DOI: 10.7671/j.issn.1001-411X.202105017

王杰, 邱威, 丁为民, 等. Y 型棚架式果园的 3WZ-300 风送喷雾机设计与试验 [J]. 华南农业大学学报, 2021, 42(6): 60-70. WANG Jie, QIU Wei, DING Weimin, et al. Design and experiment of 3WZ-300 type air-assisted sprayer for orchard with Y-typed trellis[J]. Journal of South China Agricultural University, 2021, 42(6): 60-70.

Y 型棚架式果园的 3WZ-300 风送喷雾机设计与试验

王 杰,邱 威,丁为民,张镇涛,闻桢杰,苏永喜(南京农业大学工学院,江苏南京210031)

摘要:【目的】针对Υ型棚架式果树的需风特性设计一款风送喷雾机,探究机具对此树形的施药规律,为新式果园栽植工艺的植保机具设计提供参考。【方法】结合棚架梨树Υ型树冠需风特性,设计一款异形导风管,确定发散型射流口,喷雾范围可全面覆盖冠层,并进行整机配置,风机使用无级调速带轮进行调速。以作业速度、出口风速、出风口与冠层中部高度差作为试验参数,以靶标雾滴覆盖率、靶标雾滴沉积量以及地面雾滴沉积量作为评价指标,设计田间试验。利用 Design-Expert 软件建立响应曲面分析参数对指标的影响,并对机具作业参数进行优化。【结果】优化结果表明: 3WZ-300 风送喷雾机在作业速度 0.8 m/s、出口风速 22 m/s、出风口中部与梨树冠层中部高度差为 5.1 cm 时,靶标雾滴覆盖率为 39.79%,靶标雾滴沉积量为 9.89 μL/cm²,地面雾滴沉积量为 5.41 μL/cm²,有效附着药液占比 60.1%。【结论】该喷雾机满足果园作业要求,施药效果较好,为棚架式果园喷雾机的设计及机具参数优化提供了参考。

关键词: Y型棚架; 风送喷雾机; 优化; 覆盖率; 雾滴沉积量

中图分类号: S491 文献标志码: A 文章编号: 1001-411X(2021)06-0060-11

Design and experiment of 3WZ-300 type air-assisted sprayer for orchard with Y-typed trellis

WANG Jie, QIU Wei, DING Weimin, ZHANG Zhentao, WEN Zhenjie, SU Yongxi (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

Abstract: 【Objective】 This study was aimed to design a air-assisted sprayer for the wind requirement of fruit tree with Y-typed trellis, explore the spraying regularity of applying the machine to such type of tree, and provide references for designing plant protection equipment for the orchard with new planting technology. 【Method】 According to wind demanding characteristic of the Y-typed canopy of pear trees, a special-shaped duct was designed. The duct could be adjusted according to different conditions, and the range of spray could cover tree canopy completely. The whole machine was configured, and the fan speed was adjusted using a stepless speed regulation pulley. The operating speed, outlet wind speed and height difference between the outlet and the middle of canopy were taken as test parameters, and the droplet coverage rate on target, the droplet deposition of target and the droplet deposition on ground were taken as evaluation indexes. The Design-Expert

收稿日期:2021-05-10 网络首发时间:2021-10-09 13:07:20

网络首发地址: https://kns.cnki.net/kcms/detail/44.1110.s.20211008.1628.003.html

作者简介:王 杰 (1996—), 男, 硕士研究生, E-mail: njauwangjie@163.com; 通信作者: 丁为民 (1957—), 男, 教授, 博士, E-mail: wmding@njau.edu.cn

基金项目: 江苏省农业自主创新资金 (CX181007); 国家自然科学基金 (51805271); 南京农业大学 SRT 专项计划 (S20190037)

software was used to establish response surface, analyze the influence of parameters on the indexes, and optimize the operating parameters of the machine. [Result] The optimization results showed that when the operating speed was 0.8 m/s, the outlet wind speed was 22 m/s and the height difference between the middle part of the air outlet and the middle part of the pear canopy was 5.1 cm, the droplet coverage rate on target was 39.79%, the droplet deposition was 9.89 µL/cm², the droplet deposition on ground was 5.41 µL/cm², and the ratio of effectively attached liquid was 60.1%. [Conclusion] This machine can satisfy the requirements of orchard operation with good spraying effect. It provides a reference for the design of sprayer for rack type orchard and the optimization of machine parameters.

