

玮,周 玮,周 鹏,等.基于 SRAP 标记的任豆遗传多样性分析[J].华南农业大学学报,2017,38(1);82-89.

# 基于 SRAP 标记的任豆遗传多样性分析

玮,周鹏,周祥斌,吴林瑛,陈晓阳 玮, 周 (华南农业大学 林学与风景园林学院/广东省森林植物种质创新与利用重点实验室/ 广东木本饲料工程技术研究中心,广东 广州 510642)

摘要:【目的】研究任豆 Zenia insignis 种群遗传多样性,为有效保护任豆种质资源并进行遗传改良提供理论基础。 【方法】在建立任豆 SRAP-PCR 反应体系的基础上,对 17 个任豆种源进行遗传多样性分析,并利用 UPGMA 聚类分 析,对任豆种源进行类群划分。【结果】12 对引物组合共扩增出 151 条带,平均每对引物获得 12.58 条。其中,多态 性条带 106条,平均每对引物 8.83条,平均多态率为 70.39%。种源间多态位点比率为 38.96% ~ 72.73%,平均为 59.66%;基因多样性指数为 0.175 5~0.313 3,平均为 0.256 8; Shannon 信息指数为 0.249 4~0.450 2,平均为 0.369 1;观测等位基因数(na)为1.519 5~1.727 3,平均达1.600 0,种源水平的 na 为1.724 9;有效等位基因数 (ne) 为 1.330 5~1.577 3,平均达 1.471 3,种源水平的 ne 为 1.502 6;种源间的遗传一致度为 0.703 1~0.886 5;遗 传距离为 0.1205~0.3523。根据聚类结果,将任豆17个种源分为3个地理类群:第1类为广西和贵州种源,第2 类为广东、湖南和广西种源,第3类为云南种源,地理距离相近的种源基本上聚在同一类。【结论】任豆种源间和种 源个体间均存在较丰富的遗传多样性,且种源内更丰富,遗传改良时应更注重种源内个体的选择。任豆种源间基 因流不高,且根据聚类结果划分的3个类群的地理格局明显,应是由任豆特定的生活环境造成的隔离所致。

关键词:任豆; 种源; SRAP; 遗传多样性

中图分类号:S792.99

文献标志码:A

文章编号:1001-411X(2017)01-0082-08

### Genetic diversity of Zenia insignis based on SRAP markers

LIN Wei, ZHOU Wei, ZHOU Peng, ZHOU Xiangbin, WU Linying, CHEN Xiaoyang (College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm/Guangdong Research Center of Woody Forage Engineering Technology, Guangzhou 510642, China)

**Abstract**: Objective To study population genetic diversity of *Zenia insignis*, and to provide a basis for Z. insignis germplasm protect and promote genetic improvement. [Method] Base on establishing of SRAP-PCR system in Z. insignis, the genetic diversity among 17 provenances was analyzed. UPGMA clustering analysis was used to divide Z. insignis provenances into different groups. [Result] A total of 151 bands were amplified from 12 primer pairs, and in average 12.58 bands were amplified from each primer pair. There were 106 polymorphic bands, in average 8.83 bands per primer sets, and the average percentage of polymorphic bands was 70.39%. The ratios of polymorphic loci among provenances were 38. 96% -72. 73%, and 59. 66% in average. The genetic diversity indices were 0. 175 5 -0. 313 3, and 0.256 8 in average. The Shannon information indices were 0.249 4 - 0.450 2, and 0.369 1 in average. The numbers of alleles (na) observed were 1.519 5 - 1.727 3, and 1.600 0 in average. The

收稿日期:2016-02-23 优先出版时间:2016-12-28

优先出版网址; http://www.cnki.net/kcms/detail/44.1110.s.20161228.0924.020.html

作者简介: 林 玮(1989—), 男, 硕士研究生, E-mail: 35417328@ qq. com; 通信作者: 陈晓阳(1958—), 男, 教授, 博士, E-mail: xychen@ scau. edu. cn

基金项目:863 计划专项(2011AA10020203)

http://xuebao.scau.edu.cn

number of alleles (na) at the provenance level was 1.724 9. The numbers of effective alleles (ne) were 1.330 5 – 1.577 3, and 1.4713 in average. The number of effective alleles (ne) at the provenance level was 1.502 6. The genetic identity degrees among provenances were 0.703 1 – 0.886 5. The genetic distances were 0.120 5 – 0.352 3. According to cluster analysis, 17 provenances were divided into three groups. The first group included Guangxi and Guizhou provenances. The second group included Guangdong, Hunan and Guangxi provenances. The third group only included Yunnan provenance. The provenances with geographic proximity were generally clustered into the same group. [Conclusion] The genetic diversity is abundant among Z. insignis provenances and among individuals within provenance, but is mainly from individuals within provenance. Therefore more attention should be paid to individuals in genetic improvement of Z. insignis. Both the low level of gene flow among provenances and three clear geographic clustering should be caused by the geographic isolation due to the specific living environment of Z. insignis.

Key words: Zenia insignis; provenance; SRAP; genetic diversity

任豆 Zenia insignis 又称翅荚木、任木,苏木科任豆属落叶大乔木,为单种属,是华南石灰岩地区的特有种,也是国家二级重点保护植物[1]。该树种树形高大、通直,树高可达15~20 m,胸径可达1 m以上。任豆在我国主要分布于广西、广东、云南、湖南、贵州等地[2],也分布于印度-马来西亚-越南(或中南半岛)一带。任豆适应性广,具有适应干旱、干热性强等优良特点,能在石灰岩风化发育的酸性红壤和赤红壤上生长,是西南和华南地区石质山地造林、植被恢复重建的首选乡土树种之一[3]。任豆耐刈割,萌芽力强,枝叶粗蛋白含量高,适口性好,也是优良的木本饲料[4]。

