刘云华,吴毅歆,杨绍聪,等. 洋葱伯克霍尔德溶磷菌的筛选和溶磷培养条件优化[J]. 华南农业大学学报,2015,36(3):78-82.

洋葱伯克霍尔德溶磷菌的筛选和溶磷培养条件优化

刘云华1,吴毅歆2,3,杨绍聪4,何鹏飞1,何月秋1,2

(1云南农业大学农业生物多样性应用技术国家工程研究中心,云南昆明650201; 2 云南农业大学 农学与生物技术学院,云南 昆明 650201;

3 微生物菌种筛选与应用国家地方联合工程研究中心,云南 昆明 650217; 4 玉溪市农业科学院,云南 玉溪 653100)

摘要:【目的】从磷矿区植物根围土中,筛选出具有较高溶磷能力的菌株及优化溶磷培养条件.【方法】通过稀释涂 板法分离、筛选菌株,并进行全细胞脂肪酸分析和 16S rDNA 测序鉴定;正交试验优化溶磷培养条件.【结果和结论】 筛选出 22 株具有溶磷能力的菌株,其中菌株 YN2014102 的溶磷能力最强,在 10 g·L⁻¹的磷矿粉培养基中能释放 244.75 mg·L⁻¹水溶性磷. 经全细胞脂肪酸分析和 16S rDNA 测序,该菌株被鉴定为洋葱伯克霍尔德菌. 正交试验 的结果表明,在质量浓度 10 g·L⁻¹的磷矿粉、28 ℃、摇床转速为 180 r·min⁻¹的条件下培养 5 d,溶磷效果最好,达 277.08 mg · L⁻¹.

关键词:溶磷细菌;磷矿粉;气相色谱分析;全细胞脂肪酸;16S rDNA

中图分类号:S154.3

文献标志码:A

文章编号:1001-411X(2015)03-0078-05

Screening of phosphorus-solubilizing strain Burkholderia cenocepacia and optimizing of phosphate-dissolving culture condition

LIU Yunhua¹, WU Yixin^{2,3}, YANG Shaocong⁴, HE Pengfei¹, HE Yueqiu^{1,2}

(1 National Engineering Center for Applied Techniques of Agricultural Biodiversity, Yunnan Agricultural University, Kunming 650201, China; 2 Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; 3 National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming 650217, China;

4 Yuxi Academy of Agricultural Sciences, Yuxi 653100, China)

Abstract: Objective To isolate and screen phosphorus-solubilizing strains from the rhizospheric soil in phosphate ore zone and to optimize its phosphorus-solubilizing condition. [Method] Dilution and plating were applied to screen and purify phosphorus-solubilizing strains. The whole-cell fatty acid was analyzed by gas chromatography and 16S rDNA sequence was identified. The orthogonal design test was used in optimizing phosphorus-solubilizing condition. [Result and conclusion] Total 22 phosphorus-solubilizing strains were obtained by the traditional methodologies. YN2014102 strain showed a strong ability to dissolve phosphate, which could get 244.75 mg \cdot L⁻¹ available phosphorus from the 10 g \cdot L⁻¹ phosphate rock medium. YN2014102 strain was identified as Burkholderia cenocepacia based on its gas chromatography analysis of whole-cell fatty acid and 16S rDNA sequencing. When the bacterium was cultured in the 10 g · L ⁻¹ phosphate rock powder medium at 28 °C in a shaker with 180 r · min -1 for 5 days, the dissolve effect of solubilizing phosphorus was the best, which can obtain 277.08 mg · L⁻¹ of available phosphorus in the medium.

Key words; phosphorus-solubilizing bacterium; phosphate rock; gas chromatography analysis; whole-cell fatty acid; 16S rDNA

收稿日期:2014-04-23

优先出版网址; http://www.cnki.net/kcms/detail/44.1110.s.20150414.0937.014.html

作者简介: 刘云华(1976—), 女, 博士研究生, E-mail; vk191232@ aliyun. com; 通信作者: 何月秋(1956—), 男, 教授, 博士, E-mail: ynfh2007@163.com