Key words: Y-typed trellis; air-assisted sprayer; optimization; coverage rate; droplet deposition

近年来,我国引进并应用棚架栽培技术,利用金属、竹、水泥柱等材料搭成棚架,支撑果树树冠,通过合理、科学的栽培技术,实现水果的优质丰产。其中,苏南观光梨园采用Y字树形的整形技术,该技术树冠形成快、抗风能力强、早期丰产,方便机械化作业。韩国园艺所的试验表明,一般栽植4~6年的梨树,在密植条件下Y字树形比开心树形可增产5~10倍,栽植后第7~8年,每1000m²产量达3~5 t^[1-3]。在目前对梨品质要求较高的形势下,棚架栽培具有明显的优势。经栽培试验表明,Y型棚架树体结构简单,操作方便,高产稳产,较适合新发展的苏南地区梨园^[4]。

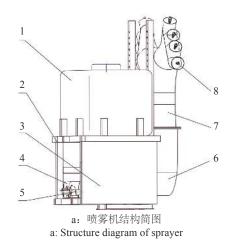
果园施药技术目前向着精准化、智能化和信息化发展,主要研究方向有仿形喷雾^[5-6]、变量喷施^[7]、视觉与传感技术辅助喷施等^[8-9]。探究喷雾参数影响规律并进行针对性喷施是目前主要研究方向,前人已在此方向做出大量研究,如进行冠层体积计算^[10-13]、通过传感器控制风量雾量等方法达到节约药量的效果^[14-17],通过试验探究喷雾因素影响,确定不同参数对施药效果的影响规律,继而对喷雾机进行调整,研究表明,施药效果受到作业速度、喷雾高度以及风速等因素影响^[18-20],根据冠层信息调节至理想参数,并实现仿形喷雾,有助于提高施药效果^[21-22],但以上大部分针对的仍是传统的纺锤形或开心形梨树,很少有针对新型棚架技术施药的研究。

根据实际调研得知,棚架果园使用传统喷雾机,经常出现以下情况:小喷量喷雾机无法覆盖整个冠层,大喷量喷雾机无差别喷雾在冠层下方较为冗余,农药浪费严重,沉积在土壤中的农药被作物吸收并富集于植物器官中,继而影响产品品质,且药量较大对作业人员的身体健康产生不利影响[23-24]。针对上述问题,本文以烨佳梨园Y型棚架梨树为对象,以机具小型化和提高农药利用效率,减小药液地面沉积为目标,设计一款风送喷雾机,并结合试

验数据进行分析优化,探究不同参数对棚架梨树施 药效果的影响规律。

1 机具设计

1.1 喷雾机设计指标

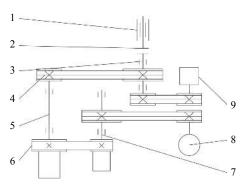

棚架梨树行距 5 m, 株距 3 m, 主干高约 0.8 m, 上方冠层枝条沿棚架向两侧分离, 无主干, 梨树高 度约 2.5 m。机具使用拖拉机作为动力源, 节约自走 底盘等部件的成本, 且方便更换牵引机具, 综合成 本较低。相较于传统梨园, 棚架式梨园的机具活动 范围较小, 对机具的灵活性、小型化要求较高, 大型 牵引式喷雾机在作业、转弯时均较为不便, 故初步 拟定设较为小型的悬挂式喷雾机, 喷雾机宽度不超 过拖拉机最大宽度。

