翡, 焦培荣, 韦良孟,等. 鸽 TLR7 基因的克隆、鉴定及表达分析[J]. 华南农业大学学报, 2014, 35(3): 18-23.

鸽 TLR7 基因的克隆、鉴定及表达分析

翡¹,焦培荣¹,韦良孟^{1,2},何 静¹,宋亚芬¹,康银峰¹, 进1,张烁1,廖明1,任

(1 华南农业大学 兽医学院/人兽共患病防控制剂国家地方联合工程实验室/农业部兽用疫苗创制重点实验室/ 广东省动物源性人兽共患病预防与控制重点实验室、广东 广州 510642;2 山东农业大学 动物医学院,山东 泰安 271018)

摘要:【目的】克隆鸽Toll 样受体(Toll-like receptor 7, TLR7)全基因,预测其主要功能区域并分析在鸽的各种组织中 的表达情况、【方法】通过 RT-PCR、RACE、相对荧光定量 PCR、牛物信息学软件分析方法进行研究、【结果和结论】 研究发现鸽 TLR7 基因 cDNA 全长 3 516 bp, ORF 全长 3 175 bp, 编码 1 048 个氨基酸. 其蛋白结构主要由胞外的富 含亮氨酸的结构域(LRRs)、跨膜域(TM)和胞内的 Toll/白介素 - 1 受体结构域(TIR)3 部分构成. 鸽 *TLR*7 基因编 码的氨基酸序列与鸿雁 Anser cygnoides、绿头鸭 Anas platyrhynchos、鸡 Gallus gallus 和麻雀 Taeniopygia guttata 的相似 性均高于 78%,与哺乳动物的相似性约为 60%,与鱼类的相似性低于 55%. 鸽 TLR7 基因在小肠、脾脏、肾脏、肝脏 中表达量较高,而在大脑、肺脏、气管、心脏、胰腺、肌肉、皮肤中表达量相对较低. 该研究克隆了鸽 TLR7 全基因,并 预测其主要功能区域.

关键词: 鸽: TLR7 基因: 序列分析: 受体表达

中图分类号:S855

文献标志码:A

文章编号:1001-411X(2014)03-0018-06

Molecular cloning, characterization and expression analysis of the pigeon toll-like receptor 7 gene

 $HAN\ Fei^1\ ,\ JIAO\ Peirong^1\ ,\ WEI\ Liangmeng^{1,2}\ ,\ HE\ Jing^1\ ,\ SONG\ Yafen^1\ ,\ KANG\ Yinfeng^1\ ,$ CUI Jin¹, ZHANG Shuo¹, LIAO Ming¹, REN Tao¹

(1 College of Veterinary Medicine, South China Agricultural University/National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control/Key Laboratory of Animal Vaccine Development, Ministry of Agriculture/ Key Laboratory of Zoonosis Prevention and Control of Guangdong, Guangzhou 510642, China; 2 College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China)

Abstract: Objective To clone and characterize the pigeon Toll like receptor 7 (TLR7) gene. [Method] RT-PCR, RACE (rapid amplification of cDNA ends), Quantitative real-time PCR and bio-informatics software was used in this study. [Result and conclusion] The study showed that the full-length of pigeon TLR7 cDNA sequence was 3 516 bp with the longest open reading frame (ORF) of 3 175 bp encoding a peptide of 1 048 amino acids. The deduced amino acid sequence of pigeon TLR7 contained three main structural domains including an extracellular leucine rich repeats domains (LRRs), a transmembrane domain (TM) and a Toll/IL-1 receptor domain (TIR); pigeon TLR7 shared amino acid sequence similarity with the Anser cygnoides TLR7 gene, Anas platyrhynchos TLR7 gene, Gallus gallus TLR7 gene (above 78%), mammal TLR7 gene (about 60%), and fish TLR7 gene (less than 55%). Quantitative real-time PCR analysis revealed that the pigeon TLR7 mRNA widespread expression in the tested tissues was high in small intestine, spleen, kidney and low in brain, lung, trachea, heart, pancreas, muscle and skin. In this study TLR7 gene has been isolated from pigeon, cloned and its main functional domains have been predicted.

