李清莹, 仲崇禄, 姜清彬, 等. 火力楠家系木材性状遗传变异与早期选择[J]. 华南农业大学学报, 2018, 39(4): 73-79.

火力楠家系木材性状遗传变异与早期选择

李清莹,仲崇禄,姜清彬,张 勇,陈 羽,魏永成,陈 珍 (中国林业科学研究院热带林业研究所/热带林业研究国家林业局重点实验室,广东广州 510520)

摘要:【目的】通过对火力楠 Michelia macclurei 家系材性遗传参数的估算及材性与生长性状的相关性分析,了解其材性的家系遗传变异规律,为火力楠优良家系选择和种质资源合理开发利用提供科学依据。【方法】以火力楠种源家系试验林中的 100 个家系为试验材料,对木材基本密度、纤维长度、纤维宽度和纤维长宽比 4 个材性性状的遗传变异规律进行分析。【结果】火力楠各木材性状在家系间存在极显著差异 (P<0.01),具有较大的选育潜力。木材基本密度、纤维长度、纤维宽度及纤维长宽比的变幅分别为 0.38~0.53 g·cm⁻³、0.65~0.91 mm、23.20~28.87 μm 和 22.92~38.66,平均值分别为 0.48 g·cm⁻³、0.79 mm、25.88 μm 和 30.74。性状相关分析表明,除纤维长度与胸径、材积呈不显著遗传相关外,各材性性状与生长性状显著相关,木材基本密度和纤维长度之间相关性不显著,可以独立选择。木材基本密度和纤维长度的单株遗传力分别为 0.374 和 0.372,均受高度遗传控制。纤维宽度和纤维长宽比的单株遗传力分别为 0.166 和 0.231,均受中度遗传控制。【结论】采用强度和中度 2 种选择方法,对材性优良家系进行选择,结合实际生产以及下一步的选育,中度选择更适合现有试验林的选择,共选出木材密度优良家系 52 个,纤维长度优良家系 44 个,共有家系 23 个,以此 23 个家系作为优良材性联合初选较为合适。

关键词:火力楠;家系;木材性状;木材基本密度;纤维形态;遗传变异;早期选择

中图分类号: S722.5 文献标识码: A

文章编号: 1001-411X(2018)04-0073-07

Genetic variations and primary selections of main wood properties among *Michelia macclurei* families

LI Qingying, ZHONG Chonglu, JIANG Qingbin, ZHANG Yong, CHEN Yu, WEI Yongcheng, CHEN Zhen (Research Institute of Tropical Forestry, Chinese Academy of Forestry/Key Laboratory of State Forestry Administration on Tropical Forestry Research, Guangzhou 510520, China)

Abstract: [Objective] To understand genetic variation characteristics and provide bases for superior families selection and germplasm resources reasonable exploitation and utilization in *Michelia macclurei* based on estimation of wood property genetic parameters among families and correlation analyses between wood properties and growth traits. [Method] Genetic variation characteristics of wood basic density, fiber length, fiber width and fiber length/width ratio were analyzed using 100 families in *M. macclurei* provenance family forest.

[Result] Timber characteristics among families existed significant differences (P<0.01) and had great selection potentials. The variation ranges of wood basic density, fiber length, fiber width and fiber length/width ratio among different provenances were 0.38-0.53 g·cm⁻³, 0.65-0.91 mm, 23.20-28.87 μ m and 22.92-38.66

收稿日期:2017-12-25 网络首发时间:2018-06-12

网络首发地址:http://kns.cnki.net/kcms/detail/44.1110.S.20180611.1417.022.html

作者简介: 李清莹 (1989—), 男, 博士研究生, E-mail: dongzeli06@163.com; 通信作者: 仲崇禄 (1961—), 男, 研究员, 博士, E-mail: zclritf@126.com; 姜清彬 (1982—), 男, 副研究员, 博士, E-mail: jiangqingbin@caf.ac.cn

基金项目:中央级公益性科研院所基本科研项目 (CAFYBB2016SZ002); "十三五"国家重点研发计划子课题 (2017YFD0601101-7); 林业公益性行业科研专项 (201204304-02)

respectively, with mean values of 0.48 g·cm⁻³、0.79 mm、25.88 µm and 30.74 respectively. The genotypic and phentypic correlation analyses showed that the wood properties of each family were significantly correlated with the growth traits, except no significant genotypic correlation between fiber length and diameter at breast height or volume. The correlation between wood density and fiber length was not significant, and these two traits could be selected independently. The individual heritability of wood basic density and fiber length were 0.374 and 0.372 respectively, both under highly genetic control. The individual heritability of fiber width and fiber length/width ratio were 0.166 and 0.231 respectively, both under moderate genetic control. [Conclusion] The superior wood property families are selected through intense and moderate selection methods. In consideration of actual production and following breeding, the moderate selection is more suitable for the present experimental forest. This study selected 52 superior wood basic density families, 44 superior fiber length families, and 23 shared families. These 23 families are more suitable as suporior materials for combined primary selection.

