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Transcriptome analysis of Drosophila S2 cells
infected by Listeria innocua
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Abstract: [Objective]l Listeria innocua is a non-pathogenic bacterium from the Listeria genus, which harbors
the virulence factors evolved from the same ancestor with the pathogenic bacterium L. monocytogenes. This
study aims to investigate the transcriptional variations of host cells after L. innocua infection, and provide a basis
for host regulation and prevention of damage from L. monocytogenes. [ Method] We used L. innocua to infect

Drosophila melanogaster S2 cells and analyzed the change of gene expression in Drosophila S2 cells by
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transcriptome sequencing. The differentially expressed genes in Drosophila S2 cells infected by L. innocua was
verified by qPCR. [Result] The Toll/Imd signaling pathways were significantly upregulated in Drosophila S2
cells after L. innocua infection for three hours, while the phagosome and Vibrio cholerae infection signaling
pathways were significantly downregulated. The antimicrobial peptide genes including DmDef (DmDefensin),
DmDro (DmDrosomycin), DmDpt A (DmDptericin A), DmDpt B (DmDptericin B), DmMtk (DmMetchnikowin),
DmCec A2 (DmCecropin A2), DmAtt A (DmAttacin A), DmAtt B (DmAttacin B), DmAtt D (DmAttacin D), and
DmCec B (DmCecropin B) were significantly induced after L. innocua infection. Among them, the most
upregulated gene was DmDef with 9.805 fold change. The qPCR verification results showed that the expressions
of DmMtk, DmAtt A, DmDro and DmDef genes were upregulated by 8.180, 7.533, 7.204 and 4.569 fold.

[ Conclusion] After L. innocua infection, the genes with the most significant change in Drosophila S2 cells are
antimicrobial peptide genes. This study offers a comprehensive investigation of gene expression changes in

Drosophila S2 cells after L. innocua infection, and provide a reference for revealing the response of host cells

41 %

evoked by non-pathogenic bacteria as well as interaction studies between bacterial pathogens and hosts.

Key words: Listeria innocua; Drosophila S2 cell; transcriptome sequencing; immunity; antimicrobial

peptide; signaling pathway
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Table 1 Statistics of transcriptome sequencing data for Drosophila S2 cells

il FEAR G5 SRR T B E HRUTFEE AR R /% GCRE /7T 40/%
Grouping Sample ID No. of raw reads No. of clean reads Error rate GC content
IR 1 59 639278 59073 172 0.025 6 51.16
Control group 2 61599 522 61 100 672 0.024 3 51.54
3 56 138 212 55717 464 0.024 2 51.67
I 4 64 092 782 63 648 024 0.024 0 51.43
Test group 5 63 143 600 62 708 658 0.024 1 51.56
6 55103 274 54 732 148 0.024 3 51.40

2.3 REE S2 MEERIEER

S 5 2 RS R e E AR S2 AL 3 h ),
F B 2R B IR A S e A S R R A R R
7 808 >, AAE R I AH R IL KB A 98 A, AXAE XY
WA RIR A 187 Ao

ExI A, WA 54 N EF R
HEMER (L VB =2), d 21 ANEE I,
33 NP N, ARALIE L e K )5 DmCR46081, L
W T 232 £i%, HIkZE DmDef(DmDefensin)s DmDro
(DmDrosomycin)s DmDpt A(DmDptericin A) Fll

DmDpt B(DmDptericin B) & 4t B JIK 5 K] .
DmCR46081 F=H%t5% rRNA AN TEA, Hn %R
W S2 2 A 05 VR v 4R R TR AR G S L B R (1
SR EZKST KR BE AT (3R 2).
24 RS2 @ESFKIAEENINGEER ST
GO ER T ER, 21 A B i3 R 363 e
10 1~ GO %k H, "I 43 AWk FE . 40 4 o Al oy
e 3 KK, Hrh e SR NEH &2 1) GO % H7r
Il AR X (9 AN BB B (5 ) AR 2
(4 M) RIBERGHE (4 ) ZHBREDIFE



