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Research progress in glucuronoxylan biosynthesis

WU Aimin, ZHAO Xianhai, XIE Qiaoli, XIE Xinming
(College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642 ,China)

Abstract ; [ Objective ] Plant cell wall plays a very important role in plant morphological structure mainte-
nance, growth, development and resistance to diseases and pests. Some cell walls can also be used as
edible or medicinal materials. Recently, the plant cell wall, regarded as an important biomass resource
and biological material, has become a hot research topic in botany. As one of the important components
of the cell wall, it is necessary to summarize the xylan achievement and breakthrough in the past decade.
[ Method] The progress of glucuronoxylan biosynthesis was summarized through the relevant literatures
and the authors researches. [ Result and conclusion] Glucuronoxylan is the principal hemicellulose com-
ponent of secondary cell wall, which was synthesized by multiple glycosyltransferases. Deficiency of glu-
curonoxylan synthetase genes in Arabidopsis thaliana could lead to irregular xylem, collapsed vessel and
fiber cell wall thinning. A number of genes involving in glucuronoxylan biosyntheses were discovered by
phenotype analyses and gene functional analyses. These genes participated in the biosynthesis of glucuro-
noxylan backbone, tetrasaccharide terminals and side groups. The overall analysis of the genes was con-
ducive to understanding the passway of the biosynthesis of glucuronoxylan. In this paper, the genes par-
ticipation in glucuronoxylan biosynthesis have been reviewed and some uncertain issues of glucuronoxylan

biosynthesis have been discussed in some future research priorities.
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TR SR G B O B AR S B W R, AN EAE
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Fig.1 Schematic illustrations of hemicelluloses
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AL L34 1 A (4-0-F 3R B AR IR T
GX Fll MGX 7E XL~ M A ¥ ) HE e vh A7 7E (2905
5% )" Reis %5 PR R VE OB S 1 A5 B T 47 4
T 22 IR g AR HE . A B i AR ) K SR T
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RIBARERAE . XX 2 A HE 11 B 45 F4 2E 47 Tl & 9,
A 3 AN ER A E, AT T T A a5 R 2 1T 45
A AR R0 5 AN R S B R AR SE
GUX3 11 GUX5 mIREAE K GUX 9 3 i 4k 7 56 2 1
RSt T AR R 4] GUX3 ZEX0 72 BY2 4 g v
HEAT IR, GleAT 3 M3 77 B2, e LR %
SR AN L) R AR SRR B VA e A R B AE GUX3 2R
12 T AR 8 SR 40 o) £ R 1 R
K, GUX3 0] B2 500 A6 BERELE 153 19 5 B Lee
SESVNE 5 A GUX SR AT T 40 #r, R PR
GUXI 1 GUX2 FZAEZETRK IR, GUX3 FEAR (25 (it
LB AR A 3k, HF H 2538 R AE KA £k,
GUX4 FBAEMIR Ik, GUXS FHAEM-FIE IR 34,
FENRRE BY2 21 it oo AE 253547 238 19 GUXT | GUX2
I GUX3 WiltA7 T 33K, 43 3% 3 AR I 41 e = 45
Ik GleAT 35 1, IF LR if % ik GUX1 Al GUX2
(20 B 2R W A 2% B0 B o 0 M. GUXT . GUX2 Al
GUX3 31X 3 A>3 [ [ Bief e 2 28 A8 44, 5 4 A6 I AN %)
GleA, I HATAR ZR B0 58 /)N, R T 350 4 i A2 T | 4 Jfd
FEAR T, A M RE 4% B K (R R SRBE & it e &2 %)
SN Bromley 2510 GUX1 &4 A B it £ 14 5]
Hi A1 F 6 .8 10 5l B 2 (55 AR 2% Ik, 3X R 1
FERE, T GUX2 A8 M A SR B DU A5 B /N g [
SR T ASECE A () A BE BRI (B B AT s
P IT 7 L 2 — 2 R R AR X 2 B
M 77 XALAEF 7 — AR M 77, nl BE 2 i 2] 15 27 4k
ESIWNIE IRV S

