

张 波,黄志宏,兰玉彬,等."互联网+"精准农业航空服务平台体系架构设计与实践[J]. 华南农业大学学报,2016,37(6);38-45.

"互联网+"精准农业航空服务平台 体系架构设计与实践

张 波1,2, 黄志宏1,2, 兰玉彬2,3, 巫莉莉1,2, 何斌斌1,2, 曾 鸣1,2

(1 华南农业大学 现代教育技术中心,广东 广州 510642;2 国际农业航空施药技术联合实验室/农业航空应用技术 国际联合实验室/广东省农业航空应用工程技术研究中心,广东 广州 510642;3 华南农业大学 工程学院,广东 广州 510642)

摘要:【目的】为农业航空植保作业服务商和终端农户提供沟通和服务的桥梁,推进农业航空标准的建立,推动科研院校的成果转化,对全国植保无人机实施跟踪和监管,促进农业航空市场规范,普及农业航空技术在精准农业中的应用,实现农药化肥施药零增长。【方法】利用"互联网+"的思维和方法,结合我国农业航空的发展状况与农业航空服务的特点,设计1套"互联网+"精准农业航空服务平台体系架构。采用大数据技术、云计算技术、移动应用技术以及 HTML5 等新一代信息技术,进行精准农业航空服务平台的底层架构设计、服务作业流程设计、用户界面设计以及数据库设计等。【结果】建立了精准农业航空服务的互联网综合服务平台,包含植保服务管理、作业效果评估管理、无人机检测管理、植保无人机监管、大数据应用等系统功能。它具有良好的平台特性、用户特性、大数据特性和扩展性。【结论】平台的体系架构能满足农业航空植保用户、植保服务商对植保作业服务简化操作的需求,同时实现了政府和有关部门对数据进行信息化有效管理的目的,并且通过数据分析与挖掘等技术手段提供多种增值服务,实现精准农业航空服务生态圈的有效良性循环,让农业航空更好地为我国农业现代化服务。

关键词:互联网;精准农业航空;服务平台;体系架构

中图分类号:S25; S126

文献标志码:A

文章编号:1001-411X(2016)06-0038-08

"Internet +" agricultural aviation services platform architecture design and practice

ZHANG Bo^{1,2}, HUANG Zhihong^{1,2}, LAN Yubin^{2,3}, WU Lili^{1,2}, HE Binbin^{1,2}, ZENG Ming^{1,2}
(1 Modern Education and Technology Center, South China Agricultural University, Guangzhou 510642, China; 2 International Laboratory of Agricultural Aviation Pesticide Spraying Technology/ International Laboratory of Agriculture Aviation Applied Technology/Engineering Research Center for Agricultural Aviation Application of Guangdong Province, Guangzhou 510642, China; 3 College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract: [Objective] To provide communication services for agricultural aviation plant protection service providers and terminal farmers, accelerate the establishment of agricultural aviation standards, promote the transformation of achievements in scientific research institutions, implement the national plant protection UAV tracking and monitoring, promote the normalization of agricultural aviation market, popularize agricultural aviation applications in precision agriculture, and help achieve zero growth in pesticides and fertilizers application. [Method] Based on the thoughts and methods of the "Internet +", combined with the characteristics of agricultural aviation and the services development in China, an "Internet +" agri-

收稿日期:2016-08-05 优先出版时间:2016-10-24

优先出版网址:http://www.cnki.net/kcms/detail/44.1110.s.20161024.1040.004.html

作者简介: 张 波(1973—), 男, 高级工程师, E-mail: zb@ scau. edu. cn; 通信作者: 兰玉彬(1961—), 男, 教授, 博士, E-mail: ylan@ scau. edu. cn

基金项目: 国家重点研发计划项目(2016YFD0200700);863 计划项目(2013AA102303)

http://xuebao.scau.edu.cn

cultural aviation services platform was designed. New generation of information technologies, such as big data, cloud computing, mobile applications and HTML5 were applied for the technical design in developing the fundamental platform architecture design of agricultural aviation services, the service work-flow design, UI interface design, and database design. [Result] The advanced and integrated agricultural aviation services platform was established, including plant protection services management, operation effectiveness evaluation, UAV detection, plant protection UAV regulation, and big data application. The platform had good properties of plaform, user and big data, and excellent expansibility. [Conclusion] The architecture design of the platform can meet the requirements of agricultural aviation users and service providers to simplify the plant protection operation, and achieve the purpose of government to effectively manage information as well. At last, through data analysis based on multi-mining techniques, this design provides various value-added services, and ultimately realizes a virtuous circle of agricultural aviation services ecosystem effectively with better services for agricultural modernization in China.