遗传多样性研究可以为揭示物种的起源、物种间的亲缘关系等提供依据,对于有效地保护种质资源、开展遗传改良具有重要的意义。目前,对任豆遗传多样性的研究不多见, ISSR 已有报道<sup>[1]</sup>。 SRAP (Sequence-related amplified polymorphism)是一种基于 PCR 的分子标记技术,它结合了 AFLP 及 RAPD 的优点,具有简便、稳定、产率高、容易克隆目标片段等特点<sup>[5]</sup>,且试验结果稳定,重复性较好<sup>[6]</sup>。本研究以 17 个任豆种源作为研究材料,采用 SRAP 分子标记技术,对任豆种源间以及种源内的遗传多样性进行分析,以期在 DNA 分子水平上揭示任豆的遗传多样性。

# 1 材料与方法

#### 1.1 材料

根据任豆的天然分布,按照均衡抽样的原则,选取广东阳山和乐昌,广西那坡和平果,贵州罗甸和册

亨,云南西畴和麻栗坡,湖南通道和江华等 17 个种源任豆作为研究材料,采种点覆盖任豆主要分布区,并均匀分布(表1)。于 2013—2014 年分批播种,苗圃设在华南农业大学。2014 年 7 月初,每个种源选取 10 个家系,每个家系选出 2 株作为样株并挂牌标记,以幼嫩叶片作样品,叶片按单株编号,再分别置入塑料封口袋中,放入 -80 ℃冰箱中保存备用。

表 1 任豆采种点地理位置

Tab. 1 Geographic location of different seed collection sites of *Zenia insignis* 

| 01 | Zema msigms |           |           |
|----|-------------|-----------|-----------|
| 编号 | 种源          | 经度(E)/(°) | 纬度(N)/(°) |
| 1  | 广西靖西        | 113.08    | 24.80     |
| 2  | 广西都安        | 108.09    | 23.94     |
| 3  | 广西罗城        | 108.91    | 24.79     |
| 4  | 广西桂林        | 109.60    | 24.25     |
| 5  | 广东阳山        | 112.64    | 24.48     |
| 6  | 湖南江华        | 111.79    | 24.97     |
| 7  | 广西灵川        | 110.45    | 25.07     |
| 8  | 湖南通道        | 109.88    | 26.26     |
| 9  | 广西德保        | 106.61    | 23.35     |
| 10 | 广西平果        | 107.59    | 23.33     |
| 11 | 广西那坡        | 106.01    | 23.38     |
| 12 | 贵州册亨        | 105.80    | 24.98     |
| 13 | 云南西畴        | 104.67    | 23.43     |
| 14 | 云南麻栗坡       | 104.71    | 23.12     |
| 15 | 贵州梵净山       | 108.78    | 27.83     |
| 16 | 贵州罗甸        | 106.41    | 25.72     |
| 17 | 广东乐昌        | 112.85    | 25.52     |

#### 1.2 方法

1.2.1 DNA 提取与纯化 使用由 Omega Bio-tek 公司生产的 DNA 提取试剂盒 (HP plant DNA Kit, OMEGA)对任豆总 DNA 进行提取和纯化。用质量浓度为 8 g·L<sup>-1</sup>的琼脂糖凝胶电泳检测纯度,对照 DNA 标准相对分子质量,计算所提取基因组 DNA 的浓度。

1.2.2 SRAP-PCR 反应体系建立与优化 对 SRAP 反应体系主要因素 [包括 Taq 酶, $Mg^{2+}$  浓度,模板 DNA,三磷酸脱氧核苷酸 (dNTP),引物 ] 进行多水平优化试验。PCR 产物用 2.0 g · kg  $^{-1}$  琼脂糖凝胶和溴化乙锭 (EB) 染色检测。根据最佳因素水平组合进行梯度退火试验,建立并优化 SRAP 反应体系。最适宜任豆的 25 μL 体系为:  $10 \times PCR$  buffer 2.5 μL、模板 DNA 80 ng、 $Mg^{2+}$  2.0 mmol·L $^{-1}$ 、引物 0.3 μmol·L $^{-1}$  和 Taq DNA 聚合酶 1.25 U。经过反复试验,反应程序为: 94 ℃ 预变性 5 min; 94 ℃ 变性 1 min、35 ℃退火 1 min、72 ℃ 延伸 1

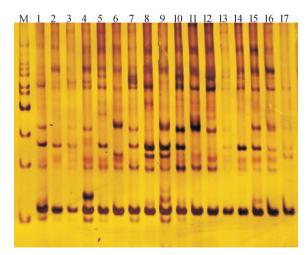
min,5 个循环;94 ℃ 变性 1 min、55 ℃退火 1 min、72 ℃延伸 1 min,30 个循环;72 ℃ 延伸 10 min,4 ℃条件下保存。

再随机选取 6 个种源的任豆 DNA,对建立的体系进行验证。

1.2.3 引物筛选 运用优化的 SRAP-PCR 反应体系进行引物筛选,挑选出 4 个地理差距较大的任豆种源 DNA(云南西畴,湖南江华,贵州罗甸,广东阳山)作为模板,对 729 对引物组合进行初步筛选。从中挑选出 120 对可以产生多态性条带的引物组合,其条带较为清晰。再以随机选取的广东阳山、湖南通道、广西桂林、广西灵川、广西平果、广西那坡、贵州册亨、云南西畴 8 个种源为模板,对引物进行复筛,最后确定出 12 对效果最佳、扩增条带较多、背景清晰的引物用于 SRAP-PCR 反应。本试验根据 Li 等[7]提出的原则,设计 SRAP 引物,PCR 扩增的引物采用上海生工生物工程技术服务有限公司的产品。最终设计出的引物见表 2。