TS 2 B 4L F2 1 ( Glucuronoxylan methyl-
transferase, GXM) % 1 > Domain of unknown func-
tion 579 (DUF579 ) Z5 A4k, /2 1 i BH 85 i 784 ) FH
FERERS I , 4 S Mok P 3 N S-RRHT Y B A R s 75 3
AMEONBE (R AT RR 0-4 L. gvm AP IKH
Gy AN N e WA N (S 5 79 R o R S
B, gomi] 5 AR 1A (4 A M AR 15 T 45 5 il it
b, 3K B8R R T R B0 FE AR B 800N, gemad 5
P AR if R TR R BB 5 At i 43 1D 1) 38 3K el AR
TP GXM1  GXM2 il GXM3 1£ K35 7 14 Esche-
richia coli SRRk B HA W RLHE RS Bl 3% 1, (H 215
SN H 4 A 1 AE Ak A R RO b 1 ] 4 b T
iR, A fi FH 70 25 W T R EPOE , 3X 130 ) 70 A SR
A LIS 7 W I IR 1 HP Ak A 2 2 K R B L
JG KA, B U GXM 3 RIAT D S 1) R 3k R
BB L A AR R .

IRX15 FIl IRXISL 10845 DUF579 45438, irxl5
il S LG AR AR TR A AR T s A 4, IF HR TR M

A BER /N AR IRXTS F1IRXISL iy Bk
RN REIE AR AT, BAR EATW & A DUFST9 454
B AH dral S irxd SLOALGEAS PR A OB 1) HY LA B T
T P AR R B, IRX1S Al IRX1SL A B AT
HELEL RS Y DI BE , EAT T RE S 5 B ME 5 1l il
AT, B AR L 1Y Y B, T AR SRR

RWAI ~ RWA4 ( Reduced wall acetyltion) Ay 37 %
FaFK T Cryptococcus neoformans CASI 3 X 7E UL 56 I
r 1 [ DR SRR R S AR R T W db g 3R AR i
HA rwa2 R QeI B (2 20% ) H
CEAL BB AN R T A M, A H SR WE LR I 25 2
P I T Z WAk 2, 5F RWA2 (1% 30 20 it 5 o7 %
WY, RWA2 ZEN: T B M, (At , RWA2 A RE 2 & it
B HE A TE Lee 5 WIBFGE T, rwal ~ rwad
A AL GRS A = 58 AR Al Ve A ) i R AN ok A (H 2
VUG AR AR TR IR AR /)N | AR B Ak, A
¥, ZWE AL D. SR AE Manabe %1 (58, =
GRASRHRZR I B b () AR K /N N 2 T A s 2, T
GEASREE Sy L, A AR AN L RE 1Y 434k BRAE
W & IR B T AT SR ( Trichome birefringence-like ,
TBL) KGRI L 5t TBL29/ESKI B2 5L AR SREM
() LA , eskl AR PRI A BEAR i, 257855, LTk
AR B i > 3 B Urbanowicz 257 3 i &7
I3k ESK1 AN S| T £ Mhie 7% e s 1k (&1 2,
x1).
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[ 2

I RERERR A BMAE B /R SR T 10 5 (2% Rennie %1 it

Fig.2  Glucuronoxylan biosyntheses in Golgi (referenced by Rennie et al. " ®1)
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Tab.1 Genes involved in the glucuronoxylan biosynthesis

B () it Z75 3k
IRX9( AT2g37090) 4G [5,13,17,24,38 ,64]
IRX9L( AT1527600) [5,34]
IRX14( AT4g36890) [5,17,31,38]
IRX14L( AT5g67230) [5,31,34]
IRX10( AT1G27440) [6,33,64]
IRXIOL( AT5G61840) [6,33]
IRX15( AT3G50220) AWIHG, TTRES 5TE R RAE G B E 51K [56-57]
IRX15L( AT5G67210)

FRAS8/IRX7( AT2G28110) TR JE R i A B [5,12-13,17 64 ]
F8H/IRX7L( AT5G22940) [5,40]
PARVUS/GATLI ( AT1G19300) [17,41,46]
IRX8/GAUTI2 ( AT5G54690) [13,17,48,64]
GUXI ( AT3G18660) BRI R 5% A %, [10,51]
GUX2( AT4G33330)

GUX3(AT1G77130)

GUX4( AT1G54940)

GUX5( AT1G08990)

GXMI(AT1G09610) PR 2 AR T TR A Y R4 [50,55]
GXM2 ( AT4G09990)

GXM3 ( AT1G33800)

RWAI ( AT5G46340) ] R R G 38 2 3 [58-60]
RWA2( AT3G06550)

RWA3( AT2G34410)

RWA4( AT1G29890)

TBI29/ESKI ( AT3G55990) AR 2 AL [37,61-62]
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Fig.3 Two mechanisms of the glucuronoxylan backbone biosynthesis ( Referenced by York et al. ‘®")
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