Key words: internet; precision agriculture aviation; services platform; architecture

农业航空技术有着作业效率高、作业效果好、作 业适应性广和作业成本低等特点[1],因此农业航空 应用最近几年在中国得到快速发展。目前,我国农 业航空作业量在逐年增加,但农业航空行业的发展 仍面临着诸多问题,比如农业航空政策法规体系不 完善、配套核心科学技术研究不足、专业队伍人才匮 乏、社会化服务体系不健全等,我国农业航空技术发 展亟需加强管理和规范[1-2]。2015年国务院出台的 《国务院关于积极推进"互联网+"行动的指导意 见》明确提出要充分推动互联网与农业的深入融合 和创新发展,充分发挥"互联网+"的重要作用,利用 互联网提升农业生产、经营、管理和服务水平[3]。因 此,将"互联网+"与农业航空结合,将有助于构建新 型农业航空生产经营体系、发展农业航空精准化生 产方式、提升农业航空网络化服务水平。美国农业 部较早建立了计算机飘移模型数据库,在试验数据 基础上开发了 Aerial spray, DRIFTSIM 等软件工具来 协助官方监管农业航空喷雾施药,帮助农户进行精 准农业航空作业[4-6]。IBM 和 Airmap 联合推出了可 提供准确、可靠、值得信赖的低空导航无人机行业气 象数据(温度、降水、压力、云量等)和通信工具,为农 业航空驾驶员的安全作业和航线规划提供支撑[7]。 日本研制了基于无人驾驶直升机的摄像传感器和激 光测距仪等设备生成作物生长状况、地形地貌特征 的精细图场信息系统[8]。英国政府于2013年启动 的"农业技术战略"高度重视利用"大数据"和信息 技术提升农业生产效率,美国的部分学者开展了大 数据在农业上的应用研究,他们认为大数据的运用 可以提高精准农业的水平,有助于经济增长和减少

对环境的影响^[9-13]。国内一些科研机构对农业数据库、农业遥感、农业物联网、农业信息系统、农业专家系统等现代信息技术在农业生产活动中的应用也取得了一定的成果^[14]。而对于新兴的农业航空应用产业,目前与之对应的农业航空服务信息系统、农业航空监管系统、农业航空大数据分析与挖掘应用系统都尚处于初步发展阶段。

"互联网+"精准农业航空服务平台是利用大数据、云平台、物联网等新一代信息技术,整合政府、企业、科研院所的资源,搭建农业航空服务桥梁,从而起到提升农业航空的综合服务效能、促进农业航空服务规范的新型农业服务平台^[15]。因此,本研究利用"互联网+"的思维和方法,结合我国农业航空的发展状况与农业航空服务的特点,设计1套"互联网+"精准农业航空服务平台体系架构。

1 试验构想

采用大数据技术、云计算技术、移动应用技术以及 HTML5 等新一代信息技术,开展"互联网+"农业航空服务平台的顶层设计、底层架构设计、服务作业流程设计、用户界面(User interface, UI)设计以及数据库设计等。将新一代信息技术所包含的诸多思维方式、设计方法与应用技术融入"互联网+"农业航空服务平台体系框架设计中,为农业航空服务平台的可持续发展和服务推广提供技术支撑。

1.1 运用互联网思维进行"互联网+"精准农业航空服务平台的顶层设计

互联网思维是一种全面的系统性的思维方式, 平台思维是互联网时代大众参与的驱动力。精准农 http://xuebao.scau.edu.cn 业航空服务平台的顶层设计,需要搭建一套由无人机生产厂商、植保服务商、生产合作社或生产大户、检验检疫部门、科研院所、政府监管机构等多主体共建的、资源共享、能够实现共赢的、开放的一种生态系统。其次,用户思维是农业航空服务的核心,需要将"以用户为中心"贯穿于"互联网+"精准农业航空服务平台框架设计的各个环节中。最后,农业航空服务平台框架设计的各个环节中。最后,农业航空服务的终端农户体验对于精准农业航空服务平台的设计至关重要,所有的植保无人机、农资产品或植保服务都是为了保证农户的植保作业效果,因此自始至终都要将用户对植保作业效果体验作为指导原则,创造农户在农业航空服务全流程的最佳体验^[16]。

