PNG 表示巴布亚新几内亚种源.

1.3 试验统计模型及分析方法

1.3.1 性状差异性方差分析模型 性状差异性方差分析模型为:

 $y_{iik} = \mu + R_i + P_i + F_k + (RF)_{ik} + \varepsilon_{iik}$

式中:
$$y_{ijk}$$
为第 i 区组第 j 种源第 k 家系单株的观测值; μ 为总平均,固定效应; R_i 为第 i 重复固定效应;

值; μ 为总平均,固定效应; R_i 为第 i 重复固定效应; P_j 为第 j 种源随机效应; F_k 为第 k 家系随机效应; $(RF)_{ik}$ 为第 i 重复与第 k 家系的随机互作效应; ε_{ik} 为第 i 重复、第 j 种源、第 k 家系个体的随机误差. 方差分析采用 SAS 9.0 运行 [12].

1.3.2 方差成分估算方差分析模型 方差成分估 算采用一般混合线性模型,矩阵的形式表示为:

$$y = Xb + Zu + e,$$

其中,y:所有性状观测值的 n 维向量;b:所有固定效

应的 P 维向量; \mathbf{u} :所有随机效应的 q 维向量; \mathbf{e} :残差效应的 n 维向量; \mathbf{X} :固定效应的 $n \times p$ 阶关联矩阵; \mathbf{Z} :随机效应的 $n \times q$ 阶关联矩阵.

$$E(u) = 0$$
, $E(e) = 0$, $E(y) = Xb$,
 $Var(u) = G$, $Var(e) = R$, $Cov(u, e') = 0$,
 $Var(y) = ZGZ' + R$.

$$\begin{bmatrix} u \\ e \end{bmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} G & 0 \\ 0 & R \end{pmatrix} R$$
 是剩余方差与协方差

矩阵,G 是每个随机效应的方差与协方差矩阵.

模型中固定效应估计和随机效应预测采用 Henderson^[13]给出的混合模型方程(Mixed model equation):

$$\begin{pmatrix} \mathbf{X'R^{-1}X} & \mathbf{X'R^{-1}Z} \\ \mathbf{Z'R^{-1}X} & \mathbf{Z'R^{-1}Z + G^{-1}} \end{pmatrix} \begin{pmatrix} \hat{b} \\ \hat{u} \end{pmatrix} = \begin{pmatrix} \mathbf{XR^{-1}y} \\ \mathbf{ZR^{-1}y} \end{pmatrix}.$$

该混合模型解能同时给出固定效应可估函数 \hat{b} 的最佳线性无偏估计值(BLUE),及其随机效应 \hat{u} 的最佳线性无偏预测值(BLUP)[14].

对于以上一般混合线性模型,用 ASReml 软件^[15]进行模型优化后,也可以表述为:

 $Y_{ijkl} = \mu + R_i + P_j + F_k + (\text{Plot})_l + \varepsilon_{ijkl}$, 其中, Y_{ijkl} 为第 i 重复第 j 种源第 k 家系第 l 小区的观测值; $(\text{Plot})_l$ 为第 l 小区随机效应; ε_{ijkl} 为第 i 重复、第 i 种源、第 k 家系、第 l 小区的随机误差.

运用 ASReml 软件^[15]进行混合线性模型相关统计分析,估算各年龄树高、胸径 BLUP 育种值,并对各年龄 BLUP 育种值进行最小方差法(Ward's minimum-variance method, WARD)谱系聚类分析. 聚类分析采用 SAS 9.0 运行^[12].

1.3.3 家系遗传力公式 家系遗传力采用文献 [15]公式计算:

$$h^2 = \sigma_f^2 / (\sigma_{pl}^2 + \sigma_f^2 + \sigma_e^2)$$
,

式中, h^2 为家系遗传力, σ_i^2 为家系方差分量, σ_{pl}^2 为小区方差分量, σ^2 为误差方差分量.

2 结果与分析

树高和胸径是树木的实际测量性状,单株材积是2个性状的反应,同时单株材积由公式计算得出,增加了更多的不确定因素,为此,对树高和胸径进行遗传分析将更具指导意义.

2.1 性状遗传变异分析

用 SAS 软件 GLM 分析包对粗皮桉树高、胸径的 历年数据进行方差分析,结果列于表 2,从表 2 可见, 0.5~5年生树高、胸径在种源间、家系间都达到极显 著差异;0.5~5年生的树高、胸径在重复间的差异稳定性各不相同,3年生时 2个生长性状在重复间都没有达到显著水平;树高在前 5年中受重复和家系互作影响较大,差异极显著;10年生种子园经过 5年生时疏伐后,10年生时树高、胸径在种源间差异明显.说明 5年生之前各家系性状差异性较大,选择潜力大,后期差异性变化趋于平缓;而在 10年生时,经过台风等自然选择后,种源间尚可进一步进行选择.