表 2 任豆 SRAP 分析的引物序列

Tab. 2 Primer sequences used for SRAP analysis of Zenia insignis


| Tab. 2 Primer sequences used for SRAP analysis of Zenia insignis |                             |      |                              |  |  |  |  |  |  |
|------------------------------------------------------------------|-----------------------------|------|------------------------------|--|--|--|--|--|--|
| 引物编号                                                             | 正向序列                        | 引物编号 | 反向序列                         |  |  |  |  |  |  |
| Me1                                                              | 5'TGA GTA CAA ACC GG ATA 3' | Em1  | 5'GAC TGC GTA CGA ATT TGC 3' |  |  |  |  |  |  |
| Me2                                                              | 5'TGA GTA CAA ACC GG AGC 3' | Em2  | 5'GAC TGC GTA CGA ATT TGC 3' |  |  |  |  |  |  |
| Me3                                                              | 5'TGA GTA CAA ACC GG AAT 3' | Em3  | 5'GAC TGC GTA CGA ATT GAC 3' |  |  |  |  |  |  |
| Me4                                                              | 5'TGA GTA CAA ACC GG ACC 3' | Em4  | 5'GAC TGC GTA CGA ATT TGA 3' |  |  |  |  |  |  |
| Me5                                                              | 5'TGA GTA CAA ACC GG AAG 3' | Em5  | 5'GAC TGC GTA CGA ATT AAC 3' |  |  |  |  |  |  |
| Me6                                                              | 5'TGA GTA CAA ACC GG TAA 3' | Em6  | 5'GAC TGC GTA CGA ATT GCA 3' |  |  |  |  |  |  |
| Me7                                                              | 5'TGA GTA CAA ACC GG TCC 3' | Em7  | 5'GAC TGC GTA CGA ATT GAG 3' |  |  |  |  |  |  |
| Me8                                                              | 5'TGA GTA CAA ACC GG TGC 3' | Em8  | 5'GAC TGC GTA CGA ATT GCC 3' |  |  |  |  |  |  |
| Me9                                                              | 5'TGA GTA CAA ACC GG ACA 3' | Em9  | 5'GAC TGC GTA CGA ATT TCA 3' |  |  |  |  |  |  |
| Me10                                                             | 5'TGA GTA CAA ACC GG ACG 3' | Em10 | 5'GAC TGC GTA CGA ATT CAA 3' |  |  |  |  |  |  |
| Me11                                                             | 5'TGA GTA CAA ACC GG ACT 3' | Em11 | 5'GAC TGC GTA CGA ATT GCA 3' |  |  |  |  |  |  |
| Me12                                                             | 5'TGA GTA CAA ACC GG AGG 3' | Em12 | 5'GAC TGC GTA CGA ATT CAT 3' |  |  |  |  |  |  |
| Me13                                                             | 5'TGA GTA CAA ACC GG AAA 3' | Em13 | 5'GAC TGC GTA CGA ATT CTA 3' |  |  |  |  |  |  |
| Me14                                                             | 5'TGA GTA CAA ACC GG AAC 3' | Em14 | 5'GAC TGC GTA CGA ATT CTC 3' |  |  |  |  |  |  |
| Me15                                                             | 5'TGA GTA CAA ACC GG AGA 3' | Em15 | 5'GAC TGC GTA CGA ATT CTT 3' |  |  |  |  |  |  |
| Me16                                                             | 5'TGA GTA CAA ACC GG ATA 3' | Em16 | 5'GAC TGC GTA CGA ATT GAT 3' |  |  |  |  |  |  |
| Me17                                                             | 5'TGA GTA CAA ACC GG TAG 3' | Em17 | 5'GAC TGC GTA CGA ATT ATG 3' |  |  |  |  |  |  |
| Me18                                                             | 5'TGA GTA CAA ACC GG CAT 3' | Em18 | 5'GAC TGC GTA CGA ATT AGC 3' |  |  |  |  |  |  |
| Me19                                                             | 5'TGA GTA CAA ACC GG TTG 3' | Em19 | 5'GAC TGC GTA CGA ATT ACG 3' |  |  |  |  |  |  |
| Me20                                                             | 5'TGA GTA CAA ACC GG TGT 3' | Em20 | 5'GAC TGC GTA CGA ATT TAG 3' |  |  |  |  |  |  |
| Me21                                                             | 5'TGA GTA CAA ACC GG TCA 3' | Em21 | 5'GAC TGC GTA CGA ATT TCG 3' |  |  |  |  |  |  |
| Me22                                                             | 5'TGA GTA CAA ACC GG GCA 3' | Em22 | 5'GAC TGC GTA CGA ATT GTC 3' |  |  |  |  |  |  |
| Me23                                                             | 5'TGA GTC CAA ACC GG ATG 3' | Em23 | 5'GAC TGC GTA CGA ATT GGT 3' |  |  |  |  |  |  |
| Me24                                                             | 5'TGA GTC CAA ACC GG GAT 3' | Em24 | 5'GAC TGC GTA CGA ATT CAG 3' |  |  |  |  |  |  |
| Me25                                                             | 5'TGA GTC CAA ACC GG GCT 3' | Em25 | 5'GAC TGC GTA CGA ATT CTG 3' |  |  |  |  |  |  |
| Me26                                                             | 5'TTC AGG GTG GCC GG ATG 3' | Em26 | 5'GAC TGC GTA CGA ATT CGG 3' |  |  |  |  |  |  |
| Me27                                                             | 5'TGG GGA CAA CCC GG CTT 3' | Em27 | 5'GAC TGC GTA CGA ATT CCA 3' |  |  |  |  |  |  |

1.2.4 数据统计与分析 SRAP-PCR 产物经聚丙烯酰胺凝胶电泳分离后,统计凝胶同一位置上 DNA 带的有和无,有带的记为"1",无带的记为"0",形成 0、1 数据矩阵。采用 POPGENE 软件对全部群体和各单个群体分别进行基因多样性指数(h)、Shannon 信息指数(I)、总基因多样度(Ht)、群体内的基因多样度(Hs)、种源遗传分化系数(Gst)和基因流(Nm)等遗传参数的分析<sup>[8]</sup>,利用 POPGENE 1.32 计算遗传距离,根据采种点的经纬度,在 http://jan. ucc. nau.edu/cvm/latlongdist. html 上计算任豆各种源之间的地理直线距离(m),运用 GenLAE 6.2 进行 Mantel 检验<sup>[9]</sup>,分析地理距离与遗传距离的相关性,分析时设定 9 999 次数据随机选择,利用 NTSYS 2.1 软件进行UPGMA 聚类分析。

