

莫钊文, 汪益磊, 肖 枫,等. 花后持续遮光 15 d 对香稻产量、品质和香气的影响[J]. 华南农业大学学报,2015,36(3);45-48.

花后持续遮光 15 d 对香稻产量、品质和香气的影响

莫钊文^{1,2†},汪益磊^{1†},肖 枫¹,汤永坚¹,潘圣刚^{1,2},段美洋^{1,2},唐湘如^{1,2} (1华南农业大学农学院,广东广州 510642;2农业部华南地区作物栽培科学观测实验站,广东广州 510642)

摘要:【目的】探明花后持续遮光 15 d 对香稻产量、品质和香气特征物质 2-乙酰-1-吡咯啉(2-AP)的影响.【方法】以常规香稻品种玉香油占和农香 18 为材料,进行大田对比试验,设置花后持续遮光 15 d 处理和正常光照处理,测定了香稻产量、品质和 2-乙酰-1-吡咯啉(2-AP)含量等指标.【结果和结论】与正常光照处理相比,花后持续遮光 15 d 显著提高了籽粒 2-AP含量和蛋白质含量,但千粒质量、结实率和产量以及整精米率均显著降低. 花后持续遮光 15 d 可以提高香稻香气但会降低产量,对稻米其他品质性状的影响因品种而异.

关键词:花后持续遮光 15 d; 香稻; 产量; 米质; 香气

中图分类号:S511

文献标志码:A

文章编号:1001-411X(2015)03-0045-04

Effects of 15-day continuously shading treatment after flowering on grain yield, quality and aroma of aromatic rice

MO Zhaowen^{1,2†}, WANG Yilei^{1†}, XIAO Feng¹, TANG Yongjian¹, PAN Shenggang^{1,2}, DUAN Meiyang^{1,2}, TANG Xiangru^{1,2}

(1 College of Agriculture, South China Agricultural University, Guangzhou 510642, China; 2 Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, P. R. China, Guangzhou 510642, China)

Abstract: [Objective] To investigate the effects of 15-day continuously shading treatment after flowering on yield, quality and major aromatic compound 2-acetyl-1-pyrroline (2-AP). [Method] Two conventional aromatic rice cultivars of Yuxiangyouzhan and Nongxiang18 were treated by 15-day continuously shading after flowering and natural light in the field. The yield, quality, 2-acetyl-1-pyrroline content and other indexes of aromatic rice were measured. [Result and conclusion] The results showed that compared with natural light, the 15-day continuously shading treatment after flowering significantly increased the contents of 2-acetyl-1-pyrroline and protein in grains, and significantly decreased 1000-grain mass, seed setting rate and yield as well as head rice rate. Therefore, low-light stress plays a positive role in the aroma enhancement of aromatic rice but leads to a yield reduction. The effects of shading on other grain quality traits are different due to different varieties.

Key words: 15-day continuously shading treatment after flowering; aromatic rice; yield; rice quality; aroma

香稻是水稻 Oryza sativa L. 中的珍品,具有独特 香味和优良品质. 尽管香米的销售价格比常规优质

收稿日期:2014-04-25 优先出版时间:2015-04-14

优先出版网址:http://www.cnki.net/kcms/detail/44.1110.s.20150414.0927.005.html

作者简介:莫钊文(1986—),男,博士研究生,E-mail:scaumozhw@126.com;汪益磊(1993—),男,E-mail:dlufi@qq.com;†对本文贡献相同;通信作者:唐湘如(1964—)男,教授,博士,E-mail:tangxr@scau.edu.cn

基金项目: 国家自然科学基金(31271646);广东省自然科学基金(8151064201000017);广东省农业攻关项目(2011AO20202001);广东省农业标准化项目(4100F10003)

米高,世界香米的消费量仍在逐年增长.引起了世界 各稻米生产国科研人员对香米研究的高度重视[1]. 如 何在提高产量的同时增加香稻香气的含量是科研人 员所面临的问题. 研究表明栽培管理技术手段能提高 2-乙酰-1-吡咯啉(2-AP)含量,如锌、铁、镧肥基施或喷 施处理均不同程度地提高了香稻糙米的香气含量、香 米的品质和香稻产量[2];在香稻生育期间进行干旱胁 迫也能够提高香气 2-AP 的含量[3];对水稻的不同生 育阶段进行遮阴,结果表明,灌浆结实期遮阴对产量影 响最大[4]. 遮光对水稻产量和物质积累的影响研究报 道较多,但灌浆前期(水稻扬花后)遮光处理对香稻产 量的影响,特别是对香稻香气物质(2-AP)的影响研究 鲜见报道. 本研究选用2个香稻品种,通过设置花后持 续遮光 15 d 处理和正常光照处理,分析了花后持续遮 光15 d对香稻产量、品质和香气的影响,为香稻增香、 高产的优质生产提供理论依据.