表 2 粗皮桉种子园历年生长性状方差分析1)

Tab. 2 Analysis of variance for growth traits of Eucalyptus pellita at different ages

变异来源	自由度	不同林龄树高的 F								不同林龄胸径的 F					
文开不你	日田及	0.5 年生 1	1 年生	2 年生	3 年生	4 年生	5 年生	10 年生	2 年生	3 年生	4 年生	5 年生	10 年生		
重复问	5	50. 72 ** 35	5.64 **	7.90 **	1.12	1.66	1.97	1.63	3.70 **	1.89	2.96 *	2.88*	0.60		
种源间	13	9.67 ** 8	8.66 **	12.64 **	13.65 **	12.72 **	12.61 **	3.11*	10.90 **	12.74 **	13.61 **	13.28 **	2.86 **		
家系间	230	5. 20 ** 4	4. 54 **	5.47 **	2.66 **	2.92 **	2.53 **	1.12	2.97 **	2.50 **	2.23 **	2.10 **	0.84		
家系×重复	1 184	2. 09 ** 1	1.74 **	2.19**	1.20 **	1.48**	1.39 **	0.89	1.04	0.96	0.93	0.94	0.77		

1) ** 表示 0.01 水平差异极显著, *表示 0.05 水平差异显著.

2.2 遗传力估算

表 3 列出了各林龄树高、胸径的遗传力和方差分量. 由表 3 可知, 树高各年龄的平均遗传力为 0. 116, 胸径平均遗传力为 0. 085. 胸径遗传力低于印度尼西亚 South Kalimantan 和 Riau (Sumatra) 2 个试验点粗皮桉 6 年遗传力平均值 0. 206 和 0. 103^[8], 树高遗传力与 Sumatral 试验点粗皮桉前 3 年的遗传力基本保持一致^[9]. 说明粗皮桉引种粤西基本保持了原引种地的物种生长特性,估算的遗传力在正常范围之内.

2003 年,试验林受当年台风影响严重,根据表型值对试验林进行了疏伐. 疏伐使试验中各重复的环境效应和小区效应被打破,环境效应增大,家系方差分量减小,导致估算的家系遗传力误差过大,估算的遗传力指导意义不大. 所以本次分析没有对 5 年生和 10 年生胸径的遗传力进行估算.

表 3 粗皮桉各年龄生长性状遗传力1)

Tab. 3 Heritability estimation of growth traits of *Eucalyptus* pellita at different ages

性状2)	林龄	$oldsymbol{\sigma}_{ m pl}^2$	$oldsymbol{\sigma}_{ m p}^2$	$oldsymbol{\sigma}_{\mathrm{f}}^{2}$	$oldsymbol{\sigma}_{ m e}^2$	h^2	SE
树高	0.5		0.002 0	0.027 0	0.178 3	0.131	0.014
	1	0.015 9	0.005 2	0.127 1	0.8862	0.124	0.014
	2	0.038 4	0.044 7	0.411 1	2.347 0	0.147	0.016
	3	0.140 8	0.139 5	$0.328\ 0$	2.744 2	0.102	0.015
	4	0.2126	0.147 5	0.536 1	4.132 6	0.110	0.016
	5	0.326 0	0.237 3	0.549 0	4.8509	0.096	0.016
	10	1.946 8	0.781 1	1.273 3	9.208 9	0.102	0.040
						(0.116)	
胸径	2	0.097 3	0.1166	0.349 8	3.264 9	0.094	0.013
	3	0.226 8	0.280 5	0.470 5	4.931 3	0.084	0.012
	4	0.598 3	0.367 3	0.648 8	7.040 9	0.078	0.013
						(0.085)	

^{1):} $\sigma_{\rm pl}^2$:小区方差分量; $\sigma_{\rm p}^2$:种源方差分量(列出但不参与遗传力计算); $\sigma_{\rm r}^2$:家系方差分量; $\sigma_{\rm e}^2$:其他方差分量;SE:标准误; h^2 :家系遗传力,圆括号中数据为 h^2 平均值.

2.3 优良种源选择

根据混合模型,利用 BLUP 法估算 0.5~10 年生 树高、2~4 年生胸径各种源、家系各自育种值,按照 育种值大小进行排序,种源育种值列于表 4,家系育 种值前 10 名列于表 5. 对表 4 中历年粗皮桉种源树高、胸径育种值进行种源水平最小方差聚类分析 (WARD),聚类分析结果如图 1 所示. 图 2 为种源聚类分析 R^2 的分布图. R^2 为 0. 785 6 时,将种源分成 4 类, R^2 变化随后开始趋于平缓. 结合图 1、图 2,把 14个种源分为 4 部分比较合理. 第 1 部分为 18749、17861、18750、17860,第 2 部分为 18596、18197、18199、17854,第 3 部分为 18597、18314、18313,第 4 部分为 18599、18598、17848.

从引种地理位置观察,我们发现所引种的澳大利亚种源都分布于澳大利亚昆士兰东北部的湿润热带和干湿季交替热带地区,该地区为夏雨型气候,与我国的热带和亚热带气候条件最为相近¹⁶. 从各种源表现来看,表现最好的 4 个种源是澳大利亚湿润热带区的库兰达 2 个种源 17861、17860 以及丹特里 2 个种源 18749、18750;靠近赤道的巴布亚新几内亚和印度尼西亚 3 个热带种源 17854、18197、18199 表现一般,表现最差的一部分为霍普威尔地区、埃尔阿里什到塔利地区以及南卡德维尔收集的种源 18313、18314、18597;其他澳大利亚各种源表现一般. 综上所述,澳大利亚的粗皮桉种源引种我国沿海地区符合适地适树的引种原则.