优先出版时间:2014-03-31

优先出版网址;http://www.cnki.net/kcms/doi/10.7671/j.issn.1001-411X.2014.03.004.html

翡(1989—),女,彝族,硕士研究生, E-mail; vshanfei@ foxmail. com;通信作者;焦培荣(1974—),男,副研究 员,博士,E-mail:prjiao@yahoo.com;任 涛(1968—),男,教授,博士, E-mail:rentao@scau.edu.cn

基金项目:国家自然科学基金(31172343,31072139,31372412);公益性行业(农业)科研专项(201303033)

http://xuebao.scau.edu.cn

Key words: pigeon; TLR7 gene; sequence analysis; receptor expression

Toll 样受体家族(Toll like receptors, TLRs)是一 类介导天然免疫的模式识别受体,通过识别病原相 关模式分子, 激活信号通路, 调控炎症因子的释放, 从而在天然免疫防御中发挥重要作用^[1]. TLRs 属于 I型跨膜蛋白,可以分为3部分: 胞外区(Extracellular domain, ECD)、跨膜区(Transmembrane domain, TM)和胞内区(Toll/IL-1 receptor domain, TIR). 胞外 区负责识别病原微生物相关的分子模式(Pathogen associated molecular patterns, PAMPs),其是由 19~ 25 个串联的富亮氨酸重复(Leucine-rich repeat. LRR) 形成的结构域^[2]. Toll 样受体 7(Toll-like receptor 7, TLR7) 能够识别病原微生物的 ss RNA 和部分 短的 ds RNA^[3-4]. Toll 样受体 7 基因(TLR7)广泛存 在于 DC、B 细胞、单核细胞、NK 细胞和 T 细胞等免 疫细胞中[5-6]. 近年来, 人类 TLRs 与病原微生物的 相互作用研究取得了重大进展. 同时,猪、牛、羊、鸡、 鸭、鹅等家畜的 TLR7 基因已被成功克隆[7-8], 并对 其中某些分子的功能进行了深入研究[9-10]. 而鸽 TLRs 基因的克隆和功能预测以及其在宿主防御病原 微生物中的作用研究较少. 因此本研究将利用 RACE 方法克隆鸽 TLR7 基因, 并预测其主要功能区, 为其 深入研究奠定基础.

1 材料与方法

1.1 材料

RNA 抽提试剂盒 RN easy plus Mini (50)为 Qiagen 公司产品;反转录酶 M-MLV Reverse Transcriptase、T 载体(pMD19-T vector)、dNTP、Ex Taq 酶、3′RACE 试剂盒、5′RACE 试剂盒、SYBR® Premix Ex Taq™(Perfect Real Time)均为大连宝生物(TaKaRa)公司产品;核酸染料(EB 替代)为 Bioteke 公司产品;胶回收试剂盒为 Tiangen 公司产品;pfx 高保真聚合酶为 Invitrogen 公司产品;T4 DNA 连接酶为 NEB 公司产品;DNA Marker 为东盛生物公司产品;大肠埃希菌 DH5α 由华南农业大学禽病室保存.

1.2 方法

1.2.1 引物合成 根据 GenBank 中已公布 TLR7 基因序列,鸡(Gallus gallus,NM_001011688.2)、鸭(Anas platyrhynchos,DQ888645.1)、人(Homo sapiens,NM_016562.3)、小鼠(Mus musculus,NM_133211.3)等序列为参考序列,应用 Oligo 7(Molecular Biology Insights Inc., Cascade, CO)设计简并引物.中间片段S1 扩增的简并引物 F1/R1. 根据已知参考序列和已经扩增的S1 序列设计 F2/R2 和 F3/R3. 引物由英潍捷基(广州)贸易有限公司(Life technologies)合成.本试验所用引物如表 1 所示.