基金项目:科技部国际科技合作项目(2009DFA32360);昆明市科技局项目(09H130301)

http://xuebao.scau.edu.cn

磷是植物生长和生殖必需的营养元素之一,同时还能促进光合作用和碳水化合物的合成与运转,促进氮素、脂肪和核酸代谢,提高作物对环境的适应性^[1]. 我国土壤中的总磷量相当可观,但95%以上的磷以稳定的铝硅酸盐和磷灰石等无效形式存在,难以被植物直接利用^[2]. 磷肥在作物生长的当季利用率不到25%^[3],磷肥的大量施用造成磷素在土壤中的不断积累,容易引起土壤板结以及水体富营养化等环境问题. 据估算,1949—1992 年间,我国累计施入农田的磷肥达3.4×10⁷t,其中大约有2.6×10⁷t磷累积在土壤中^[4]. 因此,如何减少土壤的磷素积累,提高其利用率已成为当今的研究热点.

土壤中存在多种溶磷微生物,它们能通过自身代谢促进磷矿粉等难溶磷的溶解,使之转化为可被植物直接吸收利用的有效磷. 合理利用溶磷微生物能降低磷肥的投入成本,亦可作为一项提高作物产量的重要措施^[5-6]. 本研究以采自磷矿区植物的根围土壤为研究对象,分离、筛选出溶磷细菌,通过脂肪酸鉴定和 16S rDNA 部分测序鉴定出溶磷细菌的种属,研究高效菌株的溶磷效果,运用单因素筛选和正交试验^[7]摸索溶磷的优化条件,为溶磷菌菌剂的开发利用提供试验依据.

1 材料与方法

1.1 样品和培养基

土壤样品采自云南玉溪磷矿区附近长势良好的 玉米 Zea mays、臭灵丹 Laggera pterodonta, 艾蒿 Artemisia argyi、芒草 Miscanthus、绿豆 Vigna radiate 等植 物的根围. 土样采集后贮存于透明封口袋内并编号, 置于 4 % 冰箱中,保存备用.

分离筛选培养基: $C_6H_{12}O_6$ 10 g, $Ca_3(PO_4)_2$ 5 g, $(NH_4)_2SO_4$ 0. 5 g, NaCl 0. 2 g, $MgSO_4 \cdot 7H_2O$ 0. 1 g, KCl 0. 2 g, 酵母浸膏 0. 5 g, $MnSO_4 \cdot 4H_2O$ 0. 002 g, $FeSO_4 \cdot 7H_2O$ 0. 002 g, 40 g · L^{-1} 溴酚蓝(pH 6 ~ 7) 6 mL, 琼脂 18 g, 蒸馏水 1 L, pH 7. 0 ~ 7. 2.

磷矿粉液体培养基: $C_6H_{12}O_6$ 10 g, 磷矿粉 10 g [w(磷)为 22%], (NH_4) $_2SO_4$ 0.5 g, NaCl 0.2 g, MgSO $_4$ · 7H $_2$ O 0.1 g, KCl 0.2 g, 酵母浸膏 0.5 g, MnSO $_4$ · 4H $_2$ O 0.002 g, FeSO $_4$ · 7H $_2$ O 0.002 g,蒸馏水 1 L,pH 7.0 ~ 7.2.

1.2 溶磷菌筛选

稀释平板培养法分离、筛选溶磷菌. 称取 10~g 土 样加入盛有 90~mL 无菌水的 250~mL 锥形瓶中, 28~ ℃, $120~r·min^{-1}15~min$, 制成 10^{-1} 浓度溶液, 然后按 10~ 倍稀释法依次制备 10^{-2} 、 10^{-3} 、 10^{-4} 、 10^{-5} 浓度土

壤悬液. 取 10⁻³、10⁻⁴及 10⁻⁵的土壤稀释悬液各 0.1 mL 均匀涂布于分离筛选培养基平板上,每个浓度重复 3 次. 倒置平板于 30 ℃培养箱中培养 24~48 h,观察并测量菌落直径和溶磷圈直径,计算溶磷圈与菌落直径比.

选择溶磷圈与菌落直径比较大的菌株,接种于磷矿粉液体培养基中,30 ℃、200 r·min⁻¹培养7 d后,测定培养液中水溶性磷含量.选择培养液中有效磷浓度最高的1个菌株开展后续的溶磷条件优化试验.