Key words: *Michelia macclurei*; family; wood property; wood basic density; fiber morphology; genetic variation; early selection

随着各国对森林资源的保护日益加强,进口木 材尤其是进口珍贵木材的难度不断加大[1],因此,大 力发展优良乡土树种是增加木材资源储备的战略 需要,是解决木材供需矛盾的有效手段之一[2-3]。火 力楠 Michelia macclurei 又称醉香含笑,属木兰科含 笑属常绿乔木,是我国南方重要的乡土阔叶珍贵用 材和多功能高效益树种,并且是培育大径级乡土珍 贵阔叶用材的优质速生树种,其木材易加工,切面 光滑,纹理直,结构细,光泽美观耐用,是建筑、家具 和工艺品制作的优质用材,也可用于纸浆高级造 纸[4]。多年来,火力楠在南方各林区得到广泛种植, 在乡土珍贵用材和大径级用材人工林培育等方面 具有很大潜力。目前,火力楠研究较多地集中在培 育[5-7]及繁育[8]等方面,但对其木材特性研究[9],尤其 在材性遗传变异与选择关系的研究方面鲜有报道, 然而火力楠材性的选择研究对指导火力楠良种选 育及木材利用具有重要作用。材性决定木材的经济 价值,直接影响到木材的加工和利用[10],并且材性 性状的遗传具有稳定性,所以在林木早期选择中要 特别强调木材质量,以便取得良好的选择效果[11]。 在材性指标中,木材基本密度不但与木材质量直接 相关,而且还对纸浆产量和品质具有一系列的影 响[12]:纤维特性是决定纸浆质量的重要指标[13]。本 研究测定了4年生火力楠种源家系试验林中参试 家系的木材基本密度和纤维形态(纤维长、纤维宽 和纤维长宽比),开展遗传参数估算,以便揭示其家 系遗传变异规律,为火力楠早期选择、材性育种和 种质资源的合理开发利用提供科学依据。

1 材料与方法

1.1 试验地与材料

试验材料取自火力楠种源家系试验林,该林地位于广东省西江林业局良洞迳林场的南方乡土珍贵树种火力楠研究与示范基地 (112°10′E,22°44′N),为2013年营造,共有家系100个(种源15个),家系信息见表1。试验采用随机完全区组设计,每小区10株,重复3次,株行距2m×3m。依据4年生观测的生长数据(树高、胸径,也用于相关性分析),每个家系每个重复选取2株平均木,取样时统一用5mm生长锥,于胸径处从北向南钻取木芯条。

1.2 试验方法

木材基本密度 (BD) 采用饱和排水法测定,参照 GB/T 1933—2009^[14]。纤维形态的测定:木芯经离析后,用 FQA 纤维质量分析仪 (加拿大 OpTest)测量纤维长度 (FL)、纤维宽度 (FW) 以及纤维长宽比 (LTW),每个样品测试纤维 1 万根。

1.3 选择方法

强度选择:采用标准差选择方法,即以中选家 系均值大于或等于总均值1个标准差的丰产性优 良标准为基准;

中度选择:根据 Duncan's 多重比较结果,根据组内差异不显著的原理,对应地选择属于 a 组的所有家系,并且家系的性状表现均值要高于总体性状均值,按照此基准进行中度选择^[15]。

1.4 统计分析方法

利用 SAS 8.0 软件对各性状测定值进行 Duncan's 多重比较, 遗传参数的估算使用 ASReml-http://xuebao.scau.edu.cn

表1	火力楠家系信息
----	---------

Table 1	Information	of Michelia	macclurei	families
I abic i	muumauum	oi michellu	mucciurei	rammes