### 2 结果与分析

#### 2.1 SRAP 扩增结果分析

对样本进行了 SRAP-PCR 分析,用筛选出来的 12 对 SRAP 引物扩增出 151 条带(图 1)。其中,106 条具有多态性。平均每个引物扩增的多态性条带为 8.83 条,各引物多态性条带占58.34%~81.18%,平均为 70.39%。多态性条带占比最高的引物组合为 Me9/Em14,达到了 81.18%,其次为 Me7/Em10 和 Me17/Em14,均达到了 76.92%。多态性条带占比最低的引物组合为 Me1/Em17,但也达到了 58.34% (表3)。



M:100 bp DNA ladder;任豆种源分别为1:广西靖西;2:广西都安;3:广西罗城;4:广西桂林;5:广东阳山;6:湖南江华;7:广西灵川;8:湖南通道;9:广西德保;10:广西平果;11:广西那坡;12:贵州册亨;13:云南西畴;14:云南麻栗坡;15:贵州梵净山;16:贵州罗甸;17:广东乐昌。

#### 图 1 各种源任豆 SRAP 引物扩增结果

Fig. 1 Amplified results of SRAP primers

表 3 任豆不同引物组合的多态性条带

Tab. 3 Polymorphic bands of different primer combinations of *Zenia insignis* 

| 引物组合      | 多态性条带数量 | 多态性条带占比/% |
|-----------|---------|-----------|
| Me8/Em5   | 10      | 66.67     |
| Me9/Em6   | 8       | 61.54     |
| Me2/Em9   | 9       | 69.23     |
| Me3/Em9   | 8       | 66.67     |
| Me7/Em10  | 10      | 76.92     |
| Me9/Em14  | 9       | 81.18     |
| Me17/Em14 | 10      | 76.92     |
| Me2/Em15  | 6       | 66.67     |
| Me2/Em16  | 10      | 74.42     |
| Me1/Em17  | 7       | 58.34     |
| Me24/Em21 | 11      | 73.33     |
| Me16/Em21 | 8       | 72.73     |
| 平均值       | 8.83    | 70.39     |

从表 4 可以看出,任豆 17 个种源的多态位点比率为 38.96% ~72.73%,平均为 59.66%。其中贵州册亨种源的多态位点比率最高(72.73%),广西灵川种源的最低(38.96%)。由此表明:任豆种源间具有较高的多态位点比率,在种源内也存在较丰富的遗传多样性。种源内遗传多样性丰富有利于任豆对环境变化的适应。

表 4 不同种源任豆的多态位点

Tab. 4 Polymorphic loci for *Zenia insignis* from different provenances

| -     |       |          |
|-------|-------|----------|
| 种源    | 多态位点数 | 多态位点比率/% |
| 广西靖西  | 75    | 58.44    |
| 广西都安  | 77    | 61.04    |
| 广西罗城  | 77    | 61.04    |
| 广西桂林  | 84    | 70.13    |
| 广东阳山  | 77    | 61.04    |
| 湖南江华  | 72    | 54.55    |
| 广西灵川  | 60    | 38.96    |
| 湖南通道  | 71    | 53.25    |
| 广西德保  | 73    | 55.84    |
| 广西平果  | 75    | 58.44    |
| 广西那坡  | 78    | 62.34    |
| 贵州册亨  | 86    | 72.73    |
| 云南西畴  | 80    | 64.94    |
| 云南麻栗坡 | 78    | 62.34    |
| 贵州梵净山 | 70    | 51.95    |
| 贵州罗甸  | 77    | 61.04    |
| 广东乐昌  | 81    | 66.23    |
| 平均值   | 75.8  | 59.66    |

#### 2.2 任豆种源的遗传分化

各个种源的遗传多样性水平高低,可采用基因多样性指数(h)和 Shannon 信息指数(I)2 种表型多样性指数来衡量。从表 5 可以看出:不同种源任豆的基因多样性指数差异明显。其中贵州册亨种源的基因多样性指数最高,达 0. 313 3,广西灵川种源的基因多样性指数最低,为 0. 175 5,全部种源间的基因多样性指数为 0. 285 8。不同种源任豆的 Shannon 信息指数以贵州册亨种源最高,达 0. 450 2,以广西灵川种源的 Shannon 信息指数最低,为 0. 249 4,全部

种源间的 Shannon 信息指数为 0. 418 6。综合基因多样性和 Shannon 2 个指数,贵州册亨和广西桂林种源的遗传多样性水平较高,而贵州梵净山和广西灵川种源的遗传多样性水平较低,这可能与采种地的任豆林分布密集程度相关。此外,从表 5 还可以看出:17 个种源任豆的观测等位基因数(na)为 1. 389 6~1. 727 3,平均达 1. 600 0,种源水平的 na 为 1. 724 9;有效等位基因数(ne)为 1. 330 5~1. 577 3,平均达1. 471 3,种源水平的 ne 为 1. 502 6。以上分析结果均反映出任豆种源具有一定的遗传多样性。