表 4 粗皮桉历年种源 BLUP 育种值

Tab. 4 Breeding values for growth traits of Eucalyptus pellita provenances at different ages

Tab. 4 Diceuing values for growth traits of Eucuspius peutua provenances at universit ages																
排名	0.5 年生树高			1 年生树高			·	2年生树高			3 年生树高			4 年生树高		
117泊	种源号 7	育种值	标准误	种源号	育种值	标准误	种源号	育种值	标准误误	种源号	育种值	标准误误	种源号	育种值	标准误	
1	18199 0	0.0678	0.030 6	17861	0.0814	0.0562	17861	0.207 1	0.131 3	18749	0.4477	0.229 6	17860	0.471 1	0.2409	
2	18197 0	0.037 5	0.028 0	18599	0.038 0	0.050 5	18197	0.1707	0.1189	18750	0.3835	0.169 5	17861	0.426 9	0.1916	
3	18596 0	0.024 8	0.039 3	17860	0.029 5	0.063 3	17854	0.1422	0.155 1	17860	0.3748	0.208 6	18750	0.4180	0.1963	
4	17861 0	0.013 1	0.030 8	18197	0.023 6	0.052 1	17860	0.107 6	0.159 1	17861	0.3165	0.165 6	18749	0.3117	0.2647	
5	18599 0	0.003 7	0.027 0	18596	0.0194	0.066 5	18599	0.1064	0.1142	18599	0.1795	0.146 9	18598	0.084 1	0.2227	
6	18749 0	0.003 6	0.038 5	18199	0.0164	0.055 9	18750	0.0997	0.134 1	18596 -	-0.0026	0.240 6	18599	0.0599	0.1680	
7	18598 0	0.0034	0.034 6	18749	0.0114	0.065 6	18199	0.0557	0.1307	17854	0.078 5	0.216 5	18596	0.0494	0.274 1	
8	18597 -0	0.000 3	0.0327	18598	0.0089	0.061 1	18749	0.0097	0.170 2	18598	0.045 3	0.1925	17854	-0.0026	0.2537	
9	18314 -0	0.0112	0.0374	17854	-0.014 5	0.0623	18598	-0.004 1	0.1499	18199 -	-0.0483	0.177 3	17848	-0.2106	0.3133	
10	17860 -0	0.015 5	0.0364	18750	-0.030 9	0.0570	1784 8	-0.1148	0.1907	18197 -	-0.236 1	0.162 1	18597	-0.2304	0.2106	
11	17848 -0	0.024 2	0.0418	18597	-0.035 0	0.0587	18596	-0.1463	0.175 1	18597 -	-0.2392	0.182 1	18314	-0.289 6	0.2520	
12	17854 -0	0.025 7	0.035 6	18314	-0.036 7	0.0643	18597	-0.2008	0.1405	18314 -	-0.277 0	0.2186	18199	-0.3304	0.2086	
13	18750 -0	0.034 6	0.0314	17848	-0.0518	0.0690	18314	-0.2092	0.1646	17848 -	-0.4769	0.283 6	18197	-0.3698	0.1911	
14	18313 -0	0.042 5	0.0410	18313	-0.0597	0.068 1	18313	-0.223 9	0.186 1	18313 -	-0.545 8	0.2694	18313	-0.387 5	0.303 1	
排名	5 年生树高		j	10 年生树高			2 年生胸径			3 年生胸径			4 年生胸径			
] -/ []																
	种源号 7	育种值	标准误	种源号	育种值	标准误	种源号	育种值	标准误	种源号号	育种值	标准误	种源号	育种值	标准误	
1			标准误 0.308 0	种源号 18749	育种值 1.081 0	标准误 0.6543	种源号 18749	育种值 0.408 2		种源号号 18749		标准误 0.300 4	种源号 18750	育种值 0.659 0		
	18749 0). 664 9				0.654 3		0.408 2			0.533 8				0. 259 7	
1	18749 0 17860 0). 664 9). 584 5	0.308 0	18749	1.081 0	0.654 3 0.444 0	18749	0. 408 2 0. 321 6	0.222 5	18749	0.533 8	0.300 4 0.267 8	18750	0.6590	0. 259 7 0. 253 5	
1 2	18749 0 17860 0 18750 0). 664 9). 584 5). 514 5	0.308 0 0.274 7	18749 17861	1.081 0 0.843 2	0.654 3 0.444 0 0.604 4	18749 17861	0. 408 2 0. 321 6 0. 290 7	0. 222 5 0. 161 1	18749 17854	0.533 8 0.515 5 0.444 8	0.300 4 0.267 8	18750 17861	0.659 0 0.648 2	0. 259 7 0. 253 5 0. 315 1	
1 2 3	18749 0 17860 0 18750 0 17861 0	0. 664 9 0. 584 5 0. 514 5 0. 487 3	0.308 0 0.274 7 0.223 8	18749 17861 18314	1.081 0 0.843 2 0.709 8	0.654 3 0.444 0 0.604 4 0.396 6	18749 17861 17854	0. 408 2 0. 321 6 0. 290 7 0. 229 3	0. 222 5 0. 161 1 0. 195 9	18749 17854 17861	0. 533 8 0. 515 5 0. 444 8 0. 437 5	0.300 4 0.267 8 0.2171	18750 17861 17860	0.659 0 0.648 2 0.640 4	0. 259 7 0. 253 5 0. 315 1 0. 351 7	
1 2 3 4	18749 0 17860 0 18750 0 17861 0 17848 0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4	0.308 0 0.274 7 0.223 8 0.219 0	18749 17861 18314 18599	1.081 0 0.843 2 0.709 8 0.519 4	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4	18749 17861 17854 18199	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5	0. 222 5 0. 161 1 0. 195 9 0. 160 7	18749 17854 17861 18750	0.533 8 0.515 5 0.444 8 0.437 5 0.435 4	0.300 4 0.267 8 0.2171 0.222 2	18750 17861 17860 18749	0. 659 0 0. 648 2 0. 640 4 0. 595 3	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8	
1 2 3 4 5	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6	18749 17861 18314 18599 17848	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9	18749 17861 17854 18199 17860	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5	18749 17854 17861 18750 17860	0.533 8 0.515 5 0.444 8 0.437 5 0.435 4	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7	18750 17861 17860 18749 18599	0.659 0 0.648 2 0.640 4 0.595 3 0.303 0	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1	