表 1 试验所用引物

Tab. 1 PCR primers used in this study

Tab. 1 PCR primers used in this study			
引物名称	引物序列 (5′→3′)	产物	用途
F1	ATGCCTSAACTTGTCAGGTAATG	S1	基因克隆
R1	AAGGTTGTCAAAGACTGGCTGTCC		
F2	ACTGTGAKMGTRGACTGCA	S2	基因克隆
R2	CTGCCAGAAAATAATGCTCA		
F3	TCAACCAGACTCAAGTGACT	S3	基因克隆
R3	CTGCCAGAAGTAKGGBTGAG		
GSP1	AGACCATATTTGTGCTGACCAAC		3' RACE
GSP2	CCGGCTGAGGAAGAGGCTGTG		
3' Adaptor Primer	CTGATCTAGAGGTACCGGATCC		3' RACE
5' RACE-R4	TTTGCTTCCAGGCTCAGCAGACTTA		5' RACE
5' RACE-R5	CTTCAGACTTGTCAGGGCAGCAAAACT		
Universal Primer A Mix (UPM)	Long: CTAATACGACTCACTATAGGGCA-		Race Method
	AGCAGTGGTATCAACGCAGAGT		
Nested Universal Primer A (NUP)	Short: CTAATACGACTCACTATAGGGC		
	AAGCAGTGGTATCAACGCAGAGT		
qβ-actin F	CTACAGCTTCACCACCACAGCC		qRT-PCR
$q\beta$ -actin R	GCTGTGGCCATCTCCTGCTCAA		
q <i>TLR</i> 7 F	GGAAGAGTGCCTGGAATATGGA		qRT-PCR
q <i>TLR</i> 7 R	TCCAGATATTTCAATCCAGACA		

1.2.2 总 RNA 的提取及反转录 取 30 mg 新鲜鸽子脾脏,按照 QIAGEN 公司的 RNA easy mini kit 使用说明书进行总 RNA 抽提. 取总 RAN 41 μ L,加入 RNA 酶抑制剂 1 μ L,5 × buffer 16 μ L,随机引物 (Random primer 和 Oligo d T 的混合物)4 μ L,dNTP 16 μ L,M-MLV反转录酶 2 μ L,42 ∞ 反应 60 ~ 120 min;70 ∞ 条件下作用 15 min 终止反应.

1.2.3 中间片段 S1 的 PCR 扩增与序列测定 按照 Ex Taq 酶说明书的推荐体系,扩增 TLR7 基因中间片段(S1). PCR 反应条件:94 ℃预变性 5 min;94 ℃变性 30 s,55 ℃退火 30 s,72 ℃延伸 2 min(1 kb/min), 35 个循环;72 ℃延伸 7 min,4 ℃结束反应.

PCR 反应产物用 DNA 凝胶纯化试剂盒回收. 回收产物克隆到 pMD19-T 载体,挑取单克隆,菌液 PCR 法筛选疑似阳性克隆,送测序.

- 1.2.4 中间片段 S2 和 S3 的 PCR 扩增与序列测定 扩增方法同 S1 的扩增.
- 1.2.5 3'端扩增(3' RACE) 根据获得的 S3 片段设计 3' RACE 上游引物: GSP1 和 GSP2;按 TaKaRa公司 3'RACE 试剂盒说明书进行操作. 获得 *TLR7* 基因 3'末端完整序列.

首先进行反转录反应:按照说明书推荐体系和程序进行反转录. 然后进行 PCR 反应. 一轮 PCR:50 μ L 反应体系为 $10 \times PCR$ Buffer 4μ L, MgCl₂(25 mmol/L) 3μ L, TaKaRa Taq(5 U/ μ L) 0.25μ L, GSP1 0.5μ L, 3 Adaptor primer 0.5μ L, 上述反转录液 1μ L, ddH_2O 40.75μ L; PCR 反应条件为 94 % 预变性 $5 \min$; 94 % 变性 30 s, 55 % 退火 30 s, 72 % 延伸 $2 \min$, 35 % 个循环; 72 % 延伸 $7 \min$, 4 % 结束反应. 二轮 PCR 反应条件同一轮 PCR. 产物用 DNA 凝胶纯化试剂盒回收,产物连接于 pMD19-T 载体上,筛选出疑似阳性菌送英潍捷基(广州)贸易有限公司测序.