表 5 各种源任豆的遗传多样性

Tab. 5 Genetic diversities in Zenia insignis from different provenances

| Tab. 5 Genetic diversities in Zena unsignis from uniterent provenances |             |             |            |                    |  |  |  |  |  |
|------------------------------------------------------------------------|-------------|-------------|------------|--------------------|--|--|--|--|--|
| 种源                                                                     | 观测等位基因数(na) | 有效等位基因数(ne) | 基因多样性指数(h) | Shannon 信息指数 $(I)$ |  |  |  |  |  |
| 广西靖西                                                                   | 1.584 4     | 1.488 9     | 0.260 8    | 0.371 5            |  |  |  |  |  |
| 广西都安                                                                   | 1.610 4     | 1.486 3     | 0.263 6    | 0.378 6            |  |  |  |  |  |
| 广西罗城                                                                   | 1.610 4     | 1.445 4     | 0.249 0    | 0.3626             |  |  |  |  |  |
| 广西桂林                                                                   | 1.701 3     | 1.573 0     | 0.308 0    | 0.440 5            |  |  |  |  |  |
| 广东阳山                                                                   | 1.610 4     | 1.486 3     | 0.263 6    | 0.378 6            |  |  |  |  |  |
| 湖南江华                                                                   | 1.545 5     | 1.424 4     | 0.232 0    | 0.3344             |  |  |  |  |  |
| 广西灵川                                                                   | 1.389 6     | 1.330 5     | 0.175 5    | 0.249 4            |  |  |  |  |  |
| 湖南通道                                                                   | 1.532 5     | 1.459 8     | 0.2427     | 0.344 1            |  |  |  |  |  |
| 广西德保                                                                   | 1.558 4     | 1.457 3     | 0.245 6    | 0.3512             |  |  |  |  |  |
| 广西平果                                                                   | 1.584 4     | 1.447 9     | 0.246 1    | 0.355 6            |  |  |  |  |  |
| 广西那坡                                                                   | 1.623 4     | 1.4919      | 0.267 5    | 0.3848             |  |  |  |  |  |
| 贵州册亨                                                                   | 1.727 3     | 1.577 3     | 0.3133     | 0.450 2            |  |  |  |  |  |
| 云南西畴                                                                   | 1.649 4     | 1.482 5     | 0.268 0    | 0.389 2            |  |  |  |  |  |
| 云南麻栗坡                                                                  | 1.623 4     | 1.478 2     | 0.262 6    | 0.379 5            |  |  |  |  |  |
| 贵州梵净山                                                                  | 1.519 5     | 1.379 2     | 0.2119     | 0.308 7            |  |  |  |  |  |
| 贵州罗甸                                                                   | 1.610 4     | 1.506 8     | 0.271 0    | 0.3865             |  |  |  |  |  |
| 广东乐昌                                                                   | 1.662 3     | 1.522 2     | 0.284 1    | 0.4087             |  |  |  |  |  |
| 种源间                                                                    | 1.724 9     | 1.502 6     | 0.285 8    | 0.418 6            |  |  |  |  |  |

任豆种源的遗传多样性相关指数显示,任豆所有种源总基因多样度(Ht)为0.3826,种源群体内的基因多样度(Hs)为0.2568,种源遗传分化系数(Gst)为0.3288。这表明任豆种源内存在一定的遗传多样性。此外,任豆的基因流(Nm)为1.0207,与其他异花授粉植物相比偏小,说明任豆种源间存在一定的基因交流,但偏少。种源间的遗传变异占总遗传变异的32.88%,67.12%的遗传变异发生在种源内的个体间,表明任豆种源间存在一定的遗传分化,但遗传变异主要还是来源于种源内。

#### 2.3 任豆种源间遗传一致度和遗传距离

遗传一致度可用来判断种源之间的亲缘关系。 当2个种源无亲缘关系时,遗传一致度为0,当2个 群体完全一样时,遗传一致度为1。为了进一步了解 任豆种群间的遗传关系,表6列出了17个任豆种源

http://xuebao.scau.edu.cn

的遗传一致度和遗传距离。从表 6 可知,广西德保种源与云南西畴种源的遗传一致度最小,仅为 0.703 1,二者遗传距离最大,为 0.352 3。而广西都安与广西罗城、云南西畴与云南麻栗坡种源的遗传一致度最大,达 0.886 5,遗传距离最小,为 0.120 5。种源之间的亲缘关系虽然比较近,但仍然存在一定程度的遗传差异和遗传分化。

运用 IBD 软件对任豆遗传距离及地理距离进行 Mantel 检验,结果表明,任豆种源间遗传距离与地理 距离之间的相关性达到极显著水平 (r=0.3125, P=0.001)。

#### 2.4 任豆种源聚类分析

根据 Nei<sup>[8]</sup> 的遗传距离,采用 UPGMA 聚类分析,绘制任豆种源遗传关系聚类图(图 2)。以遗传一致度为 0.78 为界,可以将 17 个种源分为 3 大类。

第1类来自广西、贵州,包含有广西靖西、都安、罗城等种源和贵州罗甸、梵净山、册亨种源;第2类来自广东、湖南和广西,包括广东阳山、乐昌种源,湖南江

华和通道种源,以及广西灵川种源;第3类仅来自云南,包括云南西畴和麻栗坡种源。从聚类结果可以看出,地理距离相近的种源几乎都聚在了同一类群。

表 6 任豆种源间的遗传一致度和遗传距离1)

Tab. 6 Genetic identity degrees and genetic distances between Zenia insignis from different provenances

