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Abstract: [Objective] To study codon usage bias of HIN2 avian influenza virus (AIV) complete genomes and
its influence factors. [ Method] The complete genomes of Chinese epidemic HIN2 AIV strains from 2010 to 2018
were selected. The characteristics of base composition, optimal codons, influence factors of codon usage bias and
adaption to the codon usage patterns of the host were analyzed. [Result] AU content was higher than GC content
in the whole genomes of HON2 AIV. Most of the optimal codons ended with A or U, and the average of effective
number of codons (ENC) was 52.86, suggesting that codon usage bias existed, but the bias was low. The codon
usage bias was mainly affected by mutation pressure and natural selection. Natural selection (accounting for
61.79%—76.15%) played a greater role than mutation pressure (accounting for 23.85%—38.21%). In addition, the
average codon adaptation ind ex of HON2 AIV to Homo sapiens ranged from 0.739 to 0.741, suggesting that HON2
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AIV might have adapted to human codon usage patterns. [ Conclusion] The study provides a theoretical basis for

genetic evolution analysis of HIN2 AIV, codon optimization of existing vaccines and development of new

vaccines (codon deoptimization vaccine).
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Table 1 Base composition analysis of HIN2 avian influenza virus genomes %

AL Base i

2010—2012 2013—2015 2016—2018
A 32.92+0.09 32.92+0.10 33.03+0.08
C 19.49+0.09 19.48+0.07 19.41+0.09
6] 22.89+0.09 22.88+0.10 22.90+0.10
G 24.71+0.15 24.72+0.13 24.65+0.11
GC 44.1940.16 44.20+0.15 44.074£0.14
Asg 41.42+0.52 41.48+0.79 41.80+0.54
Css 26.57+0.86 26.51£1.05 26.73+0.70
Uss 30.95+0.60 30.83+1.48 30.76x1.07
Gsg 28.08+0.49 28.11+0.98 27.74+1.24
GCsg 42.06+0.58 42.07+0.69 41.93+£0.73

DA b 8 A AT R £;2) T 47 “3S” REAR LHBF 5345

1)The datum in the table is average + standard deviation; 2) The subscripted “3S” indicates the 3rd place of synonymous codon
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Table 2 Optimal codon analysis of HIN2 avian influenza virus genomes
s EX%@?HN@%E wtE EX%@?HN&%E
Amino ZhY Relative synonymous codon usage Amino T Relative synonymous codon usage
wcid Codon FRIs A RFRIEH scid Codon FRIEA RFRIEA
High expression group ~ Low expression group High expression group ~ Low expression group
Ala GCT* 1.130 0.957 Phe TTT* 0.960 0.817
GCC* 0.884 0.730 TTC 1.040 1.184
GCA 1.610 1.972 Leu TTA 0.680 0.571
GCG 0.376 0.340 TTG 1.330 1.164
Arg AGA 2.386 2.875 CTT 1.162 1.081
AGG 1.782 1.707 CTC 0.948 0.912
CGT* 0.278 0.226 CTA 0.877 1.065
CGC 0.290 0.277 CTG 1.002 1.208
CGA* 0.834 0.462 Lys AAA 1.076 1.129
CGG 0.431 0.453 AAG 0.924 0.872
Asn AAT 1.139 1.122 Pro CCT 1.098 1.120
AAC 0.862 0.878 ccC 0.880 0.703
Asp GAT* 1.181 1.076 CCA 1.488 1.612
GAC 0.819 0.924 CCG 0.535 0.564
Cys TGT 0.938 0.885 Ser AGT 1.189 1.141
TGC 1.062 1.115 AGC 1.193 1.117
Gln CAA 1.149 1.095 TCT 1.059 1.153
CAG 0.851 0.905 TCC 0.782 0.802
Glu GAA 1.206 1.206 TCA 1.340 1.428
GAG 0.794 0.794 TCG 0.436 0.360
Gly GGT* 0.711 0.580 Thr ACT 1.040 0.908
GGC* 0.735 0.559 ACC 0.902 0.863
GGA 1.744 1.759 ACA 1.656 1.862
GGG 0.810 1.103 ACG 0.402 0.367
His CAT 1.243 1.259 Tyr TAT 1.176 1.170
CAC 0.757 0.741 TAC 0.824 0.830
Ile ATT 1.162 1.129 Val GTT* 1.037 0.915
ATC 0.876 0.813 GTC 0.876 0.852
ATA 0.962 1.058 GTA* 0.836 0.716
GTG 1.250 1.517