种源编号	种源名称	采种地点	经度(E)	纬度(N)	海拔/m	家系数量	家系编号
1	信宜1	广东信宜市	110°45′	22°26′	294	9	3、5~8、14~17
2	信宜2	广东信宜市	110°52′	22°30′	208	11	1~2、9~13、19~22
3	玉林1	广西玉林市	110°18′	22°19′	185	11	90~92、110~112、114、123、126~128
4	高州1	广东高州市	110°44′	22°08′	85	7	25、26、29、32~34、130
5	高州2	广东高州市	110°45′	22°01′	63	7	36、38~41、52、53
6	高州3	广东高州市	110°47′	22°11′	257	6	44、45、47~50
7	钦州1	广西钦州市	109°28′	22°07′	62	7	57~59、61、62、64、65
8	钦州2	广西钦州市	108°35′	21°58′	14	4	66~69
9	上思	广西上思县	107°52′	22°04′	284	5	70、71、74、75、78
10	凭祥	广西凭祥市	106°46′	22°07′	411	9	79、81~85、87~89
11	玉林2	广西玉林市	110°34′	23°00′	143	6	93~96、107、108
12	玉林3	广西玉林市	110°23′	22°58′	276	7	98、100~102、104~106
13	玉林4	广西玉林市	109°43′	22°55′	164	6	115~120
14	海南	海南儋州市	109°43′	19°21′	149	2	54、55
15	云浮	广东云浮市	112°12′	22°59′	146	3	131~133

R 3.0^[16], 具体计算使用的模型与公式如下: 方差分析的统计模型为^[17-18]:

$$y_{ijkl} = \mu + R_i + P_j + F_{jk} + M_{ijk} + \sigma_{ijkl}, \tag{1}$$

式中, y_{ijkl} 为第 i 区组第 j 种源第 k 家系第 l 个单株的观察值; μ 为总平均值,固定效应; R_i 为第 i 区组的固定效应值 $^{[16]}$; P_j 为第 j 种源的随机效应值; F_{jk} 为第 j 种源第 k 家系的随机效应值; M_{ijk} 为第 i 区组与第 j 种源第 k 家系的随机互作效应; σ_{ijkl} 为个体的机误(由于种源与区组的效应不显著,所以本模型去除种源与区组的效应)。

单株遗传力 (h_S^2) 和家系遗传力 (h_F^2) 为:

$$h_{\rm S}^2 = 3\sigma_{\rm F}^2 / (\sigma_{\rm E}^2 + \sigma_{\rm RF}^2 + \sigma_{\rm F}^2 + \sigma_{\rm P}^2),$$
 (2)

$$h_{\rm F}^2 = \sigma_{\rm F}^2 / (\sigma_{\rm E}^2 / bn + \sigma_{\rm RF}^2 / b + \sigma_{\rm F}^2),$$
 (3)

遗传变异系数 (GCV,%) 和表型变异系数 (PCV,%)为:

$$GCV = \sqrt{\sigma_F^2}/\bar{X} \times 100\%, \qquad (4)$$

$$PCV = \sqrt{\sigma_{\rm Fh}^2}/\bar{X} \times 100\% , \qquad (5)$$

式 (2)~(5) 中, σ_P^2 为种源方差分量, σ_F^2 为家系方差分量, σ_{RF}^2 为家系与区组互作方差分量, σ_E^2 误差方差分量,表型方差分量 (σ_{Fh}^2) 计算公式为: $\sigma_{Fh}^2 = \sigma_P^2 + \sigma_F^2 + \sigma_{RF}^2 + \sigma_E^2$, \bar{X} 是性状的平均值,n表示区组,b 为区组内样本数。

性状间的遗传相关系数 ($r_{
m G}$) 和表型相关系数 http://xuebao.scau.edu.cn

(r_p) 计算公式为:

$$r_{\rm G} = \operatorname{Cov}_{\rm G}(x, y) / \sqrt{\sigma_{\rm G} x^2 \sigma_{\rm Gy}^2},$$
 (6)

$$r_{\rm P} = \operatorname{Cov}_{\rm P}(x, y) / \sqrt{\sigma_{\rm P} x^2 \sigma_{\rm P} y^2}, \tag{7}$$

式 (6)~(7) 中, σ_{Gx}^2 为性状 x 的遗传方差分量, σ_{Gy}^2 为性状 y 的遗传方差分量, $Cov_G(x, y)$ 为性状 x 与 y 间的遗传协方差; σ_{Px}^2 为性状 x 的表型方差分量, σ_{Py}^2 为性状 y 的表型方差分量, σ_{Py}^2 为性状 y 的表型方差分量, σ_{Py}^2 为性状 y 的表型协方差。