| The control and the provinces are assumed to the control and the control provinces |         |          |         |         |          |         |         |          |         |         |          |         |         |         |         |         |         |
|------------------------------------------------------------------------------------|---------|----------|---------|---------|----------|---------|---------|----------|---------|---------|----------|---------|---------|---------|---------|---------|---------|
| 种源                                                                                 | 1       | 2        | 3       | 4       | 5        | 6       | 7       | 8        | 9       | 10      | 11       | 12      | 13      | 14      | 15      | 16      | 17      |
| 1                                                                                  |         | 0.847 2  | 0.8384  | 0.733 6 | 0.755 5  | 0.746 7 | 0.803 5 | 0.807 9  | 0.825 3 | 0.847 2 | 0.825 3  | 0.768 6 | 0.7467  | 0.720 5 | 0.7904  | 0.803 5 | 0.742 4 |
| 2                                                                                  | 0.165 9 |          | 0.8865  | 0.799 1 | 0.7598   | 0.8122  | 0.764 2 | 0.7948   | 0.8297  | 0.834 1 | 0.8122   | 0.799 1 | 0.7162  | 0.7162  | 0.7948  | 0.8079  | 0.772 9 |
| 3                                                                                  | 0.176 2 | 0.120 5  |         | 0.8428  | 0.751 1  | 0.8297  | 0.772 9 | 0.768 6  | 0.821 0 | 0.834 1 | 0.855 9  | 0.799 1 | 0.742 4 | 0.7162  | 0.777 3 | 0.755 5 | 0.755 5 |
| 4                                                                                  | 0.3098  | 0. 224 2 | 0.171 0 |         | 0.777 3  | 0.8035  | 0.764 2 | 0.751 1  | 0.742 4 | 0.755 5 | 0.8122   | 0.8166  | 0.733 6 | 0.7162  | 0.768 6 | 0.729 3 | 0.7729  |
| 5                                                                                  | 0.2804  | 0. 274 7 | 0.2862  | 0.2519  |          | 0.8603  | 0.777 3 | 0.799 1  | 0.755 5 | 0.768 6 | 0.738 0  | 0.751 1 | 0.8079  | 0.8166  | 0.7817  | 0.733 6 | 0.8646  |
| 6                                                                                  | 0.292 1 | 0.2080   | 0.1867  | 0.2188  | 0.150 5  |         | 0.7948  | 0.825 3  | 0.7729  | 0.8122  | 0.7729   | 0.777 3 | 0.7642  | 0.799 1 | 0.799 1 | 0.742 4 | 0.8122  |
| 7                                                                                  | 0.2188  | 0. 268 9 | 0.257 6 | 0.2689  | 0. 251 9 | 0.2297  |         | 0.847 2  | 0.7948  | 0.738 0 | 0.733 6  | 0.738 0 | 0.707 4 | 0.724 9 | 0.7948  | 0.7904  | 0.764 2 |
| 8                                                                                  | 0.213 4 | 0. 229 7 | 0.263 2 | 0.2862  | 0.224 2  | 0.1920  | 0.165 9 |          | 0.8079  | 0.777 3 | 0.720 5  | 0.7948  | 0.738 0 | 0.755 5 | 0.7904  | 0.7948  | 0.803 5 |
| 9                                                                                  | 0.1920  | 0.1867   | 0.1973  | 0.297 9 | 0.2804   | 0.257 6 | 0.2297  | 0.2134   |         | 0.855 9 | 0.7729   | 0.777 3 | 0.703 1 | 0.738 0 | 0.799 1 | 0.7948  | 0.803 5 |
| 10                                                                                 | 0.165 9 | 0.1814   | 0.1814  | 0.2804  | 0.2632   | 0.2080  | 0.303 8 | 0.2519   | 0.155 6 |         | 0.8559   | 0.764 2 | 0.7162  | 0.7162  | 0.786 0 | 0.8079  | 0.7904  |
| 11                                                                                 | 0.1920  | 0.2080   | 0.155 6 | 0.2080  | 0.303 8  | 0.257 6 | 0.3098  | 0.327 8  | 0.257 6 | 0.155 6 |          | 0.803 5 | 0.7467  | 0.720 5 | 0.738 0 | 0.7598  | 0.724 9 |
| 12                                                                                 | 0.263 2 | 0. 224 2 | 0.2242  | 0.2026  | 0.2862   | 0.2519  | 0.303 8 | 0. 229 7 | 0.2519  | 0.268 9 | 0.2188   |         | 0.7948  | 0.733 6 | 0.7948  | 0.8079  | 0.7729  |
| 13                                                                                 | 0.292 1 | 0.333 9  | 0.2979  | 0.3098  | 0.2134   | 0.2689  | 0.346 1 | 0.303 8  | 0.3523  | 0.333 9 | 0. 292 1 | 0.2297  |         | 0.8865  | 0.7467  | 0.742 4 | 0.768 6 |
| 14                                                                                 | 0.327 8 | 0.333 9  | 0.333 9 | 0.333 9 | 0.2026   | 0.2242  | 0.3217  | 0.2804   | 0.303 8 | 0.333 9 | 0.327 8  | 0.3098  | 0.1205  |         | 0.7904  | 0.742 4 | 0.777 3 |
| 15                                                                                 | 0.235 2 | 0.2297   | 0.2519  | 0.263 2 | 0.246 3  | 0.2242  | 0.2297  | 0.235 2  | 0.2242  | 0.240 8 | 0.303 8  | 0.2297  | 0.292 1 | 0.235 2 |         | 0.847 2 | 0.777 3 |
| 16                                                                                 | 0.2188  | 0.2134   | 0.2804  | 0.3157  | 0.3098   | 0.2979  | 0.235 2 | 0. 229 7 | 0.2297  | 0.2134  | 0.2747   | 0.2134  | 0.2979  | 0.2979  | 0.165 9 |         | 0.7817  |
| 17                                                                                 | 0.2979  | 0.257 6  | 0.2804  | 0.257 6 | 0.145 5  | 0.2080  | 0.268 9 | 0.2188   | 0.2188  | 0.235 2 | 0.3217   | 0.257 6 | 0.263 2 | 0.2519  | 0.2519  | 0.246 3 |         |

1)对角线上方为遗传一致度,对角线下方为遗传距离;任豆种源分别为1:广西靖西,2:广西都安,3:广西罗城,4:广西桂林,5:广东阳山,6:湖南江华,7:广西灵川,8:湖南通道,9:广西德保,10:广西平果,11:广西那坡,12:贵州册亨,13:云南西畴,14:云南麻栗坡,15:贵州梵净山,16:贵州罗甸,17:广东乐昌。

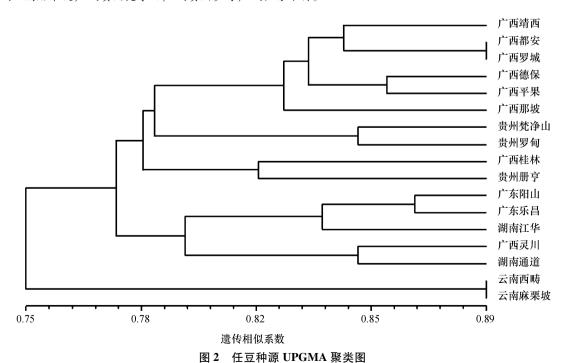



Fig. 2 Dendrogram based on genetic distances among Zenia insignis from different provenances