1) “*” R FEHRKMAG R SUE AT AHE R E R F S TIRAR R4 £ F>0.08(P <0.01, o k)

1) “*” indicates relative synonymous codon usage of high expression group is significantly higher than that of low expression group and the

difference is equal or higher than 0.08 (P<0.01, ¢ test)
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Fig.3 Correspondence analysis of HIN2 avian influenza
virus in different years
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IEARSE (7=0.633+0.216, P<0.001); % 1.2 #ll 5 KT
YRR AR R R A OG, KR 1 s GC &
BN ZE IEM S (,=0.510, P<0.001), % 2 4 5
Gis B BT A (=-0.717, P<0.001). iX
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Table3 Correspondence analyses of the first two principle axes and correlation analyses between the first two principle

axes and main parameters of codon usage bias

HAFMED Correlation

WP R TR T 22 S Ee ; =
i . , BTEEEKE

Firsttwo  Variation proportion of M

o . wW(Uss) w(Cys) wW(Azs) w(Gss) w(GCip) w(GCss) w(GC) ENC  General average L
principle axes correspondence analysis .. Aromaticity

hydropathicity

1% Axis 1 34.65% 0.091  —0.348** 0.262* —-0.014  0.340** —0.385** 0.510%* 0.633** —0.533%* —0.418%*
520 Axis 2 21.34% 0.471%*  0.513%*% —0.181 —0.717** 0.295** —0.291** —0.234* 0.216** -0.233* 0.342%*

1) “*” KAP<0.05, “**” KAP<0.01(Spearmantd % E547); TAx “3S” RAR X EAT AL, TAF “127 RAZATH1.245, “ENC” K

AAREBTH

1) “*” represents P<0.05, “**” represents P<0.01(Spearman’s rank correlation analysis); The subscripted “3S” indicates the 3rd place of

synonymous codon, The subscripted “12” indicates the 1st and 2nd places of codon, “ENC” indicates effective number of codons
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ITHRME T (G 3), SR B REE 1.2 iS5 8- & XA (0.739~0.741). [FIRF, 25057 3& M 44
RARME A B EA M, XU AR S5 ENC MR Hr K, BR 1 2013—2015 4
F B K P A 5S F VE 2 B B S s S R m e, HON2 ATV X A0S 73 M FE 35 ENC A%
B4R, X 2010—2018 4 HIN2 AIV #7171 ARE (,=-0.223, P=0.237), H R %M1 M52
NABE M (GE 4), 45 R B8 HON2 075 TR %5 ENC 283 fk e, W B SR X HON2
T 38 N HE HOF 3 48 B A AR AL AR K, {H HON2 ATV 1985 R 14 B i 2 77 A S5 SR ), {HL 1,
ALV R X8 [ 2500 138 N FE H0TF 2IME (0.766~0.768) T AAEAE RS K S 77 ARSI

R4 HIN2 8RB HREERAENTEL FERERS

Table 4 Codon adaptation index analysis of HIN2 avian influenza virus genomes

Ay BRE T SR FiE N 5% Codon adaptation index

Year Effective number of codons X Gallus gallus N Homo sapiens
2010—2012 52.86+0.64 0.768+0.005(—0.731*%) 0.740+0.004(—0.583*%*)
2013—2015 0.766+0.006(—0.386%*) 0.739+0.005(—0.223)
2016—2018 0.76840.004(—0.635**) 0.741+0.003(—0.409%)

DA P HIEA T ELARE Z; 5 PRIB AL ZH; “*7 RFP<0.05, “**” &7 P<0.01(Spearmanf % P 5 47)
1) The datum in the table indicates average + standard deviation; The datum in the bracket is correlation coefficient;

“*” represents P<0.05, “**” represents P<0.01(Spearman’s rank correlation analysis)
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Fig. 4 Neutrality plot analysis of HIN2 avian influenza virus in different years
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