1.2 运用云计算技术构建"互联网+"精准农业航空服务平台的基础支撑

云计算以公开的标准和服务为基础,以互联网为中心,提供安全、快速、便捷的数据存储和网络计算服务。在精准农业航空服务平台体系设计中采用云计算作为底层基础设施的交付和使用模式,通过互联网提供虚拟化的资源计算方式,将动态易扩展的资源以按需的方式提供和获取,通过公有云和私有云的混合搭建,轻松地扩展农业航空的各种应用和服务,提高计算资源的利用率,使得农业航空服务平台具有良好的扩展性和伸缩性[17]。基于云计算技术搭建的支撑平台对客户端计算机配置要求较低,大量的计算分布在云端、数据存储汇聚在云端,从而具有价格低廉甚至免费的优势,使用云计算模式的基础支撑平台可以在精准农业航空的信息服务平台中得到快速实现和普及应用[17-18]。

1.3 运用大数据技术实现"互联网+"精准农业航空服务平台的精准服务

农业航空的快速发展使得围绕精准农业航空服务的各种类型的海量数据快速形成,面对海量的农业航空作业过程中的各类生产要素(植保无人机、作业人员、土地、作物、农资等)、流通过程和经营主体的数据,通过清理、整合等方式将散乱的数据变为可供分析的数据集,通过数据处理,挖掘科学合理的现代农业航空精准方式、保障食品质量安全等。

将农业航空与大数据相结合,可以丰富农业数据的来源以及数据种类,并且可以有效地提高农业航空服务的质量。通过搭建大数据分析平台,培养数据挖掘和分析团队,建立开放性的数据共享制度,规范具备数据置换和共享的接口,充分利用外部数据,以此来提供以用户为中心的、人性化的农业航空

大数据服务[19-20]。

1.4 运用移动应用技术实现"互联网+"精准农业 航空服务平台的灵活便捷

随着移动智能终端的快速发展,用户需求和技术发展相互作用,用户对于服务的灵活便捷性提出更高要求,因此基于用户良好体验的移动终端开发变得越来越重要。基于互联网思维的农业航空服务平台同时提供 Web 和智能终端应用,充分利用移动终端的灵活特性,为用户提供多屏互动的使用体验。要求在不同的操作系统以及不同的终端设备(智能手机、平板和电脑)之间可以相互兼容,通过无线网络连接的方式,实现身份的统一认证、内容的同步传输、应用的互动集成等[21]。

2 试验实施与结果

2.1 "互联网+"精准农业航空服务平台体系架构 "互联网+"精准农业航空服务平台体系架构 (图1)包含投入层、产出层和绩效层。

投入层主要指技术投入和资源投入,它是为了构建"互联网+"农业航空服务平台体系架构所进行的技术和资源投入,包括云技术、数据库存储、分布式计算、数据挖掘等技术的使用以及对自然资源、基础设施资源和信息资源的开发和利用。

产出层则需要结合农业航空的线下作业内容和 大数据技术来搭建涉及农业航空植保作业服务管 理、作业效果管理、农田作业处方图、农业资源管理、 农田环境管理、农产品安全溯源管理、植保无人机追 踪和监控等各种应用平台和业务系统,它为管理和 服务提供技术支撑。

绩效层最直观的结果就是农业航空服务的效果,"互联网+"农业航空服务平台为政府监管部门以及科研院所、科技专家、农业航空植保作业服务商和终端农户等服务主体提供沟通和服务的桥梁。精准农业航空服务平台为政府监管部门提供了植保无人机跟踪和监管服务、政策法规宣传服务,为服务主体提供植保作业服务、植保无人机的功能和性能检验检测、植保服务效果评估、农用航空成果推广与转化、无人机培训、行业标准、大数据应用等服务。在农业航空服务的过程中,政府监管部门和农业航空服务主体都要履行管理职能,从服务需求的提出到服务的实施、监督以及效果评估,整个过程都需要政府监管部门、服务主体来参与[22]。

