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Abstract: [Objective] Opisina arenosella is an important invasive leaf-eating pest that attack Palmae plants.
The goal was to analyze the distribution characteristics of haplotypes of O. arenosella in native and invaded
zones, and reveal the insect source information of O. arenosella invading China. [Method] A total of 172
samples from 16 geographical populations were analyzed by mitochondrial COI gene, and the genetic
relationship of O. arenosella from India and invading areas (China, Malaysia and Thailand) was compared.

[ Result] Twelve haplotypes were identified in 172 sequences with fragment length of 625 bp. Fifteen variation
sites were detected in the haplotype alignment. Two obvious haplotype branches were formed, one of which was

composed of 11 haplotypes IN1-IN11 and they were all from Indian populations. Haplotype IN1 was shared by
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six O. arenosella populations from India. IN2-IN11 were exclusive haplotypes and not shared with other

populations. The other branch was haplotype HAP and shared by populations from China, Malaysia and

Thailand. There were four variation sites between HAP and 11 haplotypes IN1-IN11 from India. [ Conclusion] O.

arenosella populations in these invading areas are from the same genotype type or have the same invasion

source. O. arenosella invading populations produce new mutations or hybrids in new habitats under

environmental selection pressure.

Key words: Opisina arenosella; mitochondrial DNA; haplotype; geographic population; invasion
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Table 1 Sample information of Opisina arenosella from different geographical populations

f?% Wﬁiﬁﬁ%” A %%Eﬂﬂ FEAE ?éf%E ik -
Serial Population . Collecting Sample  Longitude
Collecting place ] ] ) Insect stage Host
number code time size and latitude
1 HNHK rh [ g i 2018-08 17 11032°E % # Larva. B-¥ Cocos nucifera-
Haikou, Hainan, China 20.07°N I Pupa WERE Borassus flabellifer.
J#i%% Livistona chinensis
2 HNWC R S 2018-08 20 110.82°E %) Larva. WFC. nucifera
Wenchang, Hainan, China 19.35°N I Pupa
3 HNQH Hh [ r B 2018-08 23 110.44°E %t Larva. W7 C. nucifera.
Qionghai, Hainan, China 19.25°N 1§ Pupa KTk Roystonea regia-
%% L. chinensi
4 HNWN i EE T 2018-08 14 11024°E %) Larva. WF-C. nucifera
Wanning, Hainan, China 18.49°N I Pupa
5 HNLS A i R K 2018-08 26 110.08°E %) Larva. WFC. nucifera
Lingshui, Hainan, China 18.49°N 4 Pupa
6 HNSY i EERE =T 201808 16 109.16°E %)yt Larva, ¥ C. nucifera.
Sanya, Hainan, China 18.32°N 1% Pupa W% L. chinensis
7 HNDZ [ i R M 2018-08 15 109.33°E 4 H Larva WFC. nucifera
Danzhou, Hainan, China 19.61°N
8 GDFS T AR L 2018-09 6 113.28°E ) Larva WF-C. nucifera
Foshan, Guangdong, China 22.88°N
9 MLSY DRI, HHEH 2018-12 5 101.72°E 45 Larva ¥ C. nucifera
Kuala Lumpur, Malaysia 2.99°N
10 TLBB RHE, JLERF 2018-12 2 99.52°F i Pupa WF-C. nucifera
Kanchanaburi, Thailand 14.03°N
11 IDKL B, WEBRM, InEEEAAE 201904 10 74.99°F 41 Larva WF-C. nucifera
Kerala, Kasaragod, India 12.51°N
12 IDSR*  ERE, 294, i md = 2016 3 80.85°E 41 Larva ¥ C. nucifera
Srikakulam, Andhra, India 16.19°N
13 IDVZ* B, A4, dERF s i 2016 4 83.39°E 44t Larva WF-C. nucifera
Vizianagaram, Andhra, India 18.11°N
14 IDVS* BN, 23, dErb-Rinkerd 2016 5 82.00°E 4 Larva WF-C. nucifera
Visakhapatnam, Andhra, India 16.90°N
15 IDEG* P, 9L, AR RIETLE 2016 2 82.23°E 41 Larva FC. nucifera
East Godavari, Andhra, India 16.85°N
16 IDWG*  EfE, 434, PE Rk LR 2016 4 81.76°E 415 Larva #5C. nucifera
West Godavari, Andhra, India 16.59°N

1) “*” R ®iZAP B /5] K GenBank T #, 3£ /% ; IDSR# 7 7 5 AKP995715~KP995717, IDVZ#4 /57 5 AKP995718~KP995721, IDVS# 751 5 A
KP995722~KP995726, IDEG#) /-7 5 A KP995727~KP995728, IDWGH) >3] 5 A KP995729~KP995732

1) “*” indicates the sequence of the population is downloaded from GenBank; The serial number of IDSR is KP995715-KP995717, IDVZ is
KP995718-KP995721, IDVS is KP995722-KP995726, IDEG is KP995727-KP995728, and IDWG is KP995729-KP995732
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1 080 bp; 18 45 M GenBank F#H 3K, HEKERN
625 bp. 172 P AL S E H 12 AN FAE AL (K 1),
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J7 AR M1l (GDFS), LA K B KP4 # B3 (MLSY).
ZEACERT (TLBB)(3 2): 75 1 N3 11 N Hfs



B 4 ]

ZEDUEE, S NIRVE R 35 OB 7 U B 5 7R 22 AR A 79

71 " [E China

|:| E[ India

] 5ok P Malaysia

% # [ Thailand PN

£ 1 HFLRE 12 D COI BSR4 X R E

Fig. 1 Evolution diagram of 12 COI haplotypes of Opisina
arenosella
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Table2 Distribution of 12 Opisina arenosella COI
haplotypes in different regions

PR AT
HAETY Population distribution
Haplotype = 51 FREEACRSD
Country Population code

HAP H1[E China HNQH(23). HNLS(26).
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Z& [ Thailand TLBB(2)

INI ElIfF India IDKL(8). IDSR(2).
IDVS(2). IDEG(1)-
IDWG(3). IDVZ(2)

IN2 I India IDSR(1)

IN3 I India IDVS(1)

IN4 I India IDEG(1)

IN5 El India IDWG(1)

IN6 El India IDVZ(1)

IN7 El India IDKL(1)

INS N India IDKL(1)

IN9 ElF India IDVS(1)

IN10 ElV ¥ India IDVS(1)

IN11 EEF India IDVZ(1)
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Fig.2 Variable site distribution of Opisina arenosella COI
haplotypes in different regions
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