林志豪, 冯健禹, 郭勇祥,等. 供磷水平对黄瓜测序品种"中国龙"生长及磷吸收的影响[J]. 华南农业大学学报,2015,36(3):54-58.

供磷水平对黄瓜测序品种"中国龙"生长及磷吸收的影响

林志豪, 冯健禹, 郭勇祥, 廖红, 赵静

(亚热带农业生物资源保护与利用国家重点实验室/华南农业大学 根系生物学研究中心,广东 广州 510642)

摘要:【目的】了解黄瓜测序品种"中国龙"对不同磷浓度供应的反应,寻找在水培条件下进行黄瓜磷效率种质筛选的适宜低磷处理浓度.【方法】采用营养液水培试验,研究了不同磷浓度供应对黄瓜测序品种"中国龙"生长及其磷吸收的影响.【结果和结论】随着供磷浓度的降低,"中国龙"的生长受到抑制,植株变矮,老叶黄化. 在严重低磷(10 和 1 μ mol·L⁻¹)胁迫时,植株生长受到严重抑制,甚至不能正常结瓜. 低磷降低了"中国龙"的生物量、磷吸收效率,但增加了根冠比,促进了碳水化合物向根部的分配. 此外,在低磷胁迫下,"中国龙"还通过降低根平均直径,即根变细,来增加与养分的接触面积. $10 \sim 100~\mu$ mol·L⁻¹之间的磷浓度(如 $50~\mu$ mol·L⁻¹)可作为黄瓜磷效率种质资源筛选的低磷处理浓度.

关键词:黄瓜;磷吸收;磷效率;低磷浓度

中图分类号:S642.2

文献标志码:A

文章编号:1001-411X(2015)03-0054-05

Effects of different levels of phosphorus availability on growth and phosphorus absorption of "Chinese Long" sequenced cucumber genotype

LIN Zhihao, FENG Jianyu, GUO Yongxiang, LIAO Hong, ZHAO Jing (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Root Biology Center, South China Agricultural University, Guangzhou 510642, China)

Abstract: [Objective] To explore the responses of "Chinese long" sequenced cucumber genotype to different phosphorus (P) availability, and to screen an optimal low-P-treatment concentration for cucumber germplasms screening for P efficiency under a hydropoic condition. [Method] Hydroponic culture was used to test effects of different P availability on the growth and P absorption of "Chinese Long". [Result and conclusion] The results showed that with the decrease in P availability, cucumber plants became shorter and smaller, and new leaves became smaller and old leaves became yellow. Severe P deficiency (10 and 1 μ mol · L⁻¹) significantly inhibited the cucumber plant growth, even resulting in abnormal fruits. Low P availability decreased the biomass and P uptake efficiency of "Chinese Long", but increased its ratio of root to shoot, which preferably allocated carbonhydrate to root. Furthermore, under P deficiency, "Chinese Long" also formed finer roots with a small root diameter, thus increasing the contact area with nutrients in the growth medium. The P concentration of $10-100~\mu$ mol · L⁻¹, for example $50~\mu$ mol · L⁻¹, can be used to screen the cucumber germplasms for P efficiency.

Key words: cucumber; phosphorus absorption; phosphorus efficiency; low P concentration

磷是植物必需的营养元素之一,参与了植物体 移动性差、极易被固定,能被植物吸收利用的有效磷内许多重要的生理生化途径,但是由于磷在土壤中 浓度低[1].在全世界13亿 hm² 耕地中,约5.8亿 hm²

收稿日期:2014-03-17 优先出版时间:2015-04-14

优先出版网址; http://www.cnki.net/kcms/detail/44.1110.s.20150414.0928.006.html

作者简介:林志豪(1990—),男,硕士研究生,E-mail: 349775918@qq.com; 通信作者: 赵 静(1977—),女,副研究员,博士,E-mail: jzhao@scau.edu.cn