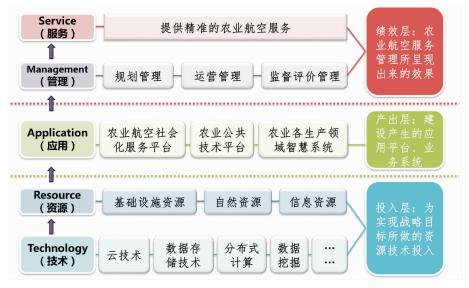


图 1 "互联网 +"精准农业航空平台服务体系

Fig. 1 "Internet +" precision agriculture aviation services platform (IPAASP) architecture

2.2 "互联网+"精准农业航空服务平台框架与功 能模块

"互联网+"精准农业航空平台总体框架由9个部分组成,包括植保作业服务、植保无人机的功能和性能检验检测、植保服务效果评估、农用航空成果推广与转化、无人机监管、无人机培训、行业标准、制度法规、大数据应用,总体框架见图2。

无人机植保服务是"互联网+"精准农业航空平台的核心内容,植保服务商通过地面控制或自动导航飞行操作无人驾驶飞行器,为广大农户完成喷洒药剂、施肥、播种或授粉等农林植物保护作业服务。植保服务流程见图3。

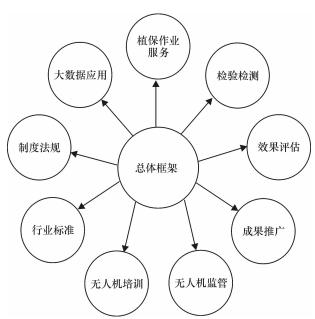


图 2 "互联网+"精准农业航空平台框架结构 Fig. 2 "Internet +" precision agriculture aviation services platform (IPAASP) scheme

2.2.1 订单形成 整个服务以订单为主线,分为生成订单和完成订单2个阶段,分别由终端农户和专家、植保服务商实施完成。

第一阶段首先由终端农户填写服务需求;接着服务商或农业专家结合植保服务商的服务项目,根据农户需求给出若干参考方案;农户选择其中一个方案生成服务订单(订单详细列出服务内容、优惠政策、预估价格)。

第二阶段首先由植保服务商通过移动 APP 端登录系统后选择并处理订单;接着根据订单要求,录入作业信息,完成作业;最后根据实际作业情况,给出服务价格,农户支付服务费用后,完成订单。

- 2.2.2 植保无人机的功能和性能检验 构建植保 无人机综合性能测评指标体系,对植保无人机综合 性能测评指标体系中的可靠性能、抗风性能、载荷性 能、振动性能的测试方法作深入剖析,提出各种指标 的测试方法,为国家对植保无人机标准的制定提供 参考。
- 2.2.3 植保服务效果评估 农户可在服务完成后申请作业效果评估,评估由第三方机构综合作业时的喷施情况、作物生长情况及收割时的情况给出测评报告。
- 2.2.4 农用航空成果推广与转化 根据国内外农业航空应用行业的发展趋势,针对当今农业航空喷施、低空遥感信息获取及作物制种辅助授粉等方面的技术需求以及行业技术状况,以农业航空应用技术的产业化研究、开发为主线,以与相关企业的合作研究、技术转让、技术入股、技术培训为契合点和切入点,实现高等院校或科研机构与企业之间多种投入形式、多种合作形式的运行模式。