# 3 讨论与结论

SRAP-PCR 反应体系受诸多因素的影响。本试 验建立并优化了任豆 SRAP-PCR 反应体系,并进行 了任豆种源遗传多样性分析。本试验所得到的任豆 SRAP-PCR 扩增体系与麻疯树 Jatropha carcas [10]、油 茶 Camellia oleifera<sup>[11]</sup>、杨树 Populus adenopoda<sup>[12]</sup>等 的扩增体系及循环条件都有所不同,可能与不同材 料的基因组和材料本身的特殊性以及读带时主观性 等因素有关,因此需要对 PCR 体系进行优化,对任豆 模板 DNA、Mg<sup>2+</sup>、引物和 Taq 酶等关键条件水平进 行探索。研究发现, SRAP 对任豆 DNA 浓度的要求 不高,有一个较宽的适宜浓度范围。经过反复试验 后,根据电泳条带的数量、清晰度及背景颜色等条件 为所得条带综合评分。最终探索出的 25 μL 体系 为:10 × PCR buffer 2.5 μL、模板 DNA 80 ng、Mg<sup>2+</sup> 2.0 mmol·L<sup>-1</sup>、dNTP 0.225 mol·L<sup>-1</sup>、引物 0.3 μmol·L<sup>-1</sup>和 Taq DNA 聚合酶 1.25 U。该体系实现 了最佳扩增的目的。以广西平果、广西那坡、湖南通 道、湖南江华、广东阳山、贵州册亨的6个任豆种源 DNA 为模板, 选取引物 Me7/Em8 进行 SRAP-PCR 反 应体系稳定性验证,结果表明,筛选体系能很好地满 足任豆基因组 SRAP-PCR 扩增的要求, 且不同种源 间条带有明显差异。对筛选出的12对引物组合进 行 PCR 扩增,平均每对引物扩增出 8.83 条带,多态 带比率平均为70.39%,较好地显示了任豆的多 态性。

多态位点比率、Shannon 信息指数和基因多样性 指数作为评价种群内和种群间遗传多样性的指标, 其数值越大,表明种群的遗传多样性越高。据测定, 17个任豆种源平均多态位点比率达到59.66%,种 源间 Shannon 信息指数为 0.249 4~0.450 2, 平均为 0.3691,基因多样性指数在0.1755~0.3133,平均为 0.2568。与其他树种相比,任豆种群遗传多样性并 不高。例如,枫香 Liquidambar formosana、木荷 Schima superba、油松 Pinus tabuliformis、蜡梅 Chimonanthus praecox 群体多态位点比率分别为 87.41%、90.02%、 91.67%、88.70%<sup>[13]</sup>。此外,近几年基于 SPRAP 分子 标记的木本植物遗传多样性研究结果表明:红椎 Castanopsis hystrix 多态性比率为 94.89% [13], 小果油 茶 Camellia meiocarpa 多态性比率和 Shannon 信息指 数分别为84.96%~95.58%和0.4732~0.5676[14]; 白花树 Styrax tonkinensis 在物种水平上的多态位点 比率为 91.0%, Shannon 表型多样性指数为 0.453 6<sup>[15]</sup>;侧柏 Platycladus orientalis 的 Shannon 信

http://xuebao.scau.edu.cn

息指数为 0. 194 9<sup>[16]</sup>;大花黄牡丹 *Paeonia ludlowii* 多态位点比率为 90. 15%, Shannon 信息指数平均为 0. 252 1<sup>[17]</sup>;构树 *Broussonetia papyrifera* 多态位点比率为 72. 6%, Shannon 信息指数均值为 0. 227 5<sup>[18]</sup>。

不同种源的遗传多样性差异较大,而物种遗传 多样性水平决定着物种对选择的反应能力,是制定 物种遗传多样性保护与利用策略的必需信息。贵州 册亨和广西桂林种源的遗传多样性水平较高,这可 能与其生境多样复杂、地理隔离特殊等因素有关,从 而有利于遗传变异的积累。在开展任豆种质资源保 护中,应更加重视对贵州册亨和广西桂林等遗传多 样性水平较高种群的保护。

任豆种源间和种源内均存在显著的遗传变异。其中,种源间的遗传变异占总遗传变异的 32.88%,种源内的个体间遗传变异占 67.12%,说明任豆种源内个体间的遗传变异是主要的。Hamrick 等<sup>[19]</sup> 总结了 322 种木本植物的遗传结构,认为广布、异交且种子随风传播或鸟兽取食的木本植物,其群体内的遗传多样性比群体间更丰富。根据目前国内所报道的木本植物遗传多样性的研究结果,所有树种的遗传多样性主要来自种群内个体间。例如,麻疯树<sup>[10]</sup>、小果油茶<sup>[14]</sup>、白花树<sup>[15]</sup>、侧柏<sup>[16]</sup>和大花黄牡丹<sup>[17]</sup>等,都表明种群间的遗传多样性小于种群内个体间。因此,任豆遗传改良要注重优良种源选择,更要注重种源内个体的选择。

物种基因流是影响植物种群遗传结构的重要因 子[20],对物种形成及其适应性进化有积极的作用。 基因流越大,群体间花粉和种子互相迁移的频率越 高,则种源间相似性就越大。受限制的基因流使群 体间发生分化,因为每个群体中都会或多或少的独 立发生适应演变和遗传漂变。植物濒危的原因是多 方面的, 遗传多样性贫乏可造成种群或物种难以适 应变化的环境,人为破坏和过度采伐也可能导致植 物濒危。任豆为国家二级保护植物,随着人类对天 然林的砍伐、破坏,导致任豆种群的片段化,降低了 种群间的基因交流,造成有效群体较小,种群间出现 遗传分化。一般认为,基因流有利于珍稀濒危植物的 保护, 当基因流 > 1 时, 基因流就可以防止种群之间 由遗传漂变引起的遗传分化, 当基因流 <1 时, 就会 产生遗传漂变,导致种群间遗传结构的变化。经估 算,任豆的基因流(Nm)为1.0207。与其他树种相 比,任豆基因流不高。例如,西伯利亚杏 Armeniaca sibirica 群体间的基因流为 3.836 0<sup>[21]</sup>, 花楸树 Zanthoxylum bungeanum 的基因流为 3.047 2<sup>[22]</sup>。由 于任豆种群间基因流不高,长期隔离会导致地理遗