ERR ] I, S5 OV T A ITRR R IR QLR S2 RIS AR S B 21
%2 B SHRERE S2 MRERBENE SR
Table 2 Fold change in gene expression of Drosophila S2 cells between test group and control group
R HR R LR || 2R KRR ERfH
Gene Gene description Fold change || Gene Gene description Fold change
DmCR46081  CR46081 232.000 || DmMuc30E  Mucin 30E 0473
DmCG34330  Uncharacterized protein, transcript variant A 14.649 || DmWhamy WHAMM and JMY related, transcript variant C 0.464
DmDef Defensin 9.805 || DmGgt-1 Gamma-glutamyl transpeptidase, transcript variant B 0.463
DmDro Drosocin, transcript variant A 7.629 || DmCG15528  Uncharacterized protein 0.454
DmDpt 4 Diptericin A 7447 || DmCG9279  Uncharacterized protein, transcript variant C 0.447
DmDpt B Diptericin B 5.825 || DmCG7848  Uncharacterized protein 0.432
DmEdin Elevated during infection 5272 || DmMuc68Ca  Mucin 68Ca 0.423
DmMtk Metchnikowin 4.888 || DmCG8219  Uncharacterized protein 0414
DmCec A2 Cecropin A2 4174 || DmCGI246  Uncharacterized protein, transcript variant E 0.403
DmAtt D Attacin D 3.878 || DmTsp42Ep  Tetraspanin 42Ep, transcript variant A 0.390
DmAtt 4 Attacin A 3.820 || DmAOX2 Aldehyde oxidase 2 0.384
DmAtt B Attacin B, transcript variant A 3.558 || DmCG4409  Uncharacterized protein 0.384
DmPGRP-SD  Peptidoglycan recognition protein SD 3.380 || DmSmyd4-7  SET and MYND domain containing, arthropod- 0.346
specific, member 7, transcript variant A
DmPGRP-S4  Peptidoglycan recognition protein SA, 3282 || DmCR32636  CR32636 0322
Transcript variant B
DmCec B Cecropin B 3209 || DmCd Cardinal 0314
DmCG31274  Uncharacterized protein 3.131 || DmVhal00-4  Vacuolar H" ATPase 100 kD subunit 4 0.303
DmTsfl Transferrin 1, transcript variant A 2.963 || DmCR45215  CR45215 0.294
DmPsfl Psfl 2436 || DmCGI17140  Uncharacterized protein, transcript variant B 0.280
DmCG43175  Uncharacterized protein, transcript variant A 2419 || DmGrs9f Gustatory receptor S9f 0.278
DmObp99a Odorant-binding protein 99a, transcript variant B 2151 || DmCG34124  Uncharacterized protein 0.276
DmSp212 Serine-peptidase 212 2.080 || DmCtriB Copper transporter 1B 0.251
DmNdl Nudel 0495 || DmCGI13992  Uncharacterized protein, transcript variant C 0.250
DmCep290 Cep290, transcript variant A 0.483 || DmCG10514  Uncharacterized protein 0.237
DmCyp4d14  CypAdl4, transcript variant A 0.481 || DmVha68-3  Vacuolar H” ATPase 68 kD subunit 3 0.235
DmCc2d2a Coiled-coil and C2 domain containing 2A 0.478 || DmDhd Deadhead, transcript variant A 0.231
DmCG34056  Uncharacterized protein 0.475 || DmCGI12105  Uncharacterized protein, transcript variant B 0.230
DmMtg Mind the gap, transcript variant G 0473 || DmCG42326  Uncharacterized protein, transcript variant D 0.149
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Table 3 GO annotation of upregulated genes in Drosophila S2 cells after Listeria innocua infection
4335 Category GO% H GO term i & %[5 Contained gene
AR N5 N Response to stimulus DmDef, DmPGRP-SD, DmPGRP-SA, DmCec A2, DmCec B