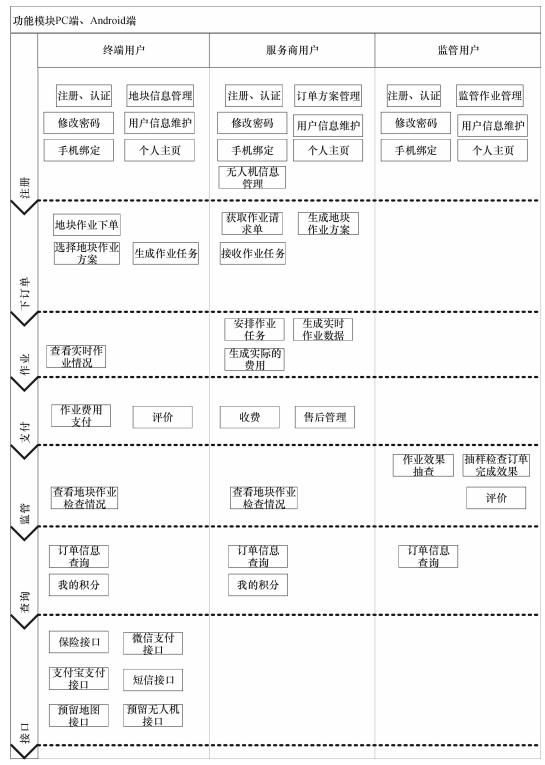


图 3 植保作业服务流程

Fig. 3 Plant protection service work-flow

- 2.2.5 植保无人机监管 无人机监管包含 3 方面内容,一是农户可对作业过程实时关注;二是服务商跟踪服务过程,三是政府部门可以监管无人机飞行轨迹和作业区域。
- 2.2.6 植保无人机操作及作业培训 加强农用无 人机驾驶员对无人机的操作技能、专业知识和技能
- 的培训,培养可以应对不同航空作业要求的合格驾驶员。确立专门的植保无人机驾驶员培训机构和统一的认证标准,规范其飞行活动。提供在线终生教育,为植保无人机驾驶员提供不断发展的植保知识和农业航空技术培训。
- 2.2.7 行业标准 由于无人机系统术语定义在使

果见图5。

用过程中的歧义引发的争议不断出现,为了消除在 无人机研发和使用过程中出现的沟通障碍和误解, 平台加强对无人机飞行控制系统、无人机设计类、无 人机导航设备、无人机任务设备、无人机检测与鉴 定、无人机飞行安全等方面的行业标准宣传与推广。 2.2.8 制度法规 为了更好地配合政府监管部门 做好对植保无人机的追踪和监管,规范各类飞行活动,平台推出制度法规宣传栏,其中包含国务院、空 管委、国家民用航空局以及工业和信息化部出台的 各类制度法规。

2.2.9 大数据应用 精准农业航空服务平台中的环境气象、水文、农田高低空遥感图像、土壤成分、病虫害、植保服务、植保无人机监管等农业航空大数据,为现代大农业生产的产前、产中、产后提供全程服务;为政府监管部门决策提供咨询、指导;为企业生产、转型、市场营销提供咨询、指导;为科研院所产品研发提供指导;为植保服务商制定植保作业方案提供指导[23]。

2.3 "互联网+"精准农业航空服务平台开发与实践

精准农业航空服务平台开发基于 B/S(Browser/Server)架构,由表示层、中间件层和服务器层 3 层结构组织而成。表示层面向客户,提供 Web 应用界面,实现人机交互;中间件层则实现平台数据流具体的过程定义、建模、执行、监控和通信等;服务器层则提供整个平台的运行数据、组织数据、定义数据等的存取和查询,提供构件、服务及通信等 3 个方面的支持[24-25]。

精准农业航空服务平台的植保无人机监管和在线教育等功能需要为采用多平台、多操作系统、多种终端设备的广大用户服务,需要良好的跨平台兼容性,而植保无人机作业轨迹实时跟踪、植保作业的数据统计结果,需要结合 GIS 进行图形化的展示。因此精准农业航空服务平台的开发采用 HTML5 技术进行,以确保移动端软件在 Android 和 Apple 等不同的移动终端都可以兼容,由于 HTML5 同时支持 3D和移动应用,其非常适合为农业技术推广"最后 1 km问题"提供良好的解决方案^[26]。

精准农业航空服务平台运用 HTML5 技术来实现 Web 应用及移动 Web 应用的图形化展示效果,其效果图见图 4。

基于 WebGIS 开发的植保无人机的实时轨迹跟踪与监管,能够实现对无人机植保作业过程进行全程监控和事后管理,基于云计算和分布式存储技术的设计有利于实现农业航空作业相关格式化数据、视频、音频、图像、动画等多源信息的便捷存储与管理,基于以用户为中心的 UI 设计可以提供用户之间的良好交互,能够为农户、植保作业人员和政府等各