2 结果与分析

2.1 火力楠家系材性分析

对火力楠家系的材性进行方差分析,所有相关材性性状在家系间均存在极显著差异 (P<0.01),体现出较强的选择潜力 (表 2),表 2 只列出各性状排名前 15 和最后的 5 个家系。由表 2 可知,各家系木材基本密度的变幅为 0.38~0.53 g·cm⁻³,平均值为 0.48 g·cm⁻³,木材基本密度最大的家系为 116,最小的家系为 110;纤维长度、宽度及长宽比的变幅分别为 0.65~0.91 mm、23.20~28.87 μm 和 22.92~38.66,其均值分别为 0.79 mm、25.88 μm 和 30.74。家系 107 的纤维长度最长,家系 67 不仅纤维长度最短,纤维长宽比也最小,纤维长宽比最大的为家系 55;家系 1 的纤维最宽,而家系 55 的纤维宽度最小。木材基本密度超过其平均值的家系共 52 个,而在纤

表 2 火力楠家系材性性状比较1)

Table 2 Wood property comparisons of Michelia macclurei families

	1	基本密度(BD)	:	纤维长度(FL)		纤维宽度(FW)	纤	维长宽比(LTW)
排名 -	家系	$BD/(g \cdot cm^{-3})$	家系	FL/mm	家系	FW/μm	家系	LTW
1	116	0.53±0.02a	107	0.91±0.04a	1	28.87±0.22a	55	38.66±0.00a
2	94	$0.53\pm0.01ab$	55	$0.90\pm0.00ab$	67	28.45±0.55ab	11	$36.40 \pm 1.33ab$
3	55	0.52±0.00abc	11	0.89 ± 0.02 abc	110	28.33±0.55abc	36	35.88±2.72abc
4	75	0.52±0.02abcd	36	0.88 ± 0.04 abcd	81	27.83±0.37abcd	10	34.57±1.44abcd
5	25	0.52±0.02abcd	16	0.88±0.03abcde	62	27.77±0.84abcde	133	34.50±0.77abcd
6	16	0.52±0.01abcd	7	0.88±0.02abcde	106	27.66±1.21abcdef	2	34.44±0.58abcd
7	130	$0.52 \pm .0.03$ abcd	74	0.85 ± 0.05 abcdef	104	27.57±0.81abcdefg	49	33.97±2.09abcde
8	78	0.51±0.01abcde	2	0.85 ± 0.01 abcdefg	101	27.43±0.99abcdefg	15	33.80 ± 1.39 abcdef
9	67	0.51 ± 0.00 abcdef	22	0.85 ± 0.03 abcdefgh	105	27.40±1.21abcdefgh	16	33.76±1.72abcdef
10	40	0.51 ± 0.02 abcdef	88	0.84 ± 0.05 abcdefgh	107	27.20±0.61abcdefghi	107	33.47±0.97abcdefg
11	45	0.51 ± 0.00 abcdefg	10	0.84 ± 0.03 abcdefgh	14	27.18±0.20abcdefghi	89	33.31±2.18abcdefg
12	54	0.51 ± 0.01 abcdefg	50	0.84 ± 0.02 abcdefgh	114	27.18±0.36abcdefghi	40	33.17±1.90abcdefg
13	36	0.51 ± 0.02 abcdefgh	21	0.84 ± 0.04 abcdefgh	7	27.18±0.54abcdefghi	3	33.13±1.29abcdefg
14	15	0.51 ± 0.01 abcdefgh	58	0.84 ± 0.04 abcdefgh	65	27.17±0.54abcdefghi	22	33.04±2.72abcdefg
15	41	0.51 ± 0.01 abcdefgh	108	0.84±0.01abcdefghi	118	27.10±0.58abcdefghij	119	32.93±1.18abcdefg
:			:		:		÷	
96	81	0.43 ± 0.01 nopqr	41	0.71 ± 0.03 ijklm	116	24.08±0.31klmn	1	26.39±0.58hijkl
97	6	0.42 ± 0.01 opqr	110	0.70 ± 0.03 jklm	130	24.00±1.26klmn	14	25.14±0.73ijkl
98	85	0.42±0.03pqr	14	0.68 ± 0.02 klm	15	23.90±0.47lmn	110	24.80±0.62jkl
99	69	0.41±0.01qr	104	0.66±0.02lm	133	23.75±0.82mn	104	23.91±1.23kl
100	110	0.38±0.01r	67	0.65±0.06m	55	23.20±0.00n	67	22.92±2.611
平均值		0.48±0.037		0.79±0.078		25.88±1.76		30.74±3.89