Biological process

M)

Cellular component

il

Molecular function

A R LR E D) A R

Cellular component organization or biogenesis
s R FE Immune system process

U HEFE Metabolic process
20 g3k FE Cellular process

2 2 i A= 9 3EFE Multi-organism process

Jfi#h X Extracellular region

Jfu 7k X 21 {4 Extracellular region part

%4 Binding

T4 Catalytic activity

DmCR46081

DmPGRP-SD, DmPGRP-SA, DmCec A2, DmCec B
DmSp212, DmCR46081, DmPGRP-SD, DmPGRP-SA
DmCR46081

DmPGRP-SD, DmCec A2, DmCec B

DmDpt B, DmDef, DmTsf1, DmAtt B, DmAtt A, DmPGRP-
SD, DmAtt D, DmCec A2, DmCec B

DmDef

DmObp99a, DmPGRP-SD, DmPGRP-SA

DmSp212, DmPGRP-SD, DmPGRP-SA

Table 4

®4 RERFHHERRERIE S2 AR TEEE GO IR

GO annotation of downregulated genes in Drosophila S2 cells after Listeria innocua infection

4325 Category

GO% H GO term

Fir & %A Contained gene

e

Biological process

M)

Cellular component

7Y IRe

Molecular function

Z 4l a1 213 72 Multicellular organismal process DmGr59f

AW FE 4% Regulation of biological process

HE# Detoxification

iR B Response to stimulus

A YT Biological regulation

SE ¥ Localization

HALUHEFE Single-organism process
R HEFE Metabolic process

4 ffu A Cellular process

2 Cell

4 #% Organelle

Y &5 4114 Organelle part

AL Cell part

21 ff i Membrane

Y 4HF Membrane part

Jfusk X Extracellular region
Ko FE AW Macromolecular complex
HL #1275 Electron carrier activity
305 M Transporter activity

%4 Binding

ALV Catalytic activity

PTG Antioxidant activity

DmDhd

DmCd

DmCd

DmDhd

DmVha68-3, DmCG9279, DmCG17140, DmCG8219,

DmCtrlB, DmVhal00-4
DmVha68-3, DmCG9279, DmCG7848, DmAOX2, DmCd,

DmDhd, DmVhal00-4, DmCyp4d14

DmCG15528, DmVha68-3, DmNdl, DmCG7848, DmAOX2,
DmMtg, DmCd, DmDhd, DmGgt-1, DmCyp4di14
DmCG15528, DmVha68-3, DmCG9279, DmCG7848, DmCd,
DmDhd, DmGgt-1

DmCG9279, DmCG17140, DmCG8219, DmGr59f, DmDhd,

DmVhal00-4
DmCG9279, DmCG17140, DmDhd, DmVhal00-4

DmCG9279, DmCG17140, DmVhal00-4
DmCG9279, DmCG17140, DmCG8219, DmGr59f, DmDhd,

DmVhal00-4
DmVha68-3, DmNdl, DmCG34056, DmCG1246,

DmCG17140,

DmTsp42Ep, DmCd, DmGr59f, DmCtr1B, DmVhal00-4
DmVha68-3, DmNdl, DmCG1246, DmTsp42Ep, Dm(Cd,

DmGr59f, DmCtr1B, DmVhal00-4

DmMtg

DmVha68-3, DmCG9279, DmVhal00-4

DmAOX?2

DmVha68-3, DmCtrlB, DmVhal(00-4

DmVha68-3, DmCG9279, DmCG7848, DmAOX2, DmMtg,

DmCd, DmCG8219, DmCyp4d14
DmCG15528, DmVha68-3, DmNdl, DmCG7848, DmAOX2,

DmCG34056, DmCd, DmDhd, DmGgt-1, DmCG10514,

DmCyp4dl4
DmCd
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2.51 LEiAKE KEGG &% KEGG B&0HrE
B, 3 LR 21 MR RERS] 1 A KEGG i@
#%, B Toll/Imd 3@ (P<0.001), 45 4 /> 48 51 14

k3K DmDpt A. DmDef DmCec A2(Cecropin
A2) 1 DmCec B(Cecropin B).