1 材料与方法

1.1 材料和试验地状况

以常规香稻品种玉香油占和农香 18 为材料. 试验于 2013 年在华南农业大学农场进行,水稻田土壤性质如下:有机质 25. 650 g·kg⁻¹、全氮 1. 362 g·kg⁻¹、全磷 0. 958 g·kg⁻¹、全钾 17. 520 mg·kg⁻¹, 土壤 pH 4. 88.

1.2 试验设计

采用裂区设计,设置品种和光照处理 2 个因素,品种为主区,光照处理为副区.水稻于 7 月 15 日播种,8 月 5 日移栽,2 苗移栽,种植密度为 20 cm×20 cm,小区面积为 16 m²,3 次重复.水稻扬花后(10 月 3—18 日)于距水稻冠层 35 cm 处遮盖双层黑色遮光网(透光率为 11.5%)持续遮光 15 d,以正常光照作为对照处理(CK).施用水稻专用肥 1 500 kg·hm $^{-2}$ (N、 P_2O_5 、 K_2O 、有机质质量分数分别为 12.5%、6.0%、10.0%、15.0%),其中基肥为 900 kg·hm $^{-2}$ 、蘖肥为 600 kg·hm $^{-2}$,各处理的其余栽培技术措施均一致.

1.3 测定指标和方法

- 1.3.1 产量及其构成因素测定 于水稻成熟期(11月5日)收割1 m²的水稻,晒干测定产量,3 次重复.每小区调查30 穴水稻,记录有效穗数,3 次重复.根据调查所得的平均有效穗数,随机选取代表性植株5 南进行每穗总粒数、结实率、千粒质量测定.
- 1.3.2 水稻稻米品质 糙米率采用机械砻谷机进行测定. 精米率和整精米率采用浙江台州市检验碾米机 JNMJ3 型进行测定. 采用 Infratec ¹²⁴¹ grain analyzer (FOSS-TECATOR)测定稻米直链淀粉含量、蛋白质含量和碱消值.
- 1.3.3 籽粒香气测定 籽粒香气(2-AP)的测定参考李艳红等^[5]的方法,使用 GC-MS QP2010 Plus 型气相色谱质谱联用仪进行测定.
- 1.3.4 植株千质量 参照吴桂成等^[6]的测定方法. 于成熟期根据平均茎蘖数选取代表性植株 5 蔸,把 茎鞘、叶片和穗分开,105 ℃杀青 30 min 后转至 80 ℃烘干至恒质量后称质量.
- 1.3.5 植株全氮和籽粒脯氨酸含量的测定 植株(包括茎鞘、叶片和穗)的全氮含量参照鲁如坤^[7]的方法; 籽粒脯氨酸含量的测定参考黄忠林等^[8]的方法.

1.4 数据统计与分析

采用 Excel 2003 和 Statistix 8.0 数据分析软件进行数据输入和统计分析.

2 结果与分析

表1的结果表明,与正常光照相比,花后持续遮光15d处理极显著降低了香稻的总干质量、千粒质量、结实率和产量,分别显著降低了27.93%~33.13%、6.12%~10.96%、28.54%~31.11%和47.01%~57.28%.花后持续遮光15d处理农香18的有效穗数降低了20.18%,达显著水平.光照处理对每穗总粒数无显著影响.品种与光照处理的互作仅显著影响水稻的千粒质量,对其余性状的影响不明显.

表 1 花后持续遮光 15 d 处理对香稻产量及其构成因素的影响1)

Tab. 1 Effects of 15-day continuously shading treatment after flowering on yield and its components of aroma rice

品种	处理	每穴有效穗数	每穗总粒数	结实率/%	千粒质量/g	产量/(g·m ⁻²)	单株干质量/g
玉香油占	遮光	9.60a	161.30a	56.89b	19.94b	437.97b	45.88b
	正常光照	10. 20a	185.31a	82.58a	21.24a	826.50a	68.61a
农香 18	均值	9.90	173.31	69.74	20.59	632.24	57.25
	遮光	9. 10b	113.50a	61.16b	22.34b	355.19b	43.15b
	正常光照	11.40a	135.73a	85.59a	25.09a	831.44a	59.87a
	均值	10.25	124.62	73.38	23.72	593.32	51.51
变异来源 (F)	品种	29.11*	2501.88 **	1.59	0.71	2.97	25.43 *
	光照处理	10.37 *	51.01 **	146. 13 **	24.51 **	139.35 **	32.70
	品种×光照处理	0.02	6.42	0.09	8.19 *	1.43	0.76

¹⁾同一品种同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05,LSD法);F值后标有"*"或"**"分别表示达 0.05 或 0.01 的显著水平.