基金项目:广东省高等学校高层次人才项目(粤财教[2011]431号)

http://xuebao.scau.edu.cn

存在不同程度的有效磷缺乏[2],我国有效磷缺乏的 土壤约占总耕地面积的2/3[3],严重限制了作物的生 长发育及产量的形成. 为了满足作物对磷的需求,提 高作物产量,传统的方法是施用磷肥,但事实证明, 磷肥的利用率非常低. 据 FAO (2011 年)统计,施入 土壤的磷肥至少有80%不能被作物直接吸收利用, 同时,过度施肥会加速世界磷矿资源的耗竭以及带 来环境污染等问题[4]. 因此,利用作物自身的遗传潜 力,选育和利用磷效率高的作物品种,是解决土壤有 效磷缺乏的可持续发展途径[5-6]. 植物的磷效率是指 其对磷素吸收和利用的能力,通常用低磷胁迫下的 生物量或经济产量作为衡量磷效率高低的指标,包 括磷吸收效率和利用效率2个方面.其中磷吸收效 率用植株全磷含量(即吸磷量)表示,可以直接反映 植物吸收磷的能力. 磷利用效率是指植物体内单位 磷所生产的植株干质量,磷利用效率高的品种能以 最低的磷浓度进行正常的生长发育,产生一定的生 物量[6]. 在低磷的环境中,植物的形态、生理、生化及 分子等方面会产生一系列的适应性变化[7-8],而了解 作物对低磷胁迫的适应性反应,是对该作物进行磷 效率遗传改良的基础和前提.

黄瓜 Cucumis sativus 属于葫芦科黄瓜属、一年蔓 生攀援草本植物,由于其具有较高的营养价值,是我 国设施蔬菜主栽种类之一. 磷是黄瓜矿质营养需求 量最大的元素之一,缺磷影响了黄瓜的生长和产量 的形成[9-10]. 研究表明,在一定范围内(10~200 mg·kg⁻¹),磷浓度的高低与黄瓜的花芽分化、雌花 率、幼苗质量、生长速度等成正相关关系[11]. Ciereszko 等[12] 利用水培试验研究了供磷和完全不供磷对 黄瓜生长及代谢的影响,发现缺磷显著地降低了黄 瓜地上部、地下部生物量,根变细,同时黄瓜光合作 用和糖含量降低. 磷对黄瓜生长的促进作用是在一 定的供应浓度范围内,超过此范围则会出现磷中毒 的现象. 徐雷等[13] 通过水培方式研究了在不同供磷 水平(0、0.1、0.5、1.0、10.0、20.0 mmol·L⁻¹)下,磷 素对黄瓜生长及养分吸收和分配的影响,发现随着 磷浓度增加,黄瓜根、茎和叶干质量呈先增加后降低 的趋势, 当供磷浓度为 10.0 mmol·L⁻¹时开始产生 磷中毒症状,磷中毒症状首先出现在老叶,沿叶脉两 侧发黄、有光泽、向上凸起,子叶出现红色坏死斑点, 严重时老叶坏死,新叶会出现叶脉间失绿症状. 缺磷 会影响磷在黄瓜体内的再分配模式. 庞欣等[14]利用 营养液培养法,对黄瓜采用正常供磷及完全缺磷处 理,研究了黄瓜植株体内磷的分布及再运输,发现不 论缺磷与否, 植株新生叶和根中磷的浓度都保持最 高,但缺磷和供磷植物体中磷的分配模式不同.黄瓜 体内磷水平会影响其对其他营养元素的吸收. 如在 大棚土培条件下, Ruiz 等[15] 发现较高的磷供应可以

促进黄瓜植株氮的吸收、转运和同化,最终提高黄瓜产量,表明不同供磷水平影响了黄瓜植株对养分的吸收和分配,黄瓜体内的氮、磷存在一定的协同作用.黄瓜品种"中国龙"是用于全基因组测序的黄瓜材料^[16].随着黄瓜基因组测序的完成,分析该品种对不同磷供应的反应,并以此品种为材料寻找磷效率黄瓜种质资源筛选的适宜低磷处理浓度,对于挖掘磷高效黄瓜种质资源和基因资源极其重要.本文利用黄瓜测序品种"中国龙"为材料,研究了不同磷浓度对"中国龙"生长及磷吸收的影响,为将来进一步利用该品种进行黄瓜磷效率遗传改良提供生理基础.