1)表中数据为平均值±SE;同列数据后,凡是具有一个相同小写字母者表示在0.05水平上差异不显著(Duncan's 法)

维长度、纤维宽度以及纤维长宽比上超过其平均值的分别有44、49和49个家系。

2.2 材性遗传参数估算

火力楠材性性状的方差分量以及遗传和表型变异系数、单株和家系遗传力等参数估算结果见表3。造林4年后,在所测定的4个材性指标中,木材基本密度的单株遗传力最高,为0.374,纤维长度次之,为0.372。然而,在家系遗传力方面,纤维长度又高于木材基本密度,为0.473。纤维宽度单株遗传力与家系遗传力均最小,分别为0.166和0.225。各性状的家系遗传力均大于单株遗传力。材性性状的家系遗传和表型变异系数分别为1.590%~3.512%和6.779%~12.643%,表型变异系数均高于遗传变异系数。

2.3 火力楠材性与生长性状的相关性分析

对火力楠的材性与生长性状间进行表型和遗传相关分析,结果见表 4。遗传相关系数中,各材性

性状除纤维长度与胸径、材积呈不显著遗传相关外,其余均与生长性状呈极显著遗传相关,其中纤维宽度与生长性状呈负相关,其他呈正相关;表型相关系数中,各材性性状与生长性状均呈极显著或显著相关,其中纤维宽度也同遗传相关一样,与生长性状呈负相关。在材性性状之间,木材基本密度与纤维长度的表型和遗传相关性不显著,而与纤维宽度在表型和遗传上均呈极显著负相关。

2.4 火力楠家系材性的联合选择

在林木材性改良中,希望获得密度大且纤维长的优良材料。本研究中木材基本密度与纤维长度相关性不显著,因此对木材基本密度与纤维长度进行单独选择。根据强度选择的标准,火力楠木材基本密度中选7个家系,纤维长度中选6个家系,二者共有的家系2个,具体见表5。此方法所选家系材料的现实增益与遗传增益均较高,但选择强度过大,中选家系偏少。考虑到这是对火力楠家系材料

http://xuebao.scau.edu.cn

表 3 火力楠材性的遗传参数¹⁾

•	properties
	rei wood
•	<i>chetta maccluret</i> wood prope
:	ıchelia
•	ot Mich
	parameters
,	Genetic p
E	Table 3

			•					
性状	$\sigma_{ m P}^2$	σ_{F}^2	$\sigma_{ m RF}^2$	${\sigma_{ m E}}^2$	QCV%	PCV/%	$h_{\rm S}^2$	$h_{ m F}^2$
木材基本密度	$0.084a\pm0.066a$	$0.173a\pm0.089a$	$0.377a\pm0.104a$	$0.757a\pm0.070a$	2.740±5.553	7.769±10.674	0.374 ± 0.186	0.408 ± 0.142
纤维长度	$0.298a\pm0.232a$	$0.756a\pm0.315a$	$0.014a\pm0.380a$	5.030a±0.452a	3.475±4.930	9.870 ± 10.315	0.372 ± 0.149	0.473 ± 0.121
纤维宽度	0.030 ± 0.070	0.171 ± 0.175	0.642 ± 0.246	2.264 ± 0.206	1.590 ± 5.157	6.779 ± 10.301	0.166 ± 0.167	0.225 ± 0.190
纤维长宽比	0.887 ± 0.632	1.185 ± 0.808	1.769 ± 1.084	11.521±1.047	3.512 ± 4.994	12.643 ± 10.498	0.231 ± 0.155	0.321 ± 0.164

1)表中数据为平均值±SE;a;数值×10-3

表 4 材性和生长性状间的相关分析"