- 1.2.6 5' 端扩增(5' RACE) 根据获得的 S2 片段设计 5' RACE 下游引物:5' RACE-R5 和 5' RACE-R4,按 5' RACE(TaKaRa)试剂盒说明书进行操作(类似于 3' RACE).
- 1.2.7 TLR7 基因的生物信息学分析 使用 Laser gene Edit seq 软件对扩增出的片段进行拼接,得到鸽 TLR7 基因完整序列. 使用 Meg Align 软件分别对鸽 TLR7 基因氨基酸序列与其他动物的 TLR7 基因氨基酸序列进行相似性分析、进化树分析. 通过 NCBI Conserved Domain Database (CDD) 在线数据库对鸽 TLR7 基因进行结构和功能预测.

http://xuebao.scau.edu.cn

1.2.8 实时荧光定量 PCR 检测鸽 *TLR7* 基因组织分布 采集健康鸽的组织(大脑、气管、肺脏、心脏、肝脏、肾脏、脾脏、胰腺、小肠、肌肉、皮肤、法氏囊)为试验材料,按照 QIAGEN 公司的 RNA easy mini kit 使用说明书抽提总 RNA,反转成 cDNA,以其作为模板,以法氏囊作为参比组织,以鸽 β-actin 作内参基因. 使用 TaKaRa 公司的 SYBR® Premix Ex Taq^{TM} (Perfect real time) 试剂盒,反应体系为:2 × SYBR Green mix 10 μL,上下游引物各 0.2 μL,模板 cDNA 1 μL,补去离子水至 20 μL,每个样做 3 个重复.

实时定量 PCR 在 ABI7500 检测系统上进行,PCR 反应程序:95 $^{\circ}$ 预变性 5 min;95 $^{\circ}$ 变性 15 s,60 $^{\circ}$ 退火加延伸 34 s(收集荧光信号),共 40 个循环. 反应完成后进行熔解曲线分析. 程序结束后系统自动生成各个样品的 C_ι 值和产物的退火温度值. 1.2.9 数据处理与分析 靶基因与内参基因(β -actin)的比率计算根据 $2^{-\Delta \Delta C_\iota}$ 公式[11]. 统计分析使用 Graph Pad Prism 5 软件(Graph Pad Software Inc, San Diego, CA).

2 结果与分析

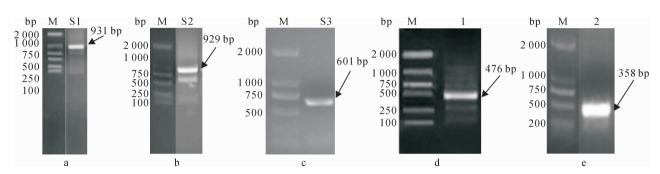
2.1 鸽 TLR7 基因的中间片段 PCR 克隆结果

分别用引物 F1 和 R1 扩增得到 931 bp 的 S1 片段;引物 F2 和 R2 扩增得到 929 bp 的 S2 片段;引物 F3 和 R3 扩增得到 601 bp 的 S3 片段. BLAST 对比结果显示这 3 个片段与鸡和鸭的 TLR7 基因相似性较高,说明得到正确的鸽 TLR7 基因的部分片段(图 1a~1c).

2.2 鸽 *TLR7* 基因的 3' RACE 和 5' RACE PCR 克 隆结果

通过 3'RACE 获得大小为 476 bp 的 3'末端片段,其含有 18 个 A 组成的 poly(A)尾,得到了鸽 *TLR7* 基因的 3'末端完整序列.通过 5' RACE 获得大小为 358 bp 的 5'末端完整序列(图 1d~1e).

2.3 鸽 TLR7 基因的序列分析


将各序列拼接后得到 3 516 bp 的鸽 *TLR7* 基因全长 cDNA 序列. 序列分析发现鸽 *TLR7* 基因的最长开放阅读框为 3 175 bp,编码 1 048 个氨基酸,相对分子质量为 122 370.3,等电点(PI)为 8.74.结合SMART(图 2)和 TMpred Server 分析预测鸽 TLR7 蛋白质二级结构包含有典型的 LRR、TM 和 TIR 区.