机具设计功率不超过 10 kW,可挂载于中小型拖拉机,药箱容积可支撑单次作业 30 min 以上,喷雾机向两侧施药,单次作业 2 行,喷幅与梨树行距相同 (5 m);梨园现使用的传统高塔式喷雾机共20 个喷头,经测量,其单位面积施药量为 1333 L/hm²,去除非向树冠施药喷头后,共有 10 个喷头有效作业,施药量约 670 L/hm²,拟定本喷雾机喷雾量最多不超过 600 L/hm²,故药箱容积大于 300 L。

1.2 喷雾机结构及工作原理

如图 1 所示,喷雾机由机架、风机、药泵、可调节导风管以及传动系统组成。喷雾机架由方钢、角铁等材料焊接而成,其上方为药箱托架以及出风口支撑架,下部分为传动系统底座以及风机卡槽,并于其上焊接三点悬挂连接件。

如图 2 所示,作业时,机具以拖拉机后动力输出轴为动力源,通过万向节联轴器带动轴 1 转动,轴 1 通过带传动驱动药泵,同时利用带传动 1:2 增速带动轴 2,轴 2 与轴 3 通过无级调速装置连接,旋转此装置可进行无级变速,最大可进行 2 倍增速,轴 3 通过带传动连接风机轴承座,继而带动风机转


b: 喷雾机照片 b: Photograph of sprayer

1: 药箱; 2: 机架; 3: 传动箱; 4: 柱塞泵; 5: 动力输入轴; 6: 离心风机; 7: 导风装置; 8: 喷头

1: Sprayer tank; 2: Boom frame; 3: Transmission case; 4: Plunger pump; 5: Power input axis; 6: Centrifugal fan; 7: Air guiding device; 8: Nozzle

图 1 3WZ-300 风送喷雾机总体结构示意图

Fig. 1 Overall structure of 3WZ-300 type air-assisted sprayer

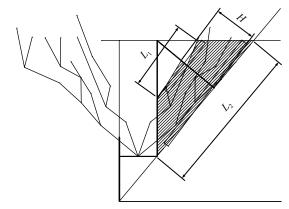
1: 拖拉机后动力输出轴; 2: 万向节联轴器; 3: 轴 1; 4: 带传动机构; 5: 轴 2; 6: 无级调速装置; 7: 轴 3; 8: 离心风机; 9: 柱塞泵

1: PTO of tractor; 2: Universal joint; 3: Axis 1; 4: Belt drive; 5: Axis 2; 6: Stepless speed regulating device; 7: Axis 3; 8: Centrifugal fan; 9: Plunger pump

图 2 3WZ-300 风送喷雾机传动系统结构示意图

Fig. 2 Transmission system structure of 3WZ-300 type air-assisted sprayer

动,气流由风机进入导风装置,最后由出风口射出; 同时轴1通过带传动驱动药泵,药泵使药液通过管 路到达喷头处雾化并喷射至外界,被气流带至冠层内。


2 机具设计

2.1 风机选型

根据果园调研得知,棚架梨树树枝主要集中于棚架处,厚度约 0.5 m,棚架距离喷雾机垂直距离约 1 m,距离较短,针对这一情况,置换原则计算需风量较为合理^[25],如图 3 所示,单位时间内风机风量(*Q*)的计算公式为:

$$Q \geqslant (L_1 + L_2)HvK,\tag{1}$$

式中:H 是树冠厚度; L_1 是棚架内侧树冠几何长度; L_2 是棚架外侧树冠层几何长度;v是喷雾机作业速度;K是气流衰减和沿途损失系数。

 L_1 : 树冠横截面内侧尺寸; L_2 : 树冠横截面外侧尺寸; H: 冠层厚度 L_1 : Inner dimension of the canopy cross section; L_2 : Outer dimension of the canopy cross section; H: Canopy thickness