252 Ti#HARKEGG §% KEGG &&EDHr4
R(F5) XMW, TWM I3 AFERE TS 23 A
KEGG il .

x5 RERFIHFRRPERYE S2 METEAERE KEGG &%

Table S KEGG enrichment of downregulated genes in Drosophila S2 cells after Listeria innocua infection

JE % Pathway P Fir& %A Contained gene
FEELINEE B Vibrio cholerae infection 0.033 DmVha68-3, DmVhal00-4
& R K15 48 Rheumatoid arthritis 0.034 DmVha68-3, DmVhal00-4
W TR R B B AR S 1% = 0.036 DmVha68-3, DmVhal00-4
Epithelial cell signaling in Helicobacter pylori infection

A BRI Collecting duct acid secretion 0.037 DmVha68-3, DmVhal00-4
A /NG Synaptic vesicle cycle 0.042 DmVha68-3, DmVhal00-4
mmmk R Caffeine metabolism 0.043 DmAOX2
AR PFR T AR R R A AR Taurine and hypotaurine metabolism 0.049 DmGgt-1
Wik Phagosome 0.049 DmVha68-3, DmVhal00-4
TAE VUM ER 18T Arachidonic acid metabolism 0.072 DmGgt-1
AR L Oxidative phosphorylation 0.078 DmVha68-3, DmVhal00-4
W5 I Mineral absorption 0.082 DmCir1B
M A O-EMERIAEY) G B Mucin type O-glycan biosynthesis 0.089 DmCG34056
WA — A A Drug metabolism - other enzymes 0.155 DmAOX?
NODFESZ 145 5 18 B NOD-like receptor signaling pathway 0.158 DmDhd
PR ER X Pyruvate metabolism 0.163 DmCG7848
£Aii 2 Platinum drug resistance 0.182 DmCtriB
EAYEE A Peroxisome 0.197 DmAOX2
45} Tuberculosis 0.198 DmVhal00-4
B H KA Glutathione metabolism 0.204 DmGgt-1
TARBIY) R ) 5 B ik k£ RS AL Fluid shear stress and atherosclerosis 0.209 DmDhd
mTOR/E 5 1@ H mTOR signaling pathway 0.216 DmVha68-3
MR Lysosome 0.247 DmVhal00-4
ME 41 Purine metabolism 0.262 DmAOX?2

2.6 fREHEXBRTPHERSH
2 R AR e A S2 I S A kAL
MFHIEZ GO VERA KEGG & £ Hr iR, B3
RN R EE R A OGN 24 A KEGG i
HrfiidE th 10 A5 %A DG KEGG @, 73l 2
Toll/Imd 3 2% 2 RUB I 98 Fr WA 2 L I pR Ik
Yo W T TR R G ) R iR AE 5 4 S NOD
FERZARAS S B AT 24 58 AR BT DTN 1 55
X FEAEAL . mTOR 15 Sl i, 3L & 3 8 ML,
Horp AR i K92 DmDef, LT 9.805 f%, R
VIR FE B K& DmDhd, T T 4.329 1%,
2.7 REE S2 pRLEREFIERAI qPCR I
T v 2R TR TR AR YL RS2 AN e, AR L i

N 3k R N U IR . Bkl B, 9
T A= R R AR e SR S2 4 3 h S 3R 10 N LE
Jik R 2 2% _F 1, 635 DmDef. DmDro. DmDpt A,
DmDpt B.DmCec A2.DmCec B.DmMtk
(DmMetchnikowin). DmAtt D(DmAttacin D), DmAtt
A(DmAttacin A). DmAtt B(DmAttacin B), 12
e fe K I /& DmDef (35 2).