1 2 3 4 5 6	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1	18749 17861 18314 18599 17848 1875 0	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5	18749 17861 17854 18199 17860 18599	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2	18749 17854 17861 18750 17860 18199 18599	0. 533 8 0. 515 5 0. 444 8 0. 437 5 0. 435 4 0. 291 7	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9	18750 17861 17860 18749 18599 17854	0.659 0 0.648 2 0.640 4 0.595 3 0.303 0 0.169 4	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2	
1 2 3 4 5 6 7	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0 18599 0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4 0. 133 2	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1 0.297 7	18749 17861 18314 18599 17848 1875 0 18597 18598	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3 0.081 6	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5 0.549 7	18749 17861 17854 18199 17860 18599 18750 18197	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2 0. 164 9 0. 146 3	18749 17854 17861 18750 17860 18199 18599	0. 533 8 0. 515 5 0. 444 8 0. 437 5 0. 435 4 0. 291 7 0. 184 2	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9 0.203 6	18750 17861 17860 18749 18599 17854 18199 17848	0.659 0 0.648 2 0.640 4 0.595 3 0.303 0 0.169 4 0.010 2	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2 0. 441 0	
1 2 3 4 5 6 7 8	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0 18599 0 17854 -0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4 0. 133 2 0. 270 0	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1 0.297 7 0.231 6	18749 17861 18314 18599 17848 1875 0 18597 18598 17860	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3 0.081 6 0.058 3	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5 0.549 7 0.563 9	18749 17861 17854 18199 17860 18599 18750 18197 17848	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6 0. 038 9	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2 0. 164 9 0. 146 3 0. 271 3	18749 17854 17861 18750 17860 18199 18599 18197 -	0. 533 8 0. 515 5 0. 444 8 0. 437 5 0. 435 4 0. 291 7 0. 184 2 -0. 029 7	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9 0.203 6 0.379 7	18750 17861 17860 18749 18599 17854 18199 17848 18598	0. 659 0 0. 648 2 0. 640 4 0. 595 3 0. 303 0 0. 169 4 0. 010 2 0. 006 7	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2 0. 441 0 0. 294 6	
1 2 3 4 5 6 7 8	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0 18599 0 17854 -0 18197 -0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4 0. 133 2 0. 270 0 0. 349 5	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1 0.297 7 0.231 6 0.242 6	18749 17861 18314 18599 17848 1875 0 18597 18598 17860 18313	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3 0.081 6 0.058 3 -0.010 3	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5 0.549 7 0.563 9 0.825 7	18749 17861 17854 18199 17860 18599 18750 18197 17848 18596	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6 0. 038 9 -0. 185 4	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2 0. 164 9 0. 146 3 0. 271 3	18749 17854 17861 18750 17860 18199 18599 18197 - 17848 -	0.533 8 0.515 5 0.444 8 0.437 5 0.435 4 0.291 7 0.184 2 -0.029 7 -0.173 4	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9 0.203 6 0.379 7 0.251 6	18750 17861 17860 18749 18599 17854 18199 17848 18598 18197	0. 659 0 0. 648 2 0. 640 4 0. 595 3 0. 303 0 0. 169 4 0. 010 2 0. 006 7 -0. 138 8	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2 0. 441 0 0. 294 6 0. 242 8	