图 3 Y 型棚架梨树置换原则示意图

Fig. 3 Replacement principle of Y-typed trellis tree

求得被置换的风量 $Q = 1.475 \text{ m}^3/\text{s}$,即 $Q = 5310 \text{ m}^3/\text{h}$ 。拟定 3WZ-300 风送喷雾机风量 $Q = 1.5 \text{ m}^3/\text{s}$,即 $Q = 5400 \text{ m}^3/\text{h}$ 。

机具出风口距果树垂直距离为 1.1 m,以此距 离为喷雾机射流提供数据支持。

根据末速度原则公式

$$v_2 = \frac{H_1 v_1 K}{H_2},\tag{2}$$

得到

$$v_1 = \frac{H_2 v_2}{H_1 K},\tag{3}$$

式中: v_2 是气流到达树体的末速度; v_1 是导风装置出口风速; H_1 是单侧出风口总长度; H_2 是树高。求得 $v_1 = 19.4 \text{ m/s}$ 。

根据气体自由淹没射流运动特性关系式轴线速度公式:

$$\frac{v_2}{v_1} = \frac{0.966}{\frac{as}{R_0} + 0.294},\tag{4}$$

式中:a是试验系数;s是喷口至任一断面处距离; R_0 是导风装置出口风半径。其中,a的范围为 0.066~0.080, 当喷口速度比较均匀且扰动较小时取 小值,反之取大值,由于导风装置出风口处风场较 为复杂, 扰动较为强烈, 故取其最大值 0.08, 计算出 $1.1 \, \text{m}$ 距离处气流末速度 $v_2 = 9.81 \, \text{m/s}$ 。

关于圆形喷嘴射流理论,根据不可压三元定长 紊流自由射流主段流速分布推导结果公式得知

$$\frac{v_2}{v_1} = \frac{\sigma d_0}{1.61s},\tag{5}$$

式中: do 是导风装置出口风直径: 求得 1.1 m 距离处

气流末速度 $v_2 = 11.12 \text{ m/s}$ 。

式(5)结果大于式(4)结果,并均大于实际测量 结果,结合公式推导过程及试验过程分析,初步判 定其较大原因是公式推导过程较为理想化,而导风 装置内部形状较为复杂,试验过程中一定程度上受 外界影响,故其结果较推导结果偏小,但结果相近, 有一定指示参考作用,表明当风速为19 m/s 时符合 果树最大需风要求。由于喷雾机向两侧多出口喷 雾,导风装置结构较为复杂,阻力较大,拟选择离心 风机作为风源,将上述结果设定为额定值,结合厂 家手册得知,4-72 式离心风机为常用工业风机,工 作介质为常规空气,其风量跨度较大,风压相对轴 流风机较高,满足使用要求,根据此风量,初步拟定 选用 4-72-3.6c 型离心风机, 其参数如表 1 所示。

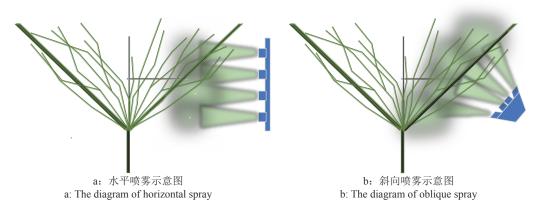
表 1 4-72-3.6c 式风机参数

风机转速/(r·min ⁻¹)	风机功率/kW	风量范围/(m³·h-1)	全压范围/Pa
Fan speed	Fan power	Range of air volume	Range of total pressure
2900	3.00	2664~5268	989~1 578
2600	2.20	2730~4058	1009~1230
2 2 0 0	1.50	2310~3434	723~881
1800	0.75	1890~2810	483~590

Table 1 Parameters of 4-72-3.6c fan

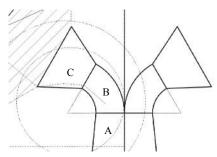
风机转速为 2900 r/min 时,由于导风装置阻力 远小于 989 Pa, 根据表 1 可知风机理论风量可达到 5268 m³/h, 风机功率 3 kW, 满足喷雾机需求。