图 4 "互联网+"精准农业航空服务平台效果图 Fig. 4 Visual interface of "Internet +" precision agricul-

ture aviation services platform

-类用户提供良好的可视化视图。无人机实施监控效

基于 hadoop 构建的农业航空大数据分析平台将充分利用国家农业数据中心的信息资源,着眼于对农业航空涉及到的来自于气象、环保局、土肥站、农资企业、农业企业、农业局、植保站、品种研发者、农技推广部门、无人机植保服务商和技术员等生产相关数据进行分析,提高农业航空作业的准确性和农作物生长过程与结果预测的广度和精度,从大数据中分析出一定的特征和规律,来预测未来可能会发生什么。

图 5 基于 WebGIS 的植保无人机实时监控

Fig. 5 Real time monitoring of plant protection based on WebGIS

以水稻种植植保作业为例,来自于气象、土地、土壤、病虫害、喷药、施肥、遥感、农户、植保作业综合评价等多维度的数据源,构成了大数据分析平台的数据基础,利用 ETL 数据抽取、JDBC 适配器、爬虫引擎、kafka 等工具对数据进行清洗和整理,使用 Hive、Spark-SQL、R/Mahout、MapReduce、Spark、Elastic-Search 对数据进行计算和存储,根据水稻病虫害预测模型和分析策略对数据进行建模,通过短信、微信和 APP 等移动互联网的方式,把作物生长信息、作物长势预测、病虫害预警、无人机植保作业方案等专业化解决方案推送给目标农户,实现大数据分析结果能直面农业生产用户,使得农户与系统的互动和数

http://xuebao.scau.edu.cn

据采集都可以做到零距离和及时性,做出最符合农户需求的决策,从而实现农业大数据应用的主动性和前瞻性。应用示例见图 6。

物联网的高速发展和智能手机的快速普及,为

服务体系的建设和低成本运行提供了有力的技术支撑。平台同步开发了可跨平台使用的无人机植保移动应用软件,软件界面见图7。

图 6 水稻植保作业大数据应用

Fig. 6 Big data application of rice plant protection operation

图 7 "互联网+"精准农业航空服务平台移动版

Fig. 7 Mobile version of "Internet +" precision agriculture aviation services platform

3 结论

本研究提出将"互联网+"思维与技术与精准农业航空服务相结合,构建了精准农业航空服务平台的体系架构,该体系采用的开放式的互联网架构有着良好的平台特性、用户特性、大数据特性、社会化特性,促进了围绕着农业航空服务的多方融合,加速了信息的共享,既能满足农业航空植保用户、植保服

务商对植保作业服务简化操作的需求,又实现了政府和有关部门对数据进行信息化有效管理的目的。在此架构基础上利用移动互联网技术开发的平台具有良好的扩展性,并可以通过大数据分析挖掘等技术手段提供不断丰富的增值服务,实现农业航空服务的有效良性循环。

下一步研究方向是通过获取更精确的数据来源、运用更丰富的分析技术、提供可视化的综合服

http://xuebao.scau.edu.cn

务,建立一个良好的精准农业航空社会化服务体系平台。该平台的进一步完善和运营,需要所有农业航空参与者的共同努力,实现共建共享的精准农业航空社会化服务生态圈,从而进一步促进农业航空技术在精准农业中的应用,实现农药化肥施药零增长,让农业航空更好地为我国农业现代化服务。

参考文献:

- [1] 罗锡文. 对加快发展我国农业航空技术的思考[J]. 农业技术与装备, 2014(5): 7-15.
- [2] 周志艳,臧英,罗锡文,等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报,2013,29(24): 1-10.
- [3] 中华人民共和国国务院. 国务院关于积极推进"互联网+"行动的指导意见[N]. 经济日报, 2015-07-05 (1).
- [4] TESKE M E, BIRD S L, ESTERLY D M, et al. AgDrift[®]: A model for estimating near-field spray drift from aerial applications [J]. Environ Toxicol Chem, 2002, 21 (3): 659-671.
- [5] ZHU H P, FOX R D, OZKAN H E. A windows version of DRIFTSIM for estimating drift distances of droplets [R/OL]//American Society of Agricultural and Biological Engineers. 2005 ASAE Annual International Meeting, Tampa, Florida [2016-08-03]. http://elibrary.asabe.org/abstract.asp? aid = 19884.
- [6] LAN Y, THOMSON S J, HUANG Y, et al. Current status and future directions of precision aerial application for sitespecific crop management in the USA[J]. Comput Electron Agr, 2010, 74(1): 34-38.
- [7] WONG K, SWITZER J. Drone flight operations to improve as the Weather Company, an IBM Business, and AirMap join to deliver real-time hyperlocal weather data [DB/OL].(2016-08-03)[2016-08-04]. https://www-03.ibm.com/press/us/en/pressrelease/50304.wss.
- [8] SUGIURA R, FUKAGAWA T, NOGUCHI N, et al. Field information system using an agricultural helicopter towards precision farming [C/OL]. IEEE Xplore, 2003 [2016-08-03]. http://ieeexplore.ieee.org/document/1225491/metrics
- [9] "互联网+农业"在国外是怎么做的[J]. 农业工程技术, 2016,36(3): 29-31.
- [10] CAROLAN M. Publicising food: Big data, precision agriculture, and co-experimental techniques of addition [J/OL]. Sociol Rural, 2016 [2016-08-03]. http://onlinelibrary.wiley.com/doi/10.1111/soru.12120/pdf.
- [11] SONKA S, CHENG Y. Precision Agriculture: Not the same as big data but ... [J/OL]. Farmdoc Daily, 2015 [2016-08-03]. http://farmdocdaily. illinois. edu/pdf/fdd051115.pdf.