2.4 鸽 TLR7 基因的分子遗传进化分析

氨基酸同源对比发现,鸽 TLR7 基因编码的氨基

酸序列与雁属类相似性最高,其中与鸿雁 Anser cygnoides 和绿头鸭 Anas platyrhynchos 的相似性分别为81.7%和80.7%,而与鸡和麻雀 Taeniopygia guttata的相似性次之,分别是78.5%、78.9%,但与灵长类和其他哺乳动物的相似性相对较低,在60.5%~65.5%之间,与鱼类的相似性则低于55%.从进化树

分析发现,鸽 TLR7 与麻雀 TLR7 基因编码的氨基酸序列处于同一分支上,亲缘关系最近;另外,鸽 TLR7 基因编码的氨基酸序列与麻雀、鸡、鸿雁、绿头鸭的均处于同一大分支上,亲缘关系较近,而与灵长类和其他哺乳动物亲缘关系相对较远,与鱼类的亲缘关系最远(图3).

M: DNA marker DL2000; a: 引物 F1 和 R1 PCR 扩增产物;b: 引物 F2 和 R2 PCR 扩增产物;c: 引物 F3 和 R3 PCR 扩增产物;d:3'RACE PCR 扩增产物; e:5'RACE PCR 扩增产物.

图 1 鸽 TLR7 基因部分序列鉴定电泳图

Fig. 1 Electrophoresis of partial sequence of pigeon TLR7

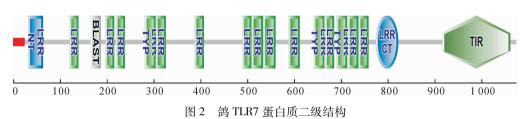


Fig. 2 The protein secondary structures of pigeon TLR7

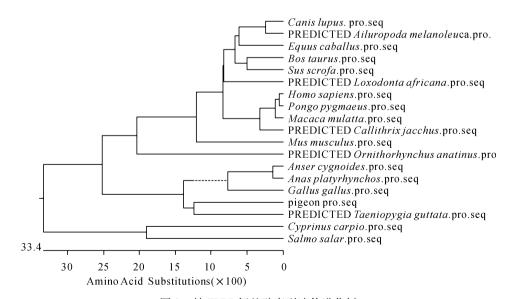
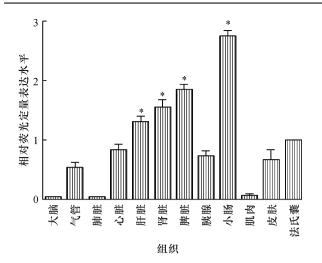



图 3 鸽 TLR7 氨基酸序列遗传进化树

Fig. 3 Phylogenetic tree of TLR7 amino acid sequence

2.5 鸽 TLR7 基因在正常组织中的分布情况

通过荧光定量 PCR 检测发现 TLR7 基因在健康 鸽小肠中的表达量最高,在脾脏、肾脏、肝脏中表达 量相对较高,在气管、心脏、胰腺、皮肤中表达量相对较低,在大脑、肺脏、肌肉中表达量最低(图4).

每一个柱子代表的是 TLR7 基因在该检测组织中相对于法氏囊的表达量,图中数值为 3 次试验的平均值 \pm 标准差,*表示在该脏器组织中的表达量与法氏囊相比差异显著 (P<0.05).

图 4 定量分析鸽 TLR7 基因在健康组织中的分布 Fig. 4 Quantitative analysis of tissue distribution of TLR7 gene transcripts in pigeons

3 讨论

模式识别受体(Pattern recognition receptors, PRRs)是机体抵御病原微生物感染,启动机体天然免疫的重要组成部分,在先天性免疫中发挥了重要作用^[12].病原微生物感染细胞后,PRRs 通过识别病原的病原相关分子模式(Pathogen associated molecular patterns, PAMPs),促使下游干扰素和细胞因子的分泌,激活一些抗细菌或抗病毒蛋白的表达,启动天然免疫应答^[13].