1.3 溶磷圈及水溶性磷含量测定

用灭菌的牙签将菌株分别点接在以 $Ca_3(PO_4)_2$ 为唯一磷源的培养基上,30 $^{\circ}$ C培养 $5 \sim 7$ d,测量溶磷圈直径(D)和菌落直径(d).

挑取单个菌落分别接入以磷矿粉为唯一磷源的液体培养基中,30 ℃、150 r·min⁻¹培养7d后,12000 r·min⁻¹、15 min,取上清液用钼蓝法测定含磷量,根据标准曲线计算出上清液中水溶性磷的含量.

1.4 溶磷细菌的鉴定

全细胞脂肪酸分析和 16S rDNA 测序相结合来 鉴定菌株. 全细胞脂肪酸分析采用 Sherlock 全自动 细菌鉴定系统,参照说明书进行操作和鉴定.细菌 DNA 提取采用冻融法^[8]. 16S rDNA 基因片段的 PCR 扩增采用细菌通用引物 PO (5'-GAG AGT TTG ATC CTG GCT CAG-3') 和 P6 (5'- CTA CGG CTA CCT TGT TAC GA-3'). PCR 扩增采用 20 L 反应体系:10 \times Easy Taq Buffer (含 Mg^{2+}) 2.0 μ L, dNTPs (10 mmol·L⁻¹)1.6 μ L,P0 (10 mmol· μ L⁻¹)和 P6 (10 mmol·μL⁻¹) 均为 1.0 μL, Easy Taq DNA Polymerase (5 U·μL⁻¹, Transgene) 0.2 μL,模板 DNA(10~50 ng·μL⁻¹)0.5 μL,补充 ddH₂O 至 20 μL. PCR 反应 程序为:94 ℃ 5 min,94 ℃1 min,55 ℃ 1 min,72 ℃ 2 min,30 个循环,最后 72 ℃延伸 10 min. PCR 产物经 0.8 g·L-1的琼脂糖凝胶电泳,试剂盒回收目标条 带,将回收后的16S rDNA 片段连接到 pMD18-T 载体 上,并转化大肠杆菌 DH5α 感受态细胞中,菌落 PCR 验证阳性克隆[9]. 确认的克隆由北京华大基因公司 测序,测序结果与 NCBI 分子生物学数据库比对序列 相似性.

1.5 正交试验

数据统计分析用软件正交设计助手 II V3.1 专业版进行处理分析. 在做正交设计时,主要考虑磷矿粉量、温度、摇床转速、发酵时间对溶磷能力的影响,采用4因子3水平 $[L_9(3^4)]$ 正交试验,重复3次,试

http://xuebao.scau.edu.cn

验设计见表 1.

表 1 正交试验设计 Tab. 1 The design of orthogonal test

	试验因素					
水平	t(A)/d	ρ(磷矿粉)(B)/	$\theta(C)$	摇床转速(D)/		
		(g · L - 1)	$^{\circ}$ C	$(r \cdot min^{-1})$		
1	3	10	23	160		
2	5	50	28	180		
3	7	100	33	200		

1.6 数据处理

对试验中的数据采用 SAS v6.12 进行统计分析

和 Duncan's 多重比较.

2 结果与分析

2.1 溶磷细菌的筛选

本次试验共筛选出 22 株具有较明显溶磷圈的菌株,选取溶磷圈直径(D)与菌落直径(d)比值(D/d)比较大的 12 株菌株,摇瓶复筛,结果见表 2. 其中 YN2014101 和 YN2014102 的溶磷效果最好.菌株 YN2014102 在分离筛选培养基平板上,在 28 ℃下培养 2 d,菌落中等大小、不透明、凸起,黄色,被选作进一步研究的菌株.

表 2 溶磷细菌从磷矿石中释放出的水溶性磷含量

Tab. 2 Available phosphorus dissolved by the bacterial strains from phosphate rocks

菌株编号	$D/d^{1)}$	ρ(水溶性磷)/(mg·L ⁻¹)	菌株编号	$D/d^{1)}$	ρ(水溶性磷)/(mg·L ⁻¹)
YN2014101	1.448	244.90	YN2014107	1.392	155.80
YN2014102	1.482	244.75	YN2014108	1.606	155.20
YN2014103	1.400	207.65	YN2014109	1.472	142. 15
YN2014104	1.774	204.50	YN2014110	1.654	141.90
YN2014105	1.580	191.75	YN2014111	1.140	138.30
YN2014106	1.654	169.45	YN2014112	1.420	113.40

1)D、d 分别表示溶磷圈和菌落直径.