表 2 的结果表明,对于玉香油占,与正常光照相比,花后持续遮光 15 d 处理显著提高了糙米率、稻米蛋白质含量和直链淀粉含量,显著降低了稻米整精米率.对于农香 18,与正常光照处理相比花后持续遮

光 15 d 处理显著降低了稻米碾磨品质,显著提高了稻米蛋白质含量.品种与光照处理交互作用下,香稻的糙米率、精米率、整精米率及蛋白质含量呈极显著差异.

表 2 花后持续遮光 15 d 处理对香稻稻米品质的影响¹⁾

Tab. 2 Effects of 15-day continuously shading treatment after flowering on aromatic rice quality

品种	处理	糙米率/%	精米率/%	整精米率/%	w(蛋白质)/%	w(直链淀粉)/%	碱消值
玉香油占	遮光	84. 12a	72.86a	68.45b	11.03a	25. 13a	7.57a
	正常光照	83.34b	72.84a	70. 79a	9.45b	23.90b	7.60a
	均值	83.73	72.85	69.62	10.24	24.52	7.59
	遮光	82.32b	68.01b	60.34b	9.37a	18.47a	6.50a
农香 18	正常光照	83.21a	70.04a	65.84a	8.40b	18.70a	6.65a
	均值	82.72	69.03	63.09	8.89	18.59	6.58
变异来源(F) 品种	364. 82 **	641.39**	1 506. 17 **	26 569.00**	270. 23 **	395.70 **
	光照处理	0.41	20. 85 *	176. 12 **	2 128. 09 **	1.40	1.98
	品种×光照处理	86.73**	21.88**	28. 45 **	124. 45 **	3.01	0.80

1) 同一品种同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05, LSD 法); F 值后标有"*"或"**"分别表示达 0.05 或 0.01 的显著水平.

表 3 的结果表明,与正常光照相比,花后持续遮光 15 d 处理显著提高籽粒全氮含量和 2-AP 含量,分别显著提高了 45.43% ~ 78.93% 和 41.68% ~ 79.99%.花后持续遮光 15 d 显著降低玉香油占籽粒

脯氨酸含量. 花后持续遮光 15 d 处理对其他指标影响不显著. 品种与光照处理交互作用显著影响籽粒脯氨酸含量,对其余指标影响不显著.

表 3 花后持续遮光 15 d 处理对籽粒全氮、脯氨酸和 2-AP 含量的影响¹⁾

Tab. 3 Effects of 15-day continuously shading treatment after flowering on total nitrogen, proline and 2-AP contents of aromatic rice

品种	处理 -		w(全氮)/%	脯氨酸/	2 – AP	
		籽粒	茎	叶片	$(\mu g \cdot g^{-1})$	$/(ng \cdot g^{-1})$
玉香油占	遮光	1.920 3a	0. 598 9a	1.094 1a	2.637b	155.98a
	正常光照	1.320 4b	0.376 1a	1.185 4a	3.365a	86.66b
	均值	1.6204	0.487 5	1.139 8	3.000	121.32
	遮光	1.217 8a	0.526 2a	1.022 7a	3.921a	123. 18a
农香 18	正常光照	0.680 6b	0.408 8a	0.994 0a	2.615a	86.94b
	均值	0.949 2	0.467 5	1.008 4	3.270	105.06
变异来源(F)	品种	32.94*	0.32	1.21	0.53	15.44
	光照处理	29.95**	3.11	0.18	0.84	44.47 **
	品种×光照处理	0.09	0.30	0.66	10.36*	4.37

1)同一品种同列数据后凡是有一个相同小写字母者,表示差异不显著(P>0.05, LSD法);F值后标有"*"或"**"分别表示达0.05或0.01的显著水平.

3 讨论与结论

本研究表明,花后持续遮光 15 d 处理影响香稻有效穗数、每穗总粒数、结实率和千粒质量,最终导致产量下降,与前人的研究一致^[9-10]. 李林等^[11-12]研究认为,灌浆期遮光使开花授粉和谷粒的充实严重

受损,每穗粒数和千粒质量均急剧下降,产量下降幅度最大.在灌浆期遮光主要影响水稻叶片的光合作用^[13],使同化物产量降低从而使水稻千粒质量明显下降^[14].

本研究表明,花后持续遮光 15 d 处理提高稻米蛋白质含量,降低整精米率,与袁继超等^[15]认为弱光http://xuebao.scau.edu.cn

可显著提高强势粒的整精米率有不尽相同之处,可能是由于研究材料、遮光生育时期、遮光程度等不同引起的. 前人研究认为,水稻在生育后期尤其是灌浆结实期遇到弱光逆境时糙米率显著降低,严重影响稻米的加工品质^[16]. 稻米蛋白质含量是衡量稻米营养品质的主要指标,任万军等^[17]研究证实随光强的降低稻米的蛋白质含量极显著增加.