FATIEHL 9 NP IREER, FIH qPCR #EAT T
Bk, b B R B K2 DmMek, £
8.180 %, DmAtt A L 7.533 {5, DmDro i
7.204 &%, DmDef i 4.569 1% (& 2), 5% 41
Fr 45 R R a3 He A — 2, U W D T 2 S 1 R e
ES ANV OVEREAR: e S RN A S S U
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Fig. 2 qPCR verification results for expression of immune related genes
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O AT IR0 S (5 Sl B A 3 5%, 0l
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850 HH AN R] PR 26 TR e 2 ST, == B 1P T P L T 51
S ) % S N B E Toll JB B A T, 17 4 22 PR B
AN BE S DAP T JIR SO B B0 44 11 51 S i e 5 S
B2 3 2L Imd 8 E AT, Toll i #E B Imd 8 2%
WO J5 AT S T I IR B Rk Y SR ) SR
PUB K F A 7 B, 535/ Attacin, Diptericin,
Drosocin. Defensin, Cecropin, Metchnikowin F1
Drosomycin. $i B KL H Toll A1 Imd 1 % i
%, # Toll i H6 AN Imd 3@ BRI, K5 A BEIE PR
JR R ZEIA

TV 50 2 20 R TR T 22 BH M T, A
JUR SR 1l 7 £ B2 DAP BY K SR BEDY, DAP B ik 5%
B AT DAOE SR8 () Imd 8B . DA RE, R
W f¥) PGRP-SD 1E N 4h 32 AA A S 55 Toll @, M
&2 5 Imd 8B 0. A 5K I DmPGRP-
SD LR E B, $E7R 9 54 W R AR G IR
WE S2 4H 1 J5 Imd 8 B% AT A 4 0TS o PR K
Attacin. Cecropin fll Diptericin [fJ 3R 1A 32 £ %
Imd 38 2% F i #2857, ACHIF 9% 45 SR Sl 7w SR 0 1) e 1A
JKFEK DmAtt A. DmAtt B. DmAtt D 1 DmCec A2
M DmCec B ¥ LR 2 Fif, W75 7 Imd i@ 2% 1
Bi% o T P K Drosomycin. Defensin Al
Metchnikowin ) 2214 3= B 52 Toll i % i #0%, &
WF 7t 45 R b SR SRR ) B R K EE B DmDro.
DmDef 1 DmMik W H 3L T 235 B, $275 9518 o
2 30K B R] BE TR I 51 1 Imd A0 Toll 3 2% 1 ¥

I, (2 AR Toll i B A /2 Imd 38 2% 2 = ZAEH,
W 75— A F . B kBN A A
P, {5 Hanson 55 BF 72 & ILT 1 JIK T %o B 265 [
oA B A R Sk, Td 38 B 428 1 G T R O B
1 25 WK B AN B AE R PY . Hanson 865 BfF 006 K
B SR 0E 1) spz B DRI K S5 %o 9 e 2 A v R B
HH AR s R BB, B 7 7 SRR D8 U e 4R 0T RE BR 1Y)
R, Toll @ BRI PIE KRR EEAEH . %
T R A 7 4 SRR R 2 M B S O v 2
BRI AH I R SR 2% 00 &R, 05 WU A 32 78 HRAE 95 3 v 2% M
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FHRE =B B (Vacuolar H'-ATPase, V-
ATPase) #:[K DmVha68-3 1 DmVhal00-4 33 H 31
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5, DmVhal00-4 9315 V-ATPase-a W&, A V-
ATPase 5 & T B 1) S48 T HE 1, V-ATPase | 72
(EAET AU M2 I b, o py Ak T A4 S A W A4 i, AT
DK HZR NI SE 41 A 28 H DAY RF X He 41 A 25 (1 4
X R PN R, A3 A4 25 R P A B A L 1
FER ) SR NAZ I AE YD AT B AR ), b 2=
W S S BT LLO 1E % R 4% A i 7 Sk
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