1 2 3 4 5 6 7 8 9	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0 18599 0 17854 -0 18197 -0 18597 -0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4 0. 133 2 0. 270 0 0. 349 5 0. 362 3	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1 0.297 7 0.231 6 0.242 6 0.290 6	18749 17861 18314 18599 17848 1875 0 18597 18598 17860 18313 17854	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3 0.081 6 0.058 3 -0.010 3 -0.369 5	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5 0.549 7 0.563 9 0.825 7 0.587 3	18749 17861 17854 18199 17860 18599 18750 18197 17848 18596	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6 0. 038 9 -0. 185 4 -0. 219 0	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2 0. 164 9 0. 146 3 0. 271 3 0. 233 1 0. 187 4	18749 17854 17861 18750 17860 18199 18599 18197 - 17848 - 18598 -	0.533 8 0.515 5 0.444 8 0.437 5 0.435 4 0.291 7 0.184 2 -0.029 7 -0.173 4 -0.260 5 -0.436 1	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9 0.203 6 0.379 7 0.251 6	18750 17861 17860 18749 18599 17854 18199 17848 18598 18197 1859 6	0. 659 0 0. 648 2 0. 640 4 0. 595 3 0. 303 0 0. 169 4 0. 010 2 0. 006 7 -0. 138 8 -0. 371 6	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2 0. 441 0 0. 294 6 0. 242 8 0. 368 7	
1 2 3 4 5 6 7 8 9 10	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0 18599 0 17854 -0 18197 -0 18597 -0 18314 -0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4 0. 133 2 0. 270 0 0. 362 3 0. 362 7	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1 0.297 7 0.231 6 0.242 6 0.290 6	18749 17861 18314 18599 17848 1875 0 18597 18598 17860 18313 17854 18199	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3 0.081 6 0.058 3 -0.010 3 -0.369 5 -0.724 1	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5 0.549 7 0.563 9 0.825 7 0.587 3 0.570 2	18749 17861 17854 18199 17860 18599 18750 18197 17848 18596 18598	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6 0. 038 9 -0. 185 4 -0. 219 0 -0. 225 3	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2 0. 164 9 0. 146 3 0. 271 3 0. 233 1 0. 187 4 0. 173 7	18749 17854 17861 18750 17860 18199 18599 18197 - 17848 - 18598 - 18596 -	0.533 8 0.515 5 0.444 8 0.437 5 0.435 4 0.291 7 0.184 2 -0.029 7 -0.173 4 -0.260 5 -0.436 1	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9 0.203 6 0.379 7 0.251 6 0.315 5 0.235 0	18750 17861 17860 18749 18599 17854 18199 17848 18598 18197 1859 6	0. 659 0 0. 648 2 0. 640 4 0. 595 3 0. 303 0 0. 169 4 0. 010 2 0. 006 7 -0. 138 8 -0. 371 6 -0. 431 8	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2 0. 441 0 0. 294 6 0. 242 8 0. 368 7 0. 334 2	
1 2 3 4 5 6 7 8 9 10 11	18749 0 17860 0 18750 0 17861 0 17848 0 18598 0 18599 0 17854 -0 18197 -0 18597 -0 18596 -0 18313 -0	0. 664 9 0. 584 5 0. 514 5 0. 487 3 0. 146 4 0. 012 9 0. 000 4 0. 133 2 0. 270 0 0. 349 5 0. 362 3 0. 362 7 0. 411 3	0.308 0 0.274 7 0.223 8 0.219 0 0.373 6 0.255 7 0.194 1 0.297 7 0.231 6 0.242 6 0.290 6 0.317 1 0.368 4	18749 17861 18314 18599 17848 1875 0 18597 18598 17860 18313 17854 18199 18596	1.081 0 0.843 2 0.709 8 0.519 4 0.394 8 0.108 3 0.081 6 0.058 3 -0.010 3 -0.369 5 -0.724 1 -0.767 3	0.654 3 0.444 0 0.604 4 0.396 6 0.692 4 0.445 9 0.599 5 0.549 7 0.563 9 0.825 7 0.587 3 0.570 2 0.728 0	18749 17861 17854 18199 17860 18599 18750 18197 17848 18596 18598 18597 18314	0. 408 2 0. 321 6 0. 290 7 0. 229 3 0. 191 5 0. 161 9 0. 144 6 0. 038 9 -0. 185 4 -0. 219 0 -0. 225 3 -0. 352 0	0. 222 5 0. 161 1 0. 195 9 0. 160 7 0. 201 5 0. 141 2 0. 146 3 0. 271 3 0. 233 1 0. 187 4 0. 173 7 0. 212 7	18749 17854 17861 18750 17860 18199 18599 18197 - 17848 - 18598 - 18596 - 18597 -	0.533 8 0.515 5 0.444 8 0.437 5 0.435 4 0.291 7 0.184 2 -0.029 7 -0.173 4 -0.260 5 -0.436 1 -0.463 3 -0.588 2	0.300 4 0.267 8 0.2171 0.222 2 0.269 3 0.221 7 0.193 9 0.203 6 0.379 7 0.251 6 0.315 5 0.235 0	18750 17861 17860 18749 18599 17854 18199 17848 18598 18197 1859 6 1831 4 18597	0. 659 0 0. 648 2 0. 640 4 0. 595 3 0. 303 0 0. 169 4 0. 010 2 0. 006 7 -0. 138 8 -0. 371 6 -0. 431 8 -0. 486 4	0. 259 7 0. 253 5 0. 315 1 0. 351 7 0. 225 8 0. 320 1 0. 263 2 0. 441 0 0. 294 6 0. 242 8 0. 368 7 0. 334 2 0. 275 5	