		Table 4	Table 4 Correlation analyses between wood properties and growth traits	veen wood properties an	d growth traits		
性状	林高	胸径	材积	木材基本密度	纤维长度	纤维宽度	纤维长宽比
屋 屋 屋		0.815±0.066**	0.851±0.055**	0.483±0.145**	0.150±0.192**	-0.611±0.176**	0.426±0.177**
胸径	$0.652\pm0.029**$		%*800.0±686.0	$0.360\pm0.139**$	0.221 ± 0.172	$-0.560\pm0.155**$	$0.438\pm0.156**$
材积	$0.775\pm0.020**$	$0.945\pm0.005**$		$0.428\pm0.147**$	0.173 ± 0.189	$-0.576\pm0.174**$	$0.417\pm0.174**$
木材基本密度	$0.135\pm0.052**$	$0.194\pm0.053**$	$0.171\pm0.051**$		0.139 ± 0.187	$-0.579\pm0.154**$	$0.393\pm0.169*$
纤维长度	$0.159\pm0.049**$	$0.143\pm0.051**$	$0.148\pm0.049**$	0.042 ± 0.051		-0.263 ± 0.219	$0.877\pm0.054**$
纤维宽度	$-0.102\pm0.049*$	$-0.191\pm0.049**$	$-0.137\pm0.049**$	$-0.367\pm0.043**$	$-0.131\pm0.048**$		$-0.691\pm0.126**$
纤维长宽比	$0.174\pm0.048**$	$0.205\pm0.050**$	$0.181\pm0.049**$	$0.231\pm0.048**$	$0.846\pm0.014**$	$-0.634\pm0.029**$	

1) 表中数据为平均值±SE; 对角线上/下分别为遗传相关系数/表型相关系数;*表示P<0.05的显著水平,**表示P<0.01的极显著水平

Table 5 Comparisons of Michelia macclurei families selected by single trait and combined selection methods based on basic density (BD) and fiber length (FL)

表 5 基于木材基本密度 (BD) 和纤维长度 (FL) 的单性状选择及其联合选择火力楠家系特点的比较¹⁾

4 女子子	軍米	北松林		中选家系	均值	目	现实增益/%	} 禁止/%	遗传增益/%	益/%
心非刀(石	X H	□ # I # W □	个数	家系号	BD/(g·cm ⁻³) FL/mm	FL/mm	BD	FL	ВD	FL
强度选择	单选	BD	7	116, 94, 55, 75, 25, 16, 130	0.520		8.79		3.58	
	单选	FL	9	107, 55, 11, 30, 16, 7		0.889		12.39		5.86
	联合	BD+FL	7	55, 16	0.519	0.887	8.58	12.14	3.50	5.74
中度选择	单选	BD	52	116、94、55、75、25、16、130、78、67、40等	0.495		3.56		1.45	
	单选	FL	44	107、55、11、36、16、7、74、2、22、88等		0.830		4.93		2.33
	联合	BD+FL	23	55、16、50、10、132、36、21、52、93、74等	0.495	0.838	3.56	5.94	1.45	2.81

1) 木材基本密度选择时, 家系遗传力 h_{Γ}^2 =0.408, 平均值±SD为(0.478±0.037) g·cm³; 纤维长度选择时, 家系遗传力 h_{Γ}^2 =0.473, 平均值±SD为(0.791±0.078) mm

http://xuebao.scau.edu.cn

的初选,为保留下一世代育种群体具有较高的遗传基础,同时也为了让家系材性选择有更广的利用潜力,不至于使材性生产力等级下降,所以又采取了中度选择的标准进行选择,结果显示:中度选择标准的中选家系数量比强度选择多,但是遗传增益与现实增益均比前者小,其中现实增益下降的幅度比遗传增益下降的幅度大。按照中度选择的标准,木材基本密度高的中选家系 52 个,纤维长度长的中选家系 44 个,二者共有的家系 23 个,这样既体现了火力楠材性家系联合选择的效率,又便于进一步开展优良单株(无性系)选择。由于受篇幅所限,表5只列出中选家系的前10个。

3 讨论与结论

本文研究了 4 年生火力楠 100 个家系材性性状的遗传变异规律,各材性性状在不同家系间的差异均达到显著水平,说明家系间火力楠木材材性存在广泛变异,具有较大的选择潜力。本研究结果与木兰科的鹅掌楸 Liriodendron chinense^[15]以及含笑属的乐昌含笑 M. chapensis^[19-20]研究较一致,表明木兰科含笑属植物存在较广的遗传变异。