传变异,虽然任豆种源间的遗传变异小于种群间,但仍然达到32.88%。

根据任豆种群间遗传一致度聚类结果,可将17 个种群大体分为3大类:第1类为广西和贵州种源: 第2类为广东、湖南和广西种源;第3类为云南种 源。基本上地理距离相近的种源聚为一类,地理格 局明显。地理距离和遗传距离的相关性错综复杂, 受植物的进化、分布格局等影响较大。很多植物的 遗传距离均与地理距离相关,如香果树 Emmenopterys henryi<sup>[23]</sup>、紫丁香 Syringa oblata <sup>[24]</sup>、西伯利亚杏<sup>[21]</sup> 和栓皮栎 Quercus variabilis<sup>[25]</sup>等。Mantel 检验表明, 任豆种群间的遗传距离和地理距离之间的相关性达 到极显著水平(r=0.3125,P=0.001)。这也解释 了任豆各种源类群地理格局明显的现象。3个种源 类群间所处地形差异较大,一定程度造成了地理隔 离。第1类群处于任豆分布区域高海拔地区,第2 类群基本处于海拔较低的平原地带,第3类群为云 南种源,与其他2类相距甚远,处于地理封闭状态。 由于西南山区的地形等特定的隔离机制阻碍了群体 间基因的交流,造成种群之间的差异。

#### 参考文献:

- [1] 何小勇. 翅荚木种源遗传多样性及其抗低温胁迫能力研究[D]. 长沙:中南林业大学, 2007.
- [2] 陈永密. 珍稀树种:翅荚木[M]. 福州:福建教育出版社,1989.
- [3] 侯伦灯,李玉曹,李平宇,等. 任豆树综合利用研究 [J]. 林业科学, 2010, 37(3):139-143.
- [4] 范霭萱,梁兆彦,宋喜宣. 可开发的木本饲料[J]. 广西 畜牧兽医, 1995, 11(2):20-23.
- [5] 郑学项,冯素萍,李维国. DNA 分子标记研究进展[J]. 安徽农业科学, 2009, 37(26);12420-12422.
- [6] 陈丽君,刘明骞,廖柏勇,等. 苦楝 SRAP-PCR 反应体系的建立及优化[J]. 华南农业大学学报,2015,36(3):104-108.
- [7] LI G, QUIROS C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 2001, 103 (103):455-461
- [8] NEI M. Molecular evolutionary genetics [M]. New York: Columbia University Press, 1987.

- [9] MANTEL N. The detection of disease clustering and a generalized regression approach [J]. Cancer Res, 1967, 27(2):209-220.
- [10] 沈俊岭,倪慧群,陈晓阳,等. 麻疯树遗传多样性的相关 序列扩增多态性(SRAP)分析[J]. 浙江林学院学报, 2010, 27(3):347-353.
- [11] 祝全东,张党权,李晓云,等. 油茶 SRAP 标记的 PCR 体系建立与优化[J]. 中南林业科技大学学报, 2010, 30 (3):57-62.
- [12] 谭碧玥,王源秀,徐立安. 杨树基因组 SRAP 扩增体系的 建立与优化[J]. 林业科技开发, 2009, 23(2);25-29.
- [13] 徐斌,张方秋,潘文,等. 我国红锥天然群体的遗传多样性和遗传结构[J]. 林业科学, 2013, 49(10):162-166.
- [14] 黄勇. 基于 SRAP 分子标记的小果油茶遗传多样性分析[J]. 林业科学, 2013, 49(3):43-50.
- [15] 李楠,柳新红,李因刚,等. 白花树天然群体的遗传多样性[J]. 林业科学, 2012, 48(11):49-56.
- [16] 王玉山,邢世岩,唐海霞,等. 侧柏种源遗传多样性分析 [J]. 林业科学, 2011, 47(2):90-96.
- [17] 唐琴,曾秀丽,廖明安,等. 大花黄牡丹遗传多样性的 SRAP 分析[J]. 林业科学, 2012, 48(1);70-76.
- [18] 刘志远,范卫红,沈世华. 构树 SRAP 分子标记[J]. 林业科学, 2009, 45(12):54-58.
- [19] HAMRICK J L, GODT M J W, SHERMAN-BRNYES S L. Factors influencing levels of genetic diversity in woody plant species [J]. New Forests, 1992, 42(6):95-124.
- [20] HAMRICK J L. Isozymes and the analysis of genetic structure in plant populations [C] //SOHIS D E, SOHIS P S. Isozymes in plant biology. London: Chapman and Hall, 1990:87-105.
- [21] 刘华波,王哲,刘君,等. 燕山山脉西伯利亚杏的遗传多样性和遗传结构[J]. 林业科学研究,2012,48(8):68-74.
- [22] 郑健,郑勇奇,张川红,等. 花楸树天然群体的遗传多样性研究[J]. 生物多样性, 2008, 16(6); 562-569.
- [23] 张文标,金则新,李钧敏. 濒危植物香果树自然居群遗传多样性的 RAPD 分析[J]. 浙江大学学报(农业与生命科学版),2007,33(1):61-67.
- [24] 明军,顾万春. 紫丁香天然群体遗传多样性的 AFLP 分析[J]. 园艺学报, 2006, 33(6):1269-1274.
- [25] 徐小林,徐立安,黄敏仁,等. 栓皮栎天然群体 SSR 遗传多样性研究[J]. 遗传, 2004, 26(5):683-688.

【责任编辑 李晓卉】