表 5 历年粗皮桉各家系性状 BLUP 育种值(前 10 名)

Tab. 5 Breeding values for growth traits of Eucalyptus pellita families at different ages (Top 10)

			8		8			<i>J</i> 1 1				0	` .	,	
排名	C).5 年生树	三树高 1年生树高			2 年生树高			3 年生树高			4 年生树高			
111-1	家系	育种值	标准误	家系	育种值	标准误	家系	育种值	标准误	家系	育种值	标准误	家系	育种值	标准误
1	30	0.3347	0.083 5	211	0.734 4	0.186 1	50	1.3300	0.3185	233	1.123 0	0.333 6	233	1.455 0	0.414 0
2	53	0.333 9	0.0822	232	0.709 5	0.1719	161	1.2390	0.3362	30	0.9184	0.335 0	53	1.396 0	0.472 1
3	174	0.2944	0.082 5	30	0.6619	0.183 2	83	1.225 0	0.337 2	250	0.9068	0.372 6	222	1.1170	0.4500
4	138	0.286 5	0.0849	214	0.648 2	0.149 3	211	1.1860	0.322 1	239	0.8569	0.285 5	83	1.1170	0.5224
5	127	0.2864	0.080 1	65	0.5845	0.188 5	57	1.1200	0.3342	53	0.808 5	0.3698	276	1.107 0	0.4034
6	274	0.2862	0.081 1	228	0.565 8	0.1504	116	1.0920	0.3161	262	0.8034	0.321 1	261	1.0640	0.405 1
7	119	0.272 5	0.0814	60	0.520 3	0.183 1	138	1.0500	0.3169	216	0.7860	0.329 9	65	0.9870	0.5198
8	65	0.271 5	0.085 6	189	0.498 2	0.1993	202	1.0420	0.3140	274	0.7414	0.329 9	163	0.9796	0.4249
9	50	0.271 1	0.080 1	138	0.4912	0.186 2	66	0.9699	0.307 5	163	0.721 1	0.340 2	250	0.9587	0.492 1
10	211	0.2709	0.0849	146	0.4811	0.182 1	233	0.9658	0.3186	82	0.7194	0.370 8	95	0.9464	0.4797
排名		5 年生树高	ij	10 年生树高			2 年生胸径			3 年生胸径			4 年生胸径		
卅石	家系	育种值	标准误	家系	育种值	标准误	家系	育种值	标准误	家系	育种值	标准误	家系	育种值	标准误
1	163	1.518 0	0.4590	163	1.8110	0.908 5	83	1.0800	0.365 5	233	1.1890	0.426 3	163	1.837 0	0.5134
2	147	1.2190	0.5309	158	1.760 0	0.937 1	250	0.9926	0.343 1	83	1.1800	0.462 1	239	1.389 0	0.437 1
3	83	1.1610	0.5784	276	1.442 0	0.8195	211	0.8853	0.3509	163	1.131 0	0.433 6	233	1.366 0	0.505 5
4	233	1.153 0	0.4519	239	1.441 0	0.7524	207	0.8687	0.368 7	211	1.0380	0.423 5	261	1.254 0	0.4889
5	69	1.132 0	0.4520	262	1.417 0	0.8040	233	0.8516	0.348 7	82	1.0040	0.439 9	262	1.1970	0.4889
6	127	1.037 0	0.6423	70	1.390 0	0.8696	127	0.837 3	0.347 4	250	0.9997	0.426 5	83	1.1660	0.5477
7	238	0.971 0	0.457 3	199	1.349 0	0.867 5	214	0.785 8	0.2804	261	0.9893	0.4120	211	1.1590	0.5188
8	261	0.969 1	0.4424	30	1.344 0	0.9574	232	0.7687	0.329 1	57	0.9740	0.468 1	250	1.093 0	0.533 1
9	14	0.922 1	0.508 1	38	1.229 0	0.8509	239	0.747 6	0.295 4	59	0.925 8	0.468 1	274	1.0310	0.487 0
,															
10	70	0.921 0	0.471 3	261	1.173 0	0.825 2	261	0.7444	0.337 2	185	0.875 2	0.4429	14	1.022 0	0.537 0

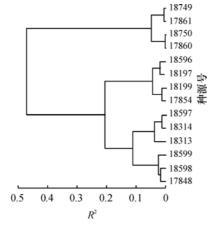


图 1 粗皮桉种源育种值 WARD 聚类图

Fig. 1 Cluster map of breeding values of provenances

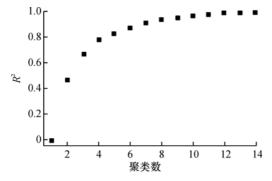


图 2 粗皮桉种源聚类分析 R2 分布

Fig. 2 Distribution map of R^2 value for provenances cluster analysis

2.4 优良家系选择

根据家系聚类 R² 值分布图(图3)可以看出, R² 值为0.6073以后, R² 值变化均匀, 因此认为将家系分为5类比较合理. 从表6可以看出, 表现最好的第 I 部分共17个家系, 占总家系数的7%; 表现较好的第 II 部分共40个家系, 占总家系数的16.4%; 表现一般的第 III 部分家系数最多, 为93个, 占总家系数的38.3%. 这3部分表现比较好, 3部分家系之和为150个, 占总家系数的61.5%. 表现最差和较差部分共94个, 占总家系数的38.5%. 对比各部分家系在各年龄性状中的表现, 第 I 部分家系在2、3、4 年生的树高和胸径中, 家系育种值始终都在前1/3 排名中. 连续优良的稳定表现, 证明了他们的优异性.