火力楠 4 年生家系木材基本密度的变幅为 0.38~0.53 g·cm⁻³, 平均值为 0.48 g·cm⁻³。在纤维形 态方面,纤维长度、宽度及长宽比的家系变幅分别 为 0.65~0.91 mm、23.20~28.87 μm 和 22.92~38.66, 其总体均值分别为 0.79 mm、25.88 μm 和 30.74。在 木材基本密度上,小于梁有祥等[9]测得火力楠的木 材基本密度 (0.546 g·cm⁻³), 但较木兰科鹅掌楸[12]的 木材基本密度 (0.397 g·cm⁻³) 大, 小于深山含笑 M. maudiae^[21]的基本密度 (0.503 g·cm⁻³); 纤维形态方 面, 其纤维长度小于鹅掌楸 (1.603 mm) 和深山含 笑 (1.050 mm), 其纤维宽度大于深山含笑 (17.35 μm)。 分析原因,除了参试材料和环境差异外,材性也会 因树种、年龄的不同而发生变化[22]。本研究对木材 材性的单株遗传力和家系遗传力进行估算,依据 Robinson等[23]对遗传力程度进行的分类,木材基本 密度和纤维长度受高度遗传控制,纤维宽度与纤维 长宽比受中度遗传控制,这也验证了材性性状遗传 相当稳定,选择效益高。本研究与鹅掌楸[15]、乐昌含 笑[19]遗传力的相关研究结果相似,但是其中标准误 值有的偏高,可能与本研究是单点试验,总体样本 量偏少有关。基于遗传参数的估算,木材密度、纤维 长度和纤维长宽比在家系间的遗传改良潜力大,通 过合适的选择强度,能获得较高的遗传增益和较好 的改良效果,这对火力楠材性育种以及改良计划有

重要意义。材性性状与生长性状的相关性分析对林木良种选育也具有非常重要的意义,有助于速生优质林木新品种的选育,极大地提高了良种选择的效率。相关分析表明火力楠材性性状与生长性状间呈显著遗传相关,除纤维宽度与生长性状呈负相关外,其余均呈显著正相关,从一定程度上可以选择出生长迅速又具有较好木材性状的优良家系。Williams等[24]对火炬松 Pinus taeda 的研究结论显示木材密度与树高呈显著的正遗传相关,与本研究结果较为相似,然而李斌等[15]对鹅掌楸的研究表明木材基本密度和纤维长度与生长性状间不存在显著遗传相关性,这可能与树种、林龄以及环境等因素有关。本试验材料为幼龄林,正处于生长发育旺盛期,后期随着树龄的增长,相关性可能会有所不同,因此后期需要继续做相关性的跟踪研究。

利用2种标准,即强度选择与中度选择对火力 楠材性优良家系进行选择,并计算了与之对应的遗 传增益,为林木工业材选择与利用提供实践指导和 科学依据。其中,强度选择时,选择强度较高,增益 较大,但中选家系数量偏少,虽然木材基本密度与 纤维长度联合选择的共有家系为2个,但总体来看 不利于进一步的多性状多用途选择利用。本研究的 主要目的是从试验走向良种生产,培育出更高水平 的品种。中度选择不仅能适当提高育种群体的遗传 基础,还具有较高的遗传增益。中度选择中,联合选 择入选的共有家系为23个,不仅木材基本密度较 高,而且纤维较长,在未来材性遗传改良中,利用价 值较高,可以从中结合生长性状选择优良单株,培 育无性系。所有中选的优良家系,在以后可以结合 生长、干形以及抗性等因子联合选择,有可能产生 多性状均较优良的家系材料。参考本研究中度选择 的结果,可对本试验林分阶段实施疏伐及选择。与 此同时,应该说明的是本文所研究的试验林树龄较 小,尚属于幼龄林,有一定的局限性,有待成龄后作 进一步验证。但众多研究表明木材性状在年度间相 关都很紧密,可进行早期选择[18,25],通过本文的研究 可以为火力楠的选育与遗传改良奠定基础,以此加 快推动火力楠在华南地区的推广应用。

造林后 4 年,参试的 100 个火力楠家系间木材基本密度、纤维长度、纤维宽度以及纤维长宽比等材性性状均存在极显著差异 (P<0.01)。木材基本密度和纤维长度受高度遗传控制,纤维宽度与纤维长宽比受中度遗传控制。相关分析表明,除纤维长度与胸径、材积呈不显著遗传相关外,材性性状与生长性状呈显著相关。采用 2 种选择方法,对材性优

http://xuebao.scau.edu.cn

良家系进行选择,结合实际生产以及下一步的选育,中度选择更适合现有试验林的选择。

参考文献:

- [1] 李维长. 世界森林资源保护及中国林业发展对策分析 [J]. 资源科学, 2000, 22(6): 71-76.
- [2] 冯建国, 周志春. 关于亚热带地区珍贵用材树种培育的几点思考[J]. 浙江林业科技, 2009, 29(1): 74-78.
- [3] 李洪帆. 中国的木材市场: 挑战与机遇并存[J]. 国际木业, 2012, 42(7): 9.
- [4] 姜清彬, 李清莹, 仲崇禄. 乡土珍贵树种火力楠的培育与综合利用[J]. 林业科技通讯, 2017(8): 3-7.
- [5] 邓如杰, 蔡始荣. 火力楠的育苗及造林技术解析[J]. 中国林业产业, 2016(8): 154.
- [6] 李清莹, 文珊娜, 姜清彬, 等. 不同营养元素缺乏对火力 楠幼苗生长的影响[J]. 生态学杂志, 2017, 36(3): 664-669.
- [7] JIANG Q B, LI Q Y, CHEN Y, et al. Arbuscular mycorrhizal fungi enhanced growth of *Magnolia macclurei* (Dandy) figlar seedlings grown under glasshouse conditions[J]. Forest Sci, 2017, 63(4): 441-448.
- [8] 梁一萍, 李志辉, 韦鼎英, 等. 火力楠不同天然种群种子 发芽速度差异[J]. 种子, 2016, 35(9): 78-81.
- [9] 梁有祥, 符韵林, 玉桂成, 等. 火力楠树皮率、心材率及密度研究[J]. 林业实用技术, 2010(7): 18-20.
- [10] 鲍甫成, 郝丙业, 杜浩, 等. 中国主要针叶树人工林与天然林及幼龄材与成熟材流体渗透性比较研究[G]//鲍甫成, 江泽慧. 短周期工业用材林木材性质研究: 第1集. 北京: 林业部科学技术委员会, 1994: 144-146.
- [11] ZOBEL B J, BUIJTENEN J P V. Wood variation: Its causes and control[M]. Berlin: Springer-Verlag, 1989.
- [12] 罗建中. 桉树杂种无性系纸浆材性状的遗传与环境效应研究[D]. 南京: 南京林业大学, 2012.
- [13] COHENW E. Pulp and paper from Australian eucalypts[M]. Rome: FAO corporate document repository, 2000.

- [14] 中国林业科学研究院木材工业研究所. 木材密度测定方法: GB/T 1933—2009[S].北京: 中国标准出版社, 2009.
- [15] 李斌, 顾万春, 夏良放, 等. 鹅掌楸种源材性遗传变异与选择[J]. 林业科学, 2001, 37(2): 42-50.
- [16] 林元震, 陈晓阳. R 与 ASReml-R 统计分析教程[M]. 北京: 中国林业出版社, 2014: 198-261.
- [17] HODGE G R, DVORAK W S. Genetic parameters and provenance variation of *Pinus caribaea* var. *hondurensis* in 48 international trials[J]. Can J For Res, 2001, 31(3): 496-511.
- [18] 黄少伟, 钟伟华, 黄华喜, 等. 尾叶桉种源/家系遗传变 异与早期选择研究[J]. 林业科学研究, 1999, 12(4): 428-432.
- [19] 王润辉, 张伟红, 郑会全, 等. 乐昌含笑多点种源试验与 优良种源选择[J]. 中南林业科技大学学报, 2015, 35(5): 16-21.
- [20] 植毓永, 王润辉, 郑会全, 等. 粤西乐昌含笑优良家系选择[J]. 现代农业科技, 2016(3): 177-178.
- [21] 黄慧, 黄小春, 王小东, 等. 6 种江西常见速生阔叶材纤维形态及材性比较[J]. 南方林业科学, 2016, 44(2): 52-55
- [22] 徐有明. 木材学[M]. 北京: 中国林业出版社, 2006: 221-233.
- [23] ROBINSON H F, COMSTOCK R E, HARVEY P H. Estimates of heritability and the degree of dominance in corn[J]. Agron J, 1949, 41(8): 353-359.
- [24] WILLIAMS C G, MEGRAW R A. Juvenile-mature relationships for wood density in *Pinus taeda*[J]. Can J For Res, 2011, 24(4): 714-722.
- [25] 李斌, 顾万春. 鹅掌楸主要木材性状早期选择可行性研究 (英文)[J]. 林业科学, 2002, 38(6): 43-48.

【责任编辑 李晓卉】