Buttery 等^[18]和 Suprasanna 等^[19]发现脯氨酸是形成 2-AP 的前体物质. 本试验条件下, 花后持续遮光 15 d 处理玉香油占籽粒脯氨酸含量显著降低, 对农香 18 籽粒脯氨酸含量无显著影响. 本试验没有对叶片的脯氨酸含量进行测定, 无法了解脯氨酸转移情况, 因此无法通过脯氨酸的代谢来探讨遮光对 2-AP形成和代谢的影响, 这是今后需进一步研究之处. 黄淑贞^[20]研究了湖南香稻产地土壤特性, 结果表明香稻产地土壤的全氮、碱解氮都明显高于非产地. 本研究发现, 花后持续遮光 15 d 处理后香稻籽粒全氮含量和 2-AP 含量均显著高于正常光照处理的, 因此, 可以认为遮光处理有利于氮的吸收和利用, 进而有利于 2-AP 的积累.

综上所述,花后持续遮光 15 d 处理可以显著提高香稻香气 2-AP 和蛋白质含量,降低香稻的产量及其构成因素(除有效穗数外),对稻米其他品质性状的影响因品种而异. 这为弱光下香稻稳产、优质和浓香栽培提供指导,光照对 2-AP 影响的生理机制将在我们后续研究工作中进行进一步的研究。

参考文献:

- [1] 游晴如,黄庭旭. 稻米香味的研究与育种利用[J]. 福建稻麦科技,2003,20(3);30-33.
- [2] 唐湘如,吴密. 施用锌、铁、镧肥对香稻糙米香气和剑叶脯氨酸含量的影响[J]. 杂交水稻,2006,21(6):69-72.
- [3] 应兴华,徐霞,欧阳由男,等. 香稻品种 2-乙酰-1-吡咯啉多样性及籽粒分布特征的研究[J]. 核农学报, 2011,25(1):71-74.
- [4] 邓飞,王丽,姚雄,等. 不同生育阶段遮荫对水稻籽粒 充实和产量的影响[J]. 四川农业大学学报,2009,27 (3);265-269.
- [5] 李艳红,唐湘如,潘圣刚,等. 分蘖期水氮互作对香稻香气、产量及稻米品质的影响[J]. 华北农学报,2014,

- 29(1):159-164.
- [6] 吴桂成,张洪程,戴其根,等. 南方粳型超级稻物质生产积累及超高产特征的研究[J]. 作物学报,2010,36 (11):1921-1930.
- [7] 鲁如坤. 土壤农业化学分析法[M]. 北京:中国农业科技出版社,1999.
- [8] 黄忠林,唐湘如,王玉良,等. 增香栽培对香稻香气和产量的影响及其相关生理机制[J]. 中国农业科学, 2012,45(6):1054-1065.
- [9] 蔡昆争,骆世明. 不同生育时期遮阴对水稻生长发育和产量形成的影响[J]. 应用生态学报,1999,10(2): 193-196.
- [10] 王玉夫,张洪程,赵新华,等. 温光对水稻籽粒充实度的影响[J]. 中国农业科学,2001,34(4):396-402.
- [11] 李林,张更生,陈华. 阴害影响水稻产量的机制及其调控技术: I:水稻分蘖期间模拟阴害对产量形成的影响 [J]. 中国农业气象,1994,15(2);28-32.
- [12] 李林,张更生. 阴害影响水稻产量的机制及其调控技术: II:水稻分蘖期间模拟阴害对产量形成的影响[J]. 中国农业气象,1994,15(3):5-9.
- [13] 李霞,严建民,季本华,等. 光氧化和遮阴条件下水稻的 光合生理特性的品种差异[J]. 作物学报,1999,25 (3):301-308.
- [14] 许大全. 光合作用效率[M]. 上海:上海科学技术出版 社,2002:164-167.
- [15] 袁继超,丁志勇,赵超,等. 高海拔地区水稻遮光、剪叶和疏花对米质影响的研究[J]. 作物学报,2005,31 (11):1429-1436.
- [16] 谭周兹,周广治. 水稻结实期光照强度对米质影响的研究[J]. 杂交水稻,1989,4(1):39-43.
- [17] 任万军,杨文钰,徐精文,等. 弱光对水稻籽粒生长及品质的影响[J]. 作物学报,2003,29(5):785-790.
- [18] BUTTER R G, LING L C, JULIANO B O. Cooked rice aroma and 2-acetyl-1-pyrroline [J]. J Agric Food Chem, 1983, 31(4):823-826.
- [19] SUPRASANNA P, GANAPATHI T R, RAMASWMY N K, et al. Aroma synthesis in cell and callus cultures of rice [J]. Rice Genet Newsl, 2000, 15:123-125.
- [20] 黄淑贞. 湖南香稻产地土壤特性与稻米品质的关系 [J]. 湖南农业科学,1990(4):37-40.

【责任编辑 周志红】