人类 TLRs 家族主要由 TLR1、TLR3、TLR4、TLR5、TLR7 和 TLR11 这 6 个主要亚家族成员构成. 其中 TLR7 亚家族由 TLR7、TLR8 和 TLR9 构成. 鸡的 Toll 样 受体(ch TLRs)和 人类相似,其 chTLR2、chTLR4、chTLR5、chTLR7 已经被发现. 分析比较鸡和人类基因组信息,发现鸡的表达序列标签(Expressed sequence tags,ESTs)和人 TLR1/6/10、TLR2、TLR3、TLR5、TLR7 相关序列高度同源. 目前,研究表明在鸡中至少存在 8 种 TLRs^[14].

本研究根据已公布的部分物种的 TLR7 基因序列 为参考序列设计简并引物扩增部分片段,获得鸽 TLR7 基因的部分保守序列,再结合 cDNA 末端快速扩增技术 RACE(Rapid-amplification of cDNA ends) 及生物信息学分析等技术,获得鸽 TLR7 基因的全长序列.

利用 SMART 预测鸽 TLR7 基因的功能区,发现 其含有典型的 TLRs 家族结构,分子结构由胞外区、 跨膜区和胞内区组成,从 N 端到 C 端依次包括信号 肽、LRR、1 个富含半胱氨酸的结构域、跨膜区以及胞

http://xuebao.scau.edu.cn

内区. 与其他物种的氨基酸序列比较,发现鸽与鸿雁、绿头鸭、鸡、麻雀的氨基酸序列相似性均较高. 从进化分析结果显示,鸽 TLR7 基因与麻雀亲缘关系最近;鸽、麻雀、鸡、绿头鸭的 TLR7 基因位于同一进化分支,这表明它们的亲缘关系较近. 但其与哺乳动物亲缘关系相对较远,与鱼类亲缘关系最远.

本研究利用荧光定量 PCR 方法检测鸽 TLR7 基因在健康组织中的表达,发现在小肠、脾脏、肾脏、肝脏中表达量较高,而在大脑、肺脏、肌肉、心脏中表达量较低. 因此,鸽 TLR7 基因在不同组织中的表达存在差异.

在哺乳动物中,TLR7 受体能识别多种小分子抗病毒化合物以及病毒单链 RNA,通过 MyD88 依赖的信号通路诱导促炎症因子和 I 型干扰素的产生,介导机体抗病毒免疫应答,同时 TLR7 活化促进树突状细胞(Dendritic cells,DC)表达共刺激分子和趋化因子受体,延长 DC 体外存活时间,增强淋巴细胞增殖能力,因而它在天然免疫和获得性免疫中起到桥梁的作用. 在鸟类中,病毒的单链 RNA 是 TLR7 受体可识别的配体之一,因此,鸟类对病毒的易感性可能与相识别的配体有关. ch TLR7 和相应配体结合后会刺激细胞产生一系列细胞因子和抗病毒蛋白的表达,包括 ch IL-18、ch IL-6、ch IL-8 和 NOS II 等[15]. 但关于TLR7 介导的抗病毒、抗肿瘤和免疫调节机制还不清楚,还有待深入研究.

基于 TLR7 基因在抗病毒天然免疫中的重要作用,本研究克隆了鸽 TLR7 基因,用生物信息学方法进行了序列分析,并预测其主要功能区域,为深入研究其识别病原相关分子模式的机制奠定基础.

参考文献:

- [1] 李国勤,卢立志. 动物关键模式识别受体及其抗病毒 天然免疫作用研究进展[J]. 生命科学,2011,23(1): 77-80.
- [2] AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity [J]. Cell, 2006, 124(4);783.
- [3] AKIRA S, TAKEDA K. Toll-like receptor signaling [J]. Nat Rev Immunol, 2004,4(7):499-511.
- [4] YONEYAMA M, FUJITA T. Structural mechanism of RNA recognition by the RIG-I-like receptors [J]. Immunity, 2008,29(2):178-181.
- [5] GEIJTENBEEK T B, GRINGHUIS S I. Signalling through C-type lectin receptors: Shaping immune responses [J]. Nat Rev Immunol, 2009, 9(5): 465-479.
- [6] SU Jianguo, HUANG Teng. Molecular cloning and immune responsive expression of MDA5 gene, a pivotal member of the RLR gene family from grass carp (Ctenopharyngodon