2.2 导风装置设计


导风装置出风口面积 (S₂) 计算公式为:

$$S_2 = \frac{Q}{v_1} \,. \tag{6}$$

如图 4 所示, 由于棚架梨树的树冠形状较为特 殊,横向喷雾会使得地面沉积量过大,农药浪费严 重,结合实际需要,拟将导风装置出风口垂直于棚


架,喷雾中心延长线通过树冠中层水平线与棚架交 点,两侧各4个出风口,由于中间冠层较厚,故冠层 中部对应 2 个, 上下部分各 1 个。

综上所述, 拟定导流装置出风口形状为圆形, 喷雾机两侧各有 4 个出风口, 其总面积 $S_2 = 0.0789$ m^2 ,各出风口直径 d=112 mm,而导风装置与风机连 接,其进风口形状与风机出风口形状一致,确定导 风装置进风口与出风口尺寸后,将确定导风装置整 体形状及尺寸,并对其阻力进行估算,导风装置大 致分为3个部分,如图5所示。

不同角度的喷雾方式对比 图 4

Fig. 4 Comparison of spraying methods from different angles

A: 进风口; B: 整流管; C: 出风口 A: Air inlet; B: Air rectifier; C: Air outlet 图 5 导风装置示意图

Fig. 5 Schematic diagram of air guiding device

导风装置进风口底部与离心风机出风口连接,由下向上形状逐渐变化为圆形,与整流管连接,结合喷雾机高度限制,拟定此部分高度 300 mm;整流管的作用是改变风向,使离心风机吹出的气流正对梨树冠外侧,即达到图 4b 的效果,考虑到加工便利性,整流管横截面为圆形,其横截面积与单侧导风装置出风口面积之和相同[26],具体尺寸将进行仿真分析后确定;由于棚架梨树树形特殊,其冠层中间密度较高,树冠顶部与底部枝叶较少,故设置 2 个出风口对树冠密度较高的部位进行送风喷雾,两端出风口倾斜 30°,整体根据树冠厚度进行风量与雾量分配。

导风装置形状确定后,通过阻力计算公式计算 其空气阻力,局部阻力公式为:

$$P_{j} = \xi \frac{\rho v_{3}^{2}}{2},\tag{7}$$

摩擦阻力公式为:

$$P_{\rm m} = 2 \times \frac{\lambda}{4R_{\rm s}} \times \frac{v_3^2}{2} \times \rho \times L, \tag{8}$$

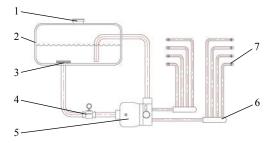
式中: P_j 是局部空气阻力; ξ 是局部阻力系数; ρ 是空气密度; ν_3 是导风管内空气的平均流速; P_m 是空气摩擦阻力; λ 是摩擦阻力系数; R_s 是导风管的水力半径, L 是导风管的沿程长度。

计算出导风装置总阻力为 260 Pa, 此阻力小于 离心风机全压范围的最小值。

为了便于探究出风口高度对喷雾效果的影响, 装置底部与出风口用 PVC 管连接,可通过改变连 接螺栓位置调整出风口高度。

通过测量得知,机器稳定运转时,流量不变的情况下,空气在管路内运行时,管径越大,流速越小,流动阻力也越小,导风装置设计过程中,其进风口与出风口尺寸已确定,考虑到加工便利性以及成本,其中部使用弯管作为过渡区域,导风装置形状较为复杂,根据常规通风计算方法无法确定其流动

状态,本文遵循面积相近原则,保持中段弯管截面积与出风口截面积之和相同,由上述计算过程可知,单侧 4个出风口面积之和为0.039 973 m²,此面积介于 220 与 230 mm 圆管截面积之间,便拟定选用这 2个尺寸之一的弯管作为过渡区,将模型导入ANSYS Workbench 平台进行处理,对导风装置进行建模并将其导入 Workbench,采用 ICEM 对模型进行网格划分,对几何模型进行区域离散,适当调节网格密度,对出风口处进行网格加密,使其满足条件,如图 6 所示。