1 材料与方法

1.1 材料

试验材料为黄瓜测序品种"中国龙",由中国农业科学院蔬菜花卉研究所黄三文研究员惠赠.

1.2 方法

植物材料在华南农业大学根系生物学研究中心 温室内种植. 把通过浮选法筛选到的饱满种子,放入 垫有纱布的培养皿中. 在 1/2 全营养液、28 ℃黑暗 条件下催芽,期间保持湿润. 待种子萌发后,移至洗 净的石英砂中用全营养液育苗至"两叶一心期". 选 取均匀的幼苗移至全营养液培养壮苗,在正常营养 液中生长1周后开始进行不同磷浓度供应处理. 每 周更换营养液1次,每天定时开通气泵、调节营养液 的 pH,并定时开风机和水帘以控制温度. 营养液使 用改良的 Hoagland 配方,成分如下:每升营养液含有 $Ca(NO_3)_2 \cdot 4H_2O$ 945 mg KNO₃ 607 mg NH₄H₂PO₄ 115 mg MgSO₄. 7H₂O 241 mg EDTA - FeNa 29 mg $MnSO_4 \cdot H_2O \cdot 1.62 \text{ mg} \cdot ZnSO_4 \cdot 7H_2O \cdot 0.22 \text{ mg} \cdot$ H_3BO_3 2. 86 mg $CuSO_4$ · $5H_2O$ 0. 08 mg (NH₄)₆Mo₇O₂₄·4H₂O 0.02 mg,pH6.0. 试验设4个 磷浓度水平:1 000、100、10、1 μmol·L⁻¹. 低磷处理 用 KNO, 补充因扣除 NH₄H₂PO₄ 时所损失的氮. 每 处理 4 个重复, pH 保持在 6.0 ± 0.2. 磷处理 14 d 后 采样,进行各项指标的测定.

株高:用直尺和卷尺量取从茎基部到心叶所能 到达的最高高度.

根系性状:将收获的根系剪下洗净后,放入自封袋内保存在 4 ℃冰箱中备用.用 WinRhizo(Regent Instruments Inc,加拿大)软件对根系的总根长、根直径、根表面积、根体积等进行定量分析.

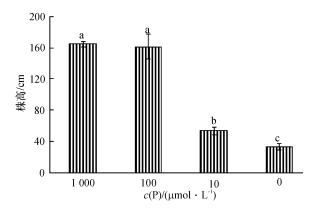
全磷:将植株各部分烘干至恒质量,分别称其干质量后,粉碎,称取一定量的样品,先用 H_2SO_4 – H_2O_2 进行消煮,然后用钼锑抗比色法测定全磷 $^{[17]}$.

1.3 数据处理与制图

试验数据利用 Microsoft Excel 2007 进行平均值、 http://xuebao.scau.edu.cn 标准误分析和制图. 利用 SAS(SAS Institute Inc., 美国)统计软件进行方差分析.

2 结果与分析

2.1 不同磷浓度对"中国龙"生长的影响


低浓度磷供应明显地抑制了"中国龙"的生长(图1).随着供磷水平的逐级降低,植株变矮(图1A),磷浓度为1000和100μmol·L⁻¹的黄瓜株高

差异不明显,但当磷浓度为 10 和 1 μmol· L^{-1} 时, 黄瓜植株的株高显著受到抑制 (P < 0.05),10 和 1 μmol· L^{-1} 磷供应浓度处理的植株,其株高仅为 100 μmol· L^{-1} 磷处理植株株高的 33.08% 和 20.32% (图 2). 磷供应不足时,植株新叶变小、老叶黄化 (图 1B、1C),结实受到严重限制。在 10 和 1 μmol· L^{-1} 的磷浓度供应下,黄瓜植株不能正常形成果实(图 1A、1D).