- idella) [J]. Fish Shellfish Immunol, 2010, 28(1):712-718.
- [7] WEI Liangmeng, JIAO Peirong, YUAN Runyu, et al. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response [J]. Vet Immunol Immunopathol, 2013, 29(2):99-106.
- [8] JIAO Peirong, WEI Liangmeng. Molecular cloning, characterization, and expression analysis of the Muscovy duck Toll-like receptor 3 (MdTLR3) gene [J]. Poultry Sci, 2012,91(1):2475-2481.
- [9] WAGNER H. The immuno-biology of the TLR9 subfamily[J]. Trends Immunol, 2004, 25(7); 381-386.
- [10] TAKEUCHI O, AKIRA S. Recognition of viruses by innate immunity [J]. Immunol Rev, 2007, 220(1):214.
- [11] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the

- $2^{-\Delta\Delta^{C}T}$ method [J]. Methods, 2001, 25(4), 402-408.
- [12] TAKAHASI K, YONEYAMA M. Nonself RNA-sensing mechanism of RIG-I heli-case and activation of antiviral immune responses [J]. Mol Cell ,2008 ,29(2) ;428-440.
- [13] SATH T, KATO H, KUMAGAI Y, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses [J]. Proc Natl Acad Sci USA, 2010, 107 (2): 1512-1517.
- [14] LUND J M, ALEXOPOULOU L, SATO A, et al. Recognition of single stranded RNA viruses by Toll-like receptor 7
 [J]. Proc Natl Acad Sci USA, 2008, 101 (15): 5598-5603.
- [15] KARL W, BOEHME, TERESA COMOTON. Innate sensing of viruses by toll-like receptors[J]. Virol, 2004, 78 (15): 7867-7873.

【责任编辑 柴 焰】

(上接第7页)

- [20] 林小植,罗毅平,谢小军. 饲料碳水化合物水平对南方 鲇幼鱼餐后糖酵解酶活性及血糖浓度的影响[J]. 水生 生物学报, 2006, 30(3): 304-311.
- [21] 戈贤平,刘波,谢骏,等. 饲料中不同碳水化合物水平对 翘嘴红鲌生长及血液指标和糖代谢酶的影响[J]. 南京 农业大学学报, 2007, 30(3): 88-93.
- [22] FERNANDEZ F, MIQUEL A G, CORDOBA M, et al. Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (*Sparus aurata* L.) fingerlings[J]. J Exp Mar Biol Ecol, 2007, 343(1): 1-10.
- [23] ENES P, PANSERAT S, KAUSHIK S. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (*Dicentrarchus labrax*) juveniles[J]. Comp Biochem Physiol: A: Mol Integr physiol, 2006, 143(1): 89-96.
- [24] PANSERAT S, PLAGNES-JUAN E, KAUSHIK S. Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (*Oncorhynchus mykiss*)[J]. J Exp Biol, 2001, 204(13): 2351-2360.
- [25] PANSERAT S, MÉDALE F, BRQUE J, et al. Lack of sig-

- nificant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatas expression in rainbow trout ($On-corhynchua\ mykiss$) [J]. J Nutr Biochem, 2000, 11(1): 22-29.
- [26] PANSERAT S, MÉDALE F, BLIN C, et al. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead sea bream, and common carp [J]. Am J Physiol Reg I,2000, 278(5): 1164-1170.
- [27] ENES P, PANSERAT S, KAUSHIK S, et al. Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (*Sparus aurata*) juveniles reared at two temperatures [J]. Comp Biochem Physiol, 2008, 149(1): 80-86.
- [28] PANSERAT S, PLAGNES-JUAN E, KAUSHIK S. Gluconeogenie enzyme gene expression is decreased by dietary carbohydrates in common carp (*Cyprinus carpio*) and gilthead seabream (*Sparus aurata*) [J]. Biechim Biophys Acta, 2002, 1579(1): 35-42.
- [29] 俞菊华, 戈贤平, 唐永凯, 等. 碳水化合物、脂肪对翘嘴 红鲌 PEPCK 基因表达的影响 [J]. 水产学报, 2007, 31 (3): 371-376.

【责任编辑 柴 焰】