图 6 导风装置网格划分 Fig. 6 Meshing of air guiding device

选择 Fluent 模块对其求解, 迭代运算后, 对采用 2 个尺寸弯管的速度云图与压力云图进行对比分析可知, 220 mm管道折弯处区域速度明显增大, 压力明显降低, 两侧最低出风口速度明显较低, 速度云图显示其速度为 16~20 m/s, 而最高处出风口速度明显较高, 为 32~36 m/s; 中段管径为 230 mm 的导风装置压力分布均匀, 其出风口压力与速度分布较为均匀, 故优先选择 230 mm 弯管作为导风装置过渡段。

2.3 喷雾系统设计

图 7 为 3WZ-300 型风送喷雾机的喷雾系统示意图。喷雾系统主要包括液泵 (包含压力表及调压装置)、药箱、喷头、分流器以及三通软管等。利用药泵回流对药箱内部药液进行搅拌,防止农药分层或沉淀,药液由药泵排出后经分流器分流进入管路,最终进入喷头并雾化喷出。

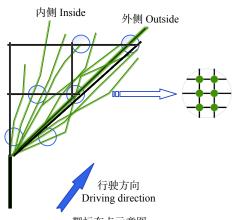
根据果园《GB/T 17997—2008 农药喷雾机(器) 田间操作规程及喷洒质量评定》^[27] 要求,喷雾机杀 虫灭菌使用圆锥雾喷头,且药箱回流搅拌量不少于 药箱体积容量的 5%。设计的喷雾压力为 0.4 MPa, 本喷雾机共 8 个喷头,经测量其在 0.4 MPa 压力下 喷量为 1.3 L/min,即喷头总喷量为 10.4 L/min,根据 设计要求,喷雾机单次作业时间不少于 30 min,药

1: 药箱盖; 2: 药箱; 3: 过滤器; 4:压力表; 5: 液泵; 6: 分流器; 7: 喷头 1: Tank lid; 2: Tank; 3: Filter; 4: Pressure gage; 5: Plunger pump; 6: Splitter; 7: Nozzle

图 7 3WZ-300 风送喷雾机喷雾系统示意图

Fig. 7 Spray system structure of 3WZ-300 type air-assisted sprayer

箱容积拟定 310 L,根据上述国标要求,药箱回流搅拌量不少于药箱体积容量的 5%,约 15 L/min,故药泵流量至少需达到 25 L/min,综上所述,选用联农 LL-88 型柱塞泵,额定流量 20~35 L/min,额定功率 3 kW,满足喷雾机需求。


3 田间试验

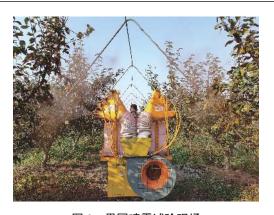
3.1 试验条件

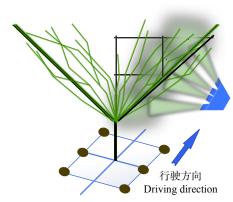
试验时间: 2020 年 6 月 5 日; 试验地点: 江苏省 泰兴市烨佳梨园; 试验时, 环境温度 16~21~C, 自然风速 0.5~1.2~m/s。试验对象为 Y 型棚架式梨树, 平均树高 2.5~m, 冠径 3~m, 行距 5~m, 株距 3~m, 试验现场如图 8~所示。