- [12] MINTERT J R, WIDMAR D, LANGEMEIER M, et al. The challenges of precision agriculture: is big data the answer? [R/OL]// The Southern Agricultural Economics Association (SAEA) Annual Meeting, Texas, February 6-9, 2015 [2016-08-03]. http://ageconsearch. umn. edu/bitstream/230057/2/THE% 20CHALLENGES% 200F% 20PRECISION% 20AGRICULTURE_manuscript_SAEA_2016. pdf.
- [13] MARK T B, GRIFFIN T W, WHITACRE B E. The role of wireless broadband connectivity on 'big data' and the agricultural industry in the united states and australia[J]. Int Food Agribus Manage Rev, 2016: 19(A):43-56.
- [14] 秦学敏,陈位政,谭立伟,等. 互联网思维下农业大数据的需求、现状与发展思考[J]. 农业工程技术,2015,35(36):44-47.
- [15] IRIS, ALINA. "互联网+农业"报告:一个近10万亿规模的市场,正被这些公司分食[J]. 农业工程技术, 2015,35(24):16-23.
- [16] 徐鹏,陈思,苏森. 互联网应用 PaaS 平台体系结构[J]. 北京邮电大学学报, 2012,35(1): 120-124.
- [17] 卫景芳,马军,侯宝英,等. 云计算农田会商平台规划和设计[J]. 计算机系统应用, 2016,25(6): 40-43.
- [18] 张波,罗锡文. ICT 在精细农业中的应用与展望[C]//CSAE. 中国农业工程学会 2011 年学术年会. 重庆: CSAE, 2011;28-31.
- [19] 蔡丽霞. 基于大数据处理技术 Hadoop 平台玉米精准施 肥智能决策系统的研究[D]. 长春: 吉林农业大学, 2015.
- [20] SONKA S. Big Data: Fueling the next evolution of agricultural innovation [J]. J Innov Manage, 2016, 4(1): 114-136.
- [21] 王丽萍. 基于互联网新技术的科技统计服务平台设计 与实现[D]. 北京:中国科学院大学, 2015.
- [22] 孟祥宝,谢秋波,刘海峰,等. 农业大数据应用体系架构和平台建设[J]. 广东农业科学,2014,41(14):173-178.
- [23] ANTLE J, CAPALBO S, HOUSTON L. Using big data to evaluate agro-environmental policies [J/OL]. Choices, 2015, 30 (3): 1-8 [2016-08-03]. http://ageconsearch.umn.edu/bitstream/210007/2/cmsarticle_456.pdf.
- [24] 张波,黄志宏,张晓鹏,等. 基于 IA 架构的大型数据库 集群系统的研究与应用[J]. 计算机工程与设计, 2006,27(17): 3187-3188.
- [25] 张波,巫莉莉,周敏. 基于 Web 使用挖掘的用户行为分析[J]. 计算机科学,2006,33(8): 213-214.
- [26] 罗治情, 陈娉婷, 官波, 等. 基于 HTML5 + WebRTC 的 农业专家在线教学系统的设计与实现[J]. 农业网络信息,2016(3):91-94.

【责任编辑 柴 焰】