A:黄瓜整株,B:最新叶和最老叶,C:果实;各图从左至右磷处理浓度依次为 $1\,000\,$ 、 $100\,$ 、 $10\,$ $100\,$ 10

Fig. 1 The growth of cucumber at different levels of P availability

柱子上凡是有一个相同小写字母者,表示差异不显著(P > 0.05, Duncan's 法).

图 2 不同磷浓度供应下黄瓜的株高

Fig. 2 Plant height of cucumber at different levels of P availability

2.2 不同磷浓度对黄瓜生物量的影响

由表 1 可知,缺磷显著抑制了黄瓜的生物量 (P < 0.05). 植株总干质量随着磷供应浓度的降低而降低. 与 1 000 μ mol·L⁻¹磷浓度处理下植株的总干质量相比,100、10、1 μ mol·L⁻¹的磷浓度处理分别降低了 11%、80% 和 90%. 低磷处理对植株总干质量的降低,主要源于地上部茎、叶干质量的大幅度下降. 1 000 μ mol·L⁻¹磷浓度处理时,地上部干质量占到总干质量的 94%;磷供应浓度为 100、10、1 μ mol·L⁻¹时,地上部干质量占总干质量的比例依次为 93%、

http://xuebao.scau.edu.cn

87%和86%. 缺磷处理一定程度上刺激了植株根系的相对生长,植株的根/冠比从 $1\,000\,\mu\mathrm{mol}\cdot\mathrm{L}^{-1}$ 磷浓度处理下的 6.02%,逐渐增加到 $1\,\mu\mathrm{mol}\cdot\mathrm{L}^{-1}$ 磷浓度处理下的 16.67%, $100\,\mu\mathrm{mol}\cdot\mathrm{L}^{-1}$ 磷浓度处理下的根质量 $(1.44\,\mathrm{g}\cdot\mathrm{kt}^{-1})$ 高于 $1\,000\,\mu\mathrm{mol}\cdot\mathrm{L}^{-1}$ 磷浓度处理下的根质量 $(1.38\,\mathrm{g}\cdot\mathrm{kt}^{-1})$. 说明黄瓜在低磷胁迫时,能够将有限的碳水化合物优先分配到根系,促进根系的生长.

2.3 不同磷浓度对"中国龙"根形态参数的影响

根是植物吸收养分的主要器官. 植物可以通过增加根长、根体积及降低根平均直径来增加根系与土壤养分的接触机会. 低磷抑制了植株根系的生长,随着磷供应浓度的降低,黄瓜的总根长和根体积逐渐减小. 当磷浓度为 1 μmol·L⁻¹时,植株总根长和根体积仅为 1 000 μmol·L⁻¹磷处理下相应形态参数的 13%和 6%(表 2),说明本试验条件下极度缺磷处理严重抑制了黄瓜根系的生长. 根平均直径也随着磷处理浓度的降低而降低,1 μmol·L⁻¹磷供应时的根平均直径为 1 000 μmol·L⁻¹磷处理下根平均直径的 71. 70%(表 2). 表明黄瓜植株可通过降低根平均直径,使根变细来增加与养分的接触.

表 1 不同磷浓度下黄瓜生物量1)

Tab. 1 Plant biomass at different levels of P availability

c(P)/		44 57 Hz / 04			
$(\mu mol \cdot L^{-1})$	根	茎	叶	总计	根冠比/%
1 000	$1.38 \pm 0.04a$	$8.10 \pm 0.53a$	$14.83 \pm 2.55a$	$24.31 \pm 2.29a$	6.02c
100	$1.44 \pm 0.12a$	$6.85 \pm 0.72 \mathrm{b}$	$13.39 \pm 1.65a$	$21.68 \pm 2.24a$	7.11c
10	$0.62 \pm 0.14 \mathrm{b}$	$1.66 \pm 0.30c$	$2.50 \pm 0.49 \mathrm{b}$	$4.78 \pm 0.85 \mathrm{b}$	14.90b
1	$0.34\pm0.06\mathrm{c}$	$0.61 \pm 0.11d$	$1.43 \pm 0.22e$	$2.37\pm0.36\mathrm{e}$	16.67a

1)表中数据为平均值±标准误;同列数据后凡有一个相同小写字母者,表示差异不显著(P>0.05,n=4, Duncan's 法).