2.2 菌株脂肪酸鉴定结果

以脂肪酸种类和含量为参数,与标准数据库比对,有3个菌株与新分离到的菌株 YN2014102 相似程度较高,其中与 Burkholderia cenocepacia 的相似系数最高,达0.902,与 B. cenocepacia-GC subgroup B (Pseudomonas cepacia) 的相似系数为0.639,与 B. andropogonis 的相似系数0.630. 依据相似系数大小,菌株 YN2014102 可能属于 B. cenocepacia.

2.3 16S rDNA 序列分析

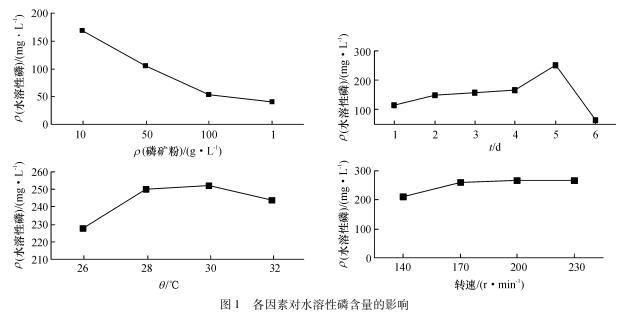
根据 16S rDNA 的测序与 NCBI 数据库(http://www.ncbi.nlm.nih.gov)BLAST 比对的结果,与菌株 YN2014102 序列相似性较高的菌株均属于伯克霍尔 德菌属,且与洋葱伯克霍尔德菌 B. cenocepacia 相似性达 99%.即菌株 YN2014102 的 16S rDNA 序列比对与脂肪酸测定结果一致,故菌株暂鉴定为洋葱伯克霍尔德菌.

2.4 各因素对水溶性磷含量的影响

由图 1 可知,水溶性磷含量随着磷矿粉含量的增加而减少,当磷矿粉质量浓度为 10 g·L⁻¹时,可能刚好与菌体均匀悬浮,达最佳状态,所以溶磷的效果最好,故确定最佳磷矿粉质量浓度为 10 g·L⁻¹;随着时间的延长,水溶性磷含量上升后递减,所以确定最佳发

http://xuebao.scau.edu.cn

酵时间为5 d;随着温度升高,水溶性磷含量先增后减,28 ℃之后增量并不是太显著,故确定最佳的发酵温度28 ℃;转速也是发酵过程中较重要的参数,改变转速会改变供氧条件,最佳转速使菌体处于最佳溶解氧状态,并使菌体处于均匀悬浮状态,由图 1 可以看出水溶性磷含量随摇床转速的增加而略有增加,且 180 r·min⁻¹之后渐趋于平缓,所以最佳摇床转速为 180 r·min⁻¹.


2.5 正交试验结果

为了优化溶磷的培养条件,根据以上单因素试验结果,设计了表 1 中的 4 因素 3 水平正交试验,所得到结果如表 3. 在 9 个处理中, $A_2B_1C_2D_2$ 的溶磷效果最好,极显著地高于其他处理,即磷矿粉质量浓度 $10 \text{ g} \cdot \text{L}^{-1}$, 28 °C, $180 \text{ r} \cdot \text{min}^{-1}$ 培养 5 d,菌株 YN2014102 在培养基中的水溶性磷达 277. 08 mg · L⁻¹. 以 $A_3B_3C_2D_1$ 效果最差,磷矿粉 $10 \text{ g} \cdot \text{L}^{-1}$ 处理水溶性磷含量极显著地高于 $50 \text{ g} \cdot \text{L}^{-1}$ 和 $100 \text{ g} \cdot \text{L}^{-1}$ 处理的,这可能是培养基中固相物多影响了菌株 YN2014102 的培养。5 d 后可溶性磷含量较高,这可能与培养周期长,培养基中其他营养已消耗,培养周期短,菌株 YN2014102 生长量不够有关.