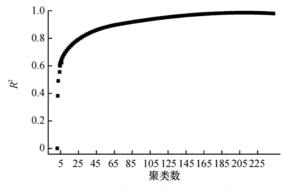


图 3 粗皮桉家系聚类分析 R² 分布

Fig. 3 Distribution map of R^2 value for families cluster analysis

表 6 粗皮桉家系聚类表

Tab. 6 Families cluster results of Eucalyptus pellita

类 别	家系号	数量/个
I(最好)	250,233,211,83,222,82,274,53,261,262,239,163,276,193,70,269,30.	17
Ⅱ(较好)	219,161,255,151,226,238,115,231,216,140,230,95,147,138,65,232,214,59,57,202,66,50,139,	40
	127, 14, 185, 207, 172, 189, 121, 93, 46, 31, 268, 111, 270, 7, 208, 39, 5.	
III(一般)	192,174,164,116,36,260,223,170,90,263,117,150,88,241,133,213,102,175,165 103,257,16,71,	93
	69,212,122,234,42,173,246,96,252,205,67,265,23,21,13,108,85 146,62,254,77,237,52,154,	
	149,75,97,51,228,119,179,81,135,142,64,61,43,221 190,36,49,60,34,171,155,251,181,247,	
	194,99,48,40,32,186,134,110,180,200,22 158,199,92,38,218,26,215,136, 229,273,4.	16
IV(最差)	235, 264, 206, 188, 143, 182, 245, 141, 256, 76, 131, 6, 145, 128, 183, 3.	10
V(较差)	132,91,24,123,41,113,72,12,63,191,104,58,54,100,153,28,157,129,29,266,9,225,167,137,267,	78
	220, 166, 8, 177, 118, 275, 197, 248, 249, 94, 125, 169, 15, 2, 162, 227, 87, 79, 196, 47, 210, 187, 126, 68,	
	224,178,242,37,33,160,203,78,217,120,19,27,114,25,11,168,253,240,89,272,243,195,10,35,	
	73,130,44,271,1.	

3 讨论与结论

胸径、树高在家系、重复间以及家系和重复互作 之间差异性不尽相同,5年生之前差异性较大. 疏伐 后差异性变化趋于平缓.

树高、胸径遗传力都以2年生时的遗传力最高,分别为0.147、0.094;树高各年龄平均遗传力为0.116,胸径各年龄平均遗传力为0.085.估算的遗传力在正常范围之内,粗皮桉引种粤西地区基本保持了原引种地的物种生长特性.

BLUP 法估算育种值选择结果与水平表现法[10] 种源选择的结果相比,优良种源选择结果都是一样.但是水平法认为17848、18314、18313 表现最差,从本次选择结果来看,表现最差的应该是18313、18314、18597.指数选择法[11] 认为17854 优于18750,但是从本次选择来看,18750 比17854 表现更为优良.从种源地理分布来看,18749 和18750、17860 和17861、18197 和18199 都是地理相近种源,引种后生长表现也归于一类.种源选择分析表明,澳大利亚东北部的干湿季交替热带地区与湿润热带地区的粗皮桉比较适合引种到我国沿海地区.该聚类分析结果符合引种试验的一般规律,再一次验证了引种试验中适地适树基本原则.

根据 BLUP 育种值估算结果,表现最好的一部分家系共 17 个,占总家系数的 7%.这部分优良家系 4年生时保存了 281 株,疏伐后,10年生时只有 85 株,是优良家系中的优良单株.后期杂交育种工作以它们作为基础,将得到更高的遗传增益.

参考文献:

[1] 佩格 R E, 王国祥. 粗皮桉家系试验初报[C]//洪菊生.

- 澳大利亚阔叶树研究. 北京:中国林业出版社,1993:73-79
- [2] 祁述雄. 中国桉树[M]. 2版. 北京: 中国林业出版社, 2002:51-52.
- [3] 李光友,徐建民,陆钊华,等. 尾叶桉二代种子园家系选择及遗传评估[J]. 南京林业大学学报:自然科学版, 2005,29(6):40-44.
- [4] 朱成庆,莫晓勇,余雪标. 我国桉树引种与育种概述[C] //莫晓勇. 桉树人工林培育的理论与方法. 北京:中国林业出版社,2005:2-10.
- [5] 普赖尔 L D,约翰森 L A S. 桉树分类[M]. 王豁然,译. 哈尔滨;东北林业大学出版社,1986;85.
- [6] 王豁然,布洛克.中国桉树检索表[M].北京:中国科学技术出版社,1991:4-8.
- [7] BUDI L, SUSUMU K. Trend of within family-plot selection practiced in the three seedling seed orchards of *Eucalyptus pellita* in Indonesia [J]. J Trop Forest Sci, 2005, 17:235-242.
- [8] BUDI L, SUSUMU K, YUJI I. Optimum age for selection based on a time trend of genetic parameters related to diameter growth in the three seedling seed orchards of *Eucalyptus pellita* in Indonesia [J]. J For Res, 2006, 11:359-364.
- [9] BUDI L, SUSUMU K, YUJI I. Realized genetic gains observed in second generation seedling seed orchards of Eucalyptus pellita in Indonesia [J]. J For Res, 2008, 13: 110-116.
- [10] 莫晓勇,陈文平,龙腾. 粗皮桉种源/家系早期选择研究 [C]//莫晓勇. 桉树人工林培育的理论与方法. 北京:中国林业出版社,2005;66-72.
- [11] 陈文平,罗建中,谢耀坚. 粗皮桉种源/家系的遗传变异 [J]. 广东林业科技,2001,17(3):1-6.