表 2 不同磷浓度下黄瓜根形态参数1)

Tab. 2 Cucumber root morphological parameters at different levels of P availability

c(P)/	根长/cm	根体积/cm³	 根直径/mm	
$(\mu mol \cdot L^{-1})$	TK TO OIII	TKPPDV CIII	WHILL IIII	
1 000	11 655.93 ± 648.96a	$28.35 \pm 3.25a$	$0.53 \pm 0.30a$	
100	$7\ 443.38\pm2\ 283.92\mathrm{b}$	22. 10 ± 10.30 b	$0.52 \pm 0.01a$	
10	$3\ 165.35\pm396.95\mathrm{c}$	$5.55 \pm 2.13c$	$0.45\pm0.07\mathrm{ab}$	
1	$1\ 517.45 \pm 409.53 \mathrm{c}$	$1.65\pm0.35\mathrm{c}$	$0.38\pm0.03\mathrm{bc}$	

1)表中数据为平均值±标准误;同列数据后凡有一个相同 小写字母者,表示差异不显著(P>0.05,n=4, Duncan's 法).

2.4 不同磷供应水平对"中国龙"磷效率的影响

由表 3 可知,低磷处理降低了黄瓜对磷的吸收,根、茎、叶中磷含量以及磷吸收效率显著下降(P < 0.05).与 1 000 μ mol·L⁻¹磷浓度处理相比,100、10

和 1 μmol·L⁻¹的磷浓度处理使植株根部磷含量分别下降了 71. 32%、87. 31% 和 95. 13%,而茎部和叶部则分别相应地下降了 77. 91%、95. 61%、98. 94%和 85. 74%、97. 43%、98. 63%. 1 000 μmol·L⁻¹磷浓度处理下,根、茎和叶的磷含量分别占植株总磷含量的 4. 85%、36. 15%和 59. 00%,磷主要集中在叶部和茎部;而磷浓度为 1 μmol·L⁻¹时,根、茎和叶的磷含量分别占植株总磷含量的 16. 56%、26. 76%和 56. 68%,根部磷含量占总吸磷量的比例显著增加,茎部所占比例则减少,植株体内的磷进行了再分配. 随着磷供应浓度的降低,植物的磷利用效率(以总磷吸收量与总干物质量的比值计)逐渐增加. 在 1 000 μmol·L⁻¹磷浓度处理下,黄瓜植株的磷利用效率仅为 0. 10 g·mg⁻¹,在 100、10、1 μmol·L⁻¹磷浓度时,植株的磷利用效率分别为 0. 48、0. 51 和 0. 66 g·mg⁻¹.

表 3 不同磷浓度下黄瓜植物磷效率1)

Tab. 3 Cucumber plant P efficiency at different levels of P availability

$c(P)/(\mu mol \cdot L^{-1})$	$m(P)/(mg \cdot k^{-1})$			磷吸收效率/	磷利用效率/
	根	茎	叶	(mg·株 ⁻¹)	(g • mg ⁻¹)
1 000	$12.23 \pm 0.18a$	$91.09 \pm 0.30a$	$148.70 \pm 0.57a$	$252.02 \pm 37.93a$	0.10b
100	$3.51\pm0.44\mathrm{b}$	$20.12\pm 1.04\mathrm{b}$	$21.20 \pm 1.00\mathrm{b}$	$44.83 \pm 4.57 \mathrm{b}$	0.48a
10	$1.55\pm0.42\mathrm{c}$	$4.00 \pm 3.16c$	$3.81 \pm 3.26\mathrm{c}$	$9.37 \pm 2.36c$	0.51a
1	$0.60 \pm 0.94 c$	$0.96 \pm 13.96 \mathrm{d}$	$2.04 \pm 41.55 c$	$3.60 \pm 0.89c$	0.66a

1)表中数据为平均值±标准误;同列数据后凡有一个相同小写字母者,表示差异不显著(P>0.05,n=4, Duncan's 法).