利用显著性差异和极差分析了各因素对水溶性磷含量的影响(表4).从表4可知,所选的时间,温度,

磷矿粉含量,摇床转速对水溶磷的含量的影响存在显著性差异,说明这几个因素确实影响了该菌的溶磷能力.极差反映了该因素变化时对试验指标的影响,极差

越大,该因素对试验的影响越显著. 从总体来看,磷矿粉量的多少对培养基中 YN2014102 的溶磷量影响最大,其次是培养时间,温度和摇床转速.

ig. 1 Effects of different fators on the contents of available phosphorus

表 3 正交试验结果
Tab. 3 The orthogonal test results

组合	因素			$ ho$ (水溶性磷) $^{1)}$	
编号	A	В	С	D	$/(mg \cdot L^{-1})$
1	1	1	1	1	158.26bB
2	2	1	2	2	277.08aA
3	3	1	3	3	69.87eE
4	1	2	2	3	127.67cC
(5)	2	2	3	1	94.53dD
6	3	2	1	2	69.57eE
7	1	3	3	2	$92.85\mathrm{dD}$
8	2	3	1	3	59. 20fF
9	3	3	2	1	$37.70 \mathrm{gG}$

1)同列数据中凡具有一个相同的大、小写字母者分别表示在 0.01、0.05 水平差异不显著(Duncan's 法).

表 4 正交试验分析1)

Tab. 4 Range analysis of the orthogonal test results

处理	t/d	ho(磷矿粉)/	θ∕℃	转速/
		(g · L ⁻¹)	<i>6</i> / C	(r • min -1)
水平1	126. 26bB	168.40aA	95.68bB	96.83bB
水平2	143.60aA	97. 26bB	147.48aA	146.50aA
水平3	59.05cC	63.25eC	85.75cC	85.58cC
极差	84.556	105. 153	61.733	60.920

1)同列数据中凡具有一个相同大、小写字母者分别表示在 0.01和0.05水平差异不显著(Duncan's 法)

3 讨论

具有溶磷能力的微生物有很多,目前已报道的溶磷菌主要包括芽孢杆菌属 Bacillus、假单胞菌属 Pseudomonas、欧文氏菌属 Erwinia、土壤杆菌属 Agrobacterium、沙雷氏菌属 Serratia、黄杆菌属 Flavobacterium、硫杆菌属 Thiobacillus、色杆菌属 Chromobacterium、产碱菌属 Alcaligenes、节杆菌属 Arthrobacter、沙门氏菌属 Salmonella、肠杆菌属 Enterbacter、微球菌属 Micrococcus、固氮菌属 Azotobacter 和根瘤菌属 Bradyrhizobium 等[10]. 有关洋葱伯克霍尔德氏菌溶磷、抑菌及促生长已有报道[11-15],但鲜见云南磷矿区土壤分离得到的洋葱伯克霍尔德氏菌的报道.

有关溶磷培养条件的优化也早有研究,大多从C源、N源、NaCl、pH、装液量、接种量、种龄、温度、摇床转速等方面来进行研究^[16-18].溶磷过程是复杂的,并不是某一因素起全部作用,而是多种因素共同作用的结果,溶磷培养条件也会因菌株的不同而异.本试验对磷矿粉含量、培养时间、温度和摇床转速这4个因素进行洋葱伯克霍尔德菌YN2014102溶磷条件的优化,进一步证实了其具有很强的溶磷活性,明确了其溶磷活性与上述提及的4个因素紧密相关.通过正交试验,证明以磷矿粉10g·L⁻¹为唯一磷源,在28℃、180 r·min⁻¹的条件下发酵5d,发酵液中的水溶性磷质量浓度达到277.08 mg·L⁻¹.然

http://xuebao.scau.edu.cn

而,这种优化条件还只是试验性的,要真正运用菌株YN2014102溶磷,实现低品位磷矿石无害化应用及提高田间磷使用效率,还需深入研究.

洋葱伯克霍尔德氏菌不是一个简单种,而是一组表型相近但基因型不同的复合物,至今已发现它包括 17 个不同的基因型,由于这些基因型之间有很低的 DNA 杂交率,因此不同基因型可代表不同的种^[19-21].有些种具有生物防治、促进植物生长、生物修复等功能,有些种是人类的条件致病菌,能引起肺囊性纤维化,或引起医院病人临床感染^[22].因此,本研究中的菌株 YN2014102 究竟属于哪一个种?是否引起人类疾病,还有待下一步试验证实.