(下转第81页)

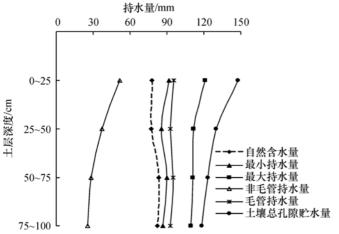


Fig. 3 Hydro-physical soil properties in different soil depths

不同深度土壤持水特征变化规律

其贮蓄量和贮蓄方式受物理性质影响极大,而林地土壤的发育程度,林分类型、表层枯落物组成和数量以及地下根系的生长发育也各异,综上所述造成土壤物理性质的差异,引起各生态系统不同土层土壤蓄水能力的不同.

4 结论

广东省蕉岭长潭省级自然保护区森林土壤持水性能在 0~100 cm 深度的土层中的垂直变异结构及其分布格局表明:土壤自然含水量、最大持水量、最小持水量、土壤通气孔隙度、土壤总孔隙贮水量、非毛管持水量等 6个指标随土壤加深不断减小,表层 0~25 cm 与下层土壤具有极显著的差异.相反,土壤容重则表现出随土壤深度增加而极显著增大.多重比较的分析表明,50~100 cm 深度内土壤贮水能力变异很小,差异不显著.由于林地表层土壤长期积累凋落物并腐烂形成较厚腐殖质层,因此,土壤表层贮水量要极显著高于深层土壤,土壤物理结构、孔隙性和数量特征优于下层土壤.

森林土壤水源涵养林和理水调洪能力主要体现在上层土壤,下层土壤尤其是 50~75 和 75~100 cm 这两个层次土壤持水性能稳定. 大量的研究^[12-13] 表明,影响土壤持水性能在垂直空间上的分布因素很

多,如林分类型、林木生长情况、根系分布、枯落物数量和种类、母岩、地形地貌等环境因子和生物因子,需要进一步的研究和分析.

参考文献:

- [1] 吴鹏飞,朱波. 不同林龄段桤柏混交林生态系统的水源涵养功能[J]. 中国水土保持科学,2008,6(3):94-101.
- [2] 王景燕,龚伟,胡庭兴,等. 川南天然常绿阔叶林人工 更新后的土壤水源涵养功能[J]. 浙江林学院学报, 2007,24(5):569-574.
- [3] 王勤,张宗应,徐小牛.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3):59-62.
- [4] 景元书,范永强. 低丘红壤不同坡位持水特性的比较 [J]. 江西农业学报,2007,19(3):26-28.
- [5] 赵中秋,蔡运龙,付梅臣,等. 典型喀斯特地区土壤退化机理探讨:不同土地利用类型土壤水分性能比较[J]. 生态环境,2008,17(1):393-394.
- [6] PLANCQ C, LAURE A, JEAN-FRANÇOIS D L, et al.

 The role of forest cover on stream flow down sub-Mediterranean mountain watersheds: a modeling approach [J].

 Journal of Hydrology, 2001, 254(14):229-243.
- [7] 周毅,黎艳明,郭乐东,等. 蕉岭长潭省级自然保护区表土有机碳研究[J]. 广东林业科技,2009,25(5):1-9.
- [8] 张万儒,杨光滢,屠星南,等. LY/T 1215—1999 森林土壤水分 物理性质的测定[S]. 北京:国家林业局, 1999:3-4
- [9] 郝占庆,王力华. 辽东山区主要森林类型林地土壤涵 蓄水性能的研究[J]. 应用生态学报,1998,9(3):237-241
- [10] 张复兴. 五台山不同林分类型水源涵养功能研究[J]. 林业科学,2008,24(7):136-139.
- [11] 王燕,王兵,赵广东,等. 江西大岗山 3 种林型土壤水分物理性质研究[J]. 水土保持学报,2008,22(1):151.
- [12] 张保华,何毓蓉,周红艺,等. 长江上游典型区亚高山不同林型土壤的结构性与水分效应[J]. 水土保持学报,2002,16(4):127-129.
- [13] 罗跃初,韩单恒,王宏昌,等. 辽西半干旱区几种人工林 生态系统涵养水源功能研究[J]. 应用生态学报, 2004,15(6);919-923.

【责任编辑 李晓卉】

(上接第77页)

- [12] 黄少伟,谢维辉. 实用 SAS 编程与林业试验数据分析 [M].广州:华南理工大学出版社,2001:182-190.
- [13] HENDERSON C R. Best linear unbiased prediction using relationship matrics derived from selected base populations [J]. J Dairy Sci, 1985, 68(2):443-448.
- [14] 王松桂,史建红,尹素菊,等. 线性模型引论[M]. 北京: 科学出版社,2005:4.
- [15] GILMOUR A R, GOGEL B J, GULLIS B R, et al. ASReml User Guide Release 3.0 [M]. Orange, Australia: NSW Department of Industry and Investment, 2009;11-15,349.
- [16] 王豁然. 桉树生物学概论[M]. 北京:科学出版社, 2010:20-26.

【责任编辑 李晓卉】