3 讨论

作为植物必须的大量营养元素之一,磷素参与了植物的许多生理生化过程,包括能量代谢、核酸的合成、光合作用、糖酵解、呼吸作用、生物膜的合成和稳定性、信号传导及碳水合化物的代谢等^[2,18]. 土壤中有效磷的不足限制了植物的生长和产量的形成,利用作物自身的遗传潜力,选育和利用磷高效的作物品种,是解决土壤有效磷缺乏的可持续发展途径^[5-6],一方面可以避免由于磷矿源的不足造成的磷肥资源匮乏,另一方面也可以避免由于大量施用磷

肥造成的环境污染. 植物可以通过发生形态、生理、生化及分子等方面适应性变化以适应低磷的环境^[7-8],因此了解作物对低磷胁迫的适应性反应,是对该作物进行磷效率遗传改良的基础. 黄瓜是一种在全世界范围内广泛种植的设施蔬菜,2009 年黄瓜基因组全序列测序的完成加快了黄瓜磷效率的遗传改良. 了解该测序品种对供磷胁迫的反应,是利用黄瓜基因组信息对黄瓜进行磷效率遗传改良的基础. 本研究利用黄瓜基因组测序品种"中国龙"为材料,研究了1000、100、10和1μmol·L⁻¹的P浓度处理对其生长及磷吸收的影响. 研究结果显示,随着磷供http://xuebao.scau.edu.cn

应浓度的降低,"中国龙"植株的生长受到严重影响,植株变矮、新叶变小、老叶黄化,生物量下降,植株磷吸收效率降低,而磷利用效率增加,这与前人在其他品种上的研究结果相一致^[19-20]. 植物可以通过根系形态构型的改变来适应低磷胁迫. 低磷胁迫下,"中国龙"的总根长和根体积变小,不利于对磷的吸收,但其根平均直径减小表明"中国龙"可以通过使根变细来增加与生长介质中磷的接触机会,以提高磷吸收.

大量的种质资源筛选工作是获得典型的耐低磷 品种的重要基础. 而筛选过程中一个合适的低磷处 理浓度对于适当加大基因型间差异、使耐低磷特性 充分表现极其重要[21]. 低磷处理浓度过高,无法获得 典型的耐低磷种资资源;浓度太低,太过低磷胁迫, 无法看到品种间的差异. 因此在进行种质资源筛选 前,需要先确定一个合适的低磷处理浓度. 高方远 等[22]利用盆栽对水稻耐低磷筛选时,设置了3个磷 浓度处理,最后认为 2.31 mg·kg⁻¹的 P 处理结果更 能反映不同材料性状相对值间的差异, 宜用于苗期 耐低磷筛洗. 黄瓜是需磷量较大的园艺作物, 缺磷会 影响黄瓜的生长和产量的形成[9-10],对黄瓜种质资源 进行磷效率的筛选,是培育磷高效黄瓜品种的重要 基础,目前还鲜见这方面的研究报道.本研究筛选了 4 个不同的磷浓度处理,其中 10 和 1 μmol· L^{-1} 磷处 理,植株受到极度低磷胁迫,不能正常生长,生物量 和磷吸收都极低,因此 10 和 1 μmol·L⁻¹磷浓度不 适合用来进行种质资源筛选,;而 100 μmol·L⁻¹磷 处理浓度太高,其株高与1000 μmol·L⁻¹正常磷处 理处理下植株没有差异. 因此推荐磷浓度为 100 与 10 μmol·L⁻¹之间,如 50 μmol·L⁻¹,作为今后黄瓜 磷效率种质资源筛选的工作浓度.