参考文献:

- [1] 余旋.四川核桃主产区根际解磷细菌研究[D].雅安:四川农业大学,2011.
- [2] 樊磊,叶小梅,何加骏,等.解磷微生物对土壤磷素作用的研究进展[J]. 江苏农业科学,2008(5);261-263.
- [3] 鲁如坤,时正元,顾益初. 土壤积累态磷研究: II:磷肥的表观积累利用率[J]. 土壤,1995,27(6):286-289.
- [4] 杨钰,阮晓红,土壤磷素循环及对土壤磷流失的影响 [J]. 土壤与环境,2001,10(3):256-258.
- [5] 张毅民,孙亚凯,吕学斌,等. 高效溶磷菌株 Bmp5 筛选及活力和培养条件的研究[J]. 华南农业大学学报,2006,27(3):61-65.
- [6] 王光华,赵英,周德瑞,等.解磷菌的研究现状与展望 [J]. 生态环境,2003,12(1):96-101.
- [7] 刘瑞江,张业旺,闻崇炜,等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010,27(9):52-56.
- [8] 冯广达,陈美标,羊宋贞,等. 用于 PCR 扩增的细菌 DNA 提取方法比较[J]. 华南农业大学学报,2013,34 (3):439-442.
- [9] MARCHESI J R, SATO T, WEIGHTMAN A J, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA [J]. Appl Environ Microbiol, 1998, 64(2):795-799.
- [10] 胡晓峰,郭晋云,张楠,等. 一株溶磷抑病细菌的筛选及其溶磷特性[J]. 中国农业科学,2010,43(11):2253-2260.
- [11] OLIVEIRA C A, ALVES V M C, MARRIEL I E, et al.

 Phosphate solublilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian

- Cerrado Biome [J]. Soil Biol Biochem, 2008, 41(9): 1782-1787.
- [12] 余贤美,王义,沈奇宾,等. 解磷细菌 PSB3 的筛选及拮 抗作用的研究[J]. 微生物学通报,2008,35(9):1389-1403.
- [13] PARKE J L, GURIAN-SCHERMAN D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains [J]. Ann Rev Phyto, 2001, 39: 225-258.
- [14] 张立新,谢关林,罗远婵. 洋葱伯克氏菌在农业上应用的利弊探讨[J]. 中国农业科学,2006,39(6):1166-1172.
- [15] 牟志美,路国兵,冀宪领,等. 桑树内生拮抗细菌 Burk-holderia cepacia Lu1021 的分离鉴定及其内生定殖[J]. 微生物学报, 2008, 48(5): 623-630.
- [16] 陈俊,陆俊棍,康丽华,等. 红树林溶磷菌的初步鉴定、溶磷能力测定及其优化培养[J]. 微生物学通报, 2009, 36(8);1183-1188.
- [17] 姚庆智,闫伟,高学良,等.油松菌根根际一株高效磷细菌培养条件的研究[J].安徽农业科学,2009,37 (18):8337-8340.
- [18] 麻瑞阳,张爱民,惠小双,等.高效解磷解钾菌 NX-11 菌株的分离筛选、鉴定及最佳培养条件的确定[J].华北农学报,2013,28(2):202-208.
- [19] PAYNE G W, VANDAMME P, MORGAN S H, et al. Development of a recA gene-based identification approach for the entire Burkholderia genus [J]. Appl Environ Microbiol, 2005, 71(7): 3917-3927.
- [20] VANLAERE E, BALDWIN A, GEVERS D, et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. [J]. Int J Syst Evol Micr, 2009, 59(1):102-111.
- [21] AGNOLI K, SCHWAGER S, UEHLINGER S, et al. Exposing the third chromosome of *Burkholderia cepacia* complex strains as a virulence plasmid [J]. Mol Microbiol, 2012,83(2):362-378.
- [22] 叶建仁,任嘉红,李浩,等. 洋葱伯克霍尔德氏菌及其在林木病害防治中的应用[J]. 南京林业大学学报:自然科学版, 2013, 37(4): 149-155.

【责任编辑 霍 欢】