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Research on individual recognition of dairy cows based on
improved Mask R-CNN

LI Haoyue, CHEN Guifen, PEI Ao
(College of Information Technology, Jilin Agricultural University, Changchun 130118, China)

Abstract: [Objective] To propose an individual cow recognition method based on the improved Mask R-
CNN algorithm, and solve the problem of low efficiency and strong subjectivity of artificially identifying
individual cows in traditional dairy farming. [ Method] This method optimizes the feature extraction network
structure in Mask R-CNN, adopts ResNet-50 network embedded in SE block as backbone, and selects image
channels by weighting strategy to improve feature utilization. For the problem of inaccurate target edge
positioning during instance segmentation, a boundary weighted loss function is added to construct a new Mask
loss function to improve the accuracy of boundary detection. A total of 3000 cow images are trained, validated
and tested. [Result] The improved Mask R-CNN model had an average precision (AP) of 100% and IoUy,q
of 91.34%. Compared with the original Mask R-CNN model, AP increased by 3.28% and [oUy,. increased by
5.92%. [ Conclusion] The proposed method has strong segmentation accuracy and robustness, and can provide

a reference for accurate recognition of cow images under complex farming environment.
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Fig.1 Cow sample image
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a: Original picture; b: Flip horizontal; c: Flip vertical; d: Clockwise rotation of 45°; e: Counterclockwise rotation of 45°; f: Gray picture
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Fig. 2 Enhanced cow image
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Fig. 4 Structure of ResNet
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Fig. 6 Comparison of experimental results before and
after improvement of Mask R-CNN model
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Table1 Comparison of evaluation indexes for Mask R-
CNN model before and after improvement

71 Model AP/% 1oUpaqi/ %
JRAAHERY Original model 96.72 85.42
23k Improved model 100 91.34
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Fig. 7 The influence of IoU boundary loss on Mask loss
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