参考文献:

- [1] RAGHOTHAMA K G. Phosphate acquisition [J]. Annu Rev Plant Biol, 1999, 50(1): 665-693.
- [2] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource [J]. New Phytol, 2003, 157 (3): 423-447.
- [3] 刘建中,李振声,李继云. 利用植物自身潜力提高土壤中磷的生物有效性[J]. 农业生态研究, 1994, 2(5): 16-23.
- [4] CORDELL D, DRANGBERT J O, WHITE S. The story of phosphorus: Global food security and food for thought [J]. Glob Environ Change, 2009, 19(2): 292-305.
- [5] 李振声. 我国粮食生产的潜力和存在的问题[J]. 生命 http://xuebao.scau.edu.cn

- 科学, 1992, 4(1): 1-3.
- [6] 严小龙,张福锁. 植物营养遗传学[M],北京:农业出版社,1997.
- [7] CHIOU T J, LIN S I. Signaling network in sensing phosphate availability in plants [J]. Annu Rev Plant Biol, 2011, 62: 185-206.
- [8] ZHANG Z L, LIAO H, LUCAS W J. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants [J]. J Integr Plant Biol, 2014, 56 (3): 192-220.
- [9] 孙军利,赵宝龙,蒋卫杰,等. 氮、磷和钾肥施用量对有机生态型无土栽培温室黄瓜产量影响的研究[J]. 北方园艺,2006(6):10-12.
- [10] 刘军,曹之富,黄延楠,等. 日光温室黄瓜冬春茬栽培氮磷钾吸收特性研究[J]. 中国农业科学, 2007, 49(9): 2109-2113
- [11] 王合理. 黄瓜营养液育苗不同磷营养水平的效果研究 [J]. 新疆农垦科技, 2000(1): 23-24.
- [12] CIERESZKO I, JANONIS A, KOCIAKOWSKA M. Growth and metabolism of cucumber in phosphorus-deficient conditions[J]. J Plant Nutr, 2002, 25(5): 1115-1127
- [13] 徐雷,梁林洲,董晓英,等. 高磷胁迫对黄瓜幼苗生长及 养分吸收和分配的影响[J]. 湖北农业科学,2013,52 (1):52-55.
- [14] 庞欣,张福锁,李春俭. 部分根系供磷对黄瓜根系和幼苗生长及根系酸性磷酸酶活性的影响[J]. 植物生理学报,2000,26(2):153-158.
- [15] RUIZ J M, ROMERO L. Nitrogen metabolism and yield response of cucumber (*Cucumis sativus* L. cv. Brunex) plants to phosphorus fertilization [J]. J Sci Food Agr, 2000, 80(14): 2069-2073.
- [16] HUANG S W, LI R Q, ZHANG Z H, et al. The genome of the cucumber, *Cucumis sativus* L. [J]. Nat Genet, 2009, 41(12); 1275-1281.
- [17] 劳家柽. 土壤农化分析手册[M]. 北京: 农业出版社, 1988: 229-299.
- [18] ABEL S, TICCONI C A, DELATORRE C A. Phosphate sensing in higher plants [J]. Physiol Plantarum, 2002, 115(1): 1-8.
- [19] 吴楚,谢裕春,甘彩霞. 磷胁迫对黄瓜幼苗生长·光合作用·生物量及其分配的影响[J]. 安徽农业科学, 2005, 33(10): 47-49.
- [20] 齐海季,林洲,赵学强,等. 土壤磷含量对黄瓜幼苗生长和磷素吸收的影响[J]. 江苏农业科学, 2012, 40(1): 152-154.
- [21] 邢宏燕,王二明,李滨,等. 有效利用土壤磷的小麦种质筛选方法研究[J]. 作物学报,2000,26(6):839-844.
- [22] 高方远,陆贤军,康海岐,等.水稻耐低磷种质的苗期筛选与鉴定[J].作物学报,2006,32(8):1151-1155.

【责任编辑 周志红】