3.2 试验材料及方法

试验器材: 东风 604-15 型拖拉机、3WZ-300 风送喷雾机、牵引式高塔喷雾机、UV2000 紫外可见分光光度计、EPSON V39 扫描仪、TSI 9565P多功能风速测试仪、丽春红 2R、便签纸 (7.6 cm×7.6 cm)。

a: 靶标布点示意图 a: Schematic diagram of target distribution




图 8 果园喷雾试验现场 Fig. 8 Spraying test in orchard

试验方案参考《GB/T 17997—2008 农药喷雾机(器)田间操作规程及喷洒质量评定》[27],选用3棵具有代表性的梨树作为采样对象,考虑到棚架梨的特殊性,采样点方案有所改进,如图9所示,将树冠分为3层,高度分别为0.8、1.8和2.8 m。为测试喷雾过程中冠层外侧与内部沉积效果,每层均沿冠层外部与内部布点,内外间隔约0.8 m。每个采样点使用回形针固定便签纸于树叶两面。同时在地面上以树干为中心,正方形布置6个点,将便签纸平铺于布点处。试验药液为2.5 g/L 丽春红2R 溶液。

根据国标要求计算药液覆盖率,参照文献 [28],使用 UV2000 紫外可见分光光度计测定纸卡浸泡液的光密度计算单位面积雾滴沉积量。其计算公式为:

$$m = \frac{D_{504 \text{ nm}} V}{RLS_3 C},\tag{9}$$

式中:m 是单位面积雾滴沉积量; $D_{504 \text{ nm}}$ 是纸卡浸泡液光密度;V 是纸卡浸泡液体积;R 是吸光系数;L 是比色皿厚度; S_3 是纸卡面积;C 是丽春红母液浓度。

b: 地面布点示意图 b: Schematic diagram of ground layout

图 9 采样点布置示意图

Fig. 9 Layout of sampling points

在作业过程中,影响施药效果的主要因素有作业速度、出口风速和出风口高度。其中作业速度通过拖拉机挡位调节,调整范围为 0.8~1.6 m/s;出口风速通过无级调速装置进行调节,风速范围 16~22 m/s;出风口高度通过连接杆不同高度通孔调整,以树冠几何高度中点为零点,调整范围为-20~20 cm;通过前期室内试验得出,喷雾压力在 0.25~0.50 MPa 范围内,雾量变化较小,故将喷雾压力固定为 0.3 MPa,每组试验前测量环境风速并实时记录。试验参数及其具体数值确定后,试验因素编码如表 2 所示。

为使试验结果更加直观,便于观察,本文采用

表 2 试验因素编码 Table 2 Coding of factors and levels

编码值	出口风速/(m·s ⁻¹)	作业速度/(m·s ⁻¹)	出风口高度/cm
Code	Air outlet	Working	Air outlet
value	velocity (x_1)	speed (x_2)	height (x_3)
-1	16	0.8	-20
0	19	1.2	0
1	22	1.6	20

Design-Expert 的三因素三水平 Box-Behnken 响应面法进行参数组合,组合方案及结果如表 3 所示。 R_1 、 R_2 、 R_3 分别代表靶标雾滴覆盖率、靶标雾滴沉积量、地面雾滴沉积量。

表 3 果园喷雾试验参数组合及试验结果
Table 3 Experiment scheme and results of orchard spraying test

Table 3 Experiment scheme and results of oreliard spraying test								
试验参数编码值 Code value of test parameter			评价指标 Evaluating indicator					
序号	出口风速	作业速度	出风口高度	靶标雾滴覆盖率	靶标雾滴沉积量	地面雾滴沉积量		
Test No.	Air outlet	Working	Air outlet	Droplet coverage	Droplet deposition	Droplet deposition		
	velocity (x_1)	speed (x_2)	height (x_3)	rate on target (R_1)	on target (R_2)	on ground (R ₃)		
1	1	-1	0	34.56	7.807	3.661		
2	-1	0	-1	29.17	6.208	5.923		
3	-1	1	0	29.69	6.216	3.584		
4	0	1	-1	25.26	5.596	4.120		
5	1	0	-1	38.02	8.948	5.478		
6	-1	-1	0	41.41	11.268	6.587		
7	0	-1	1	34.64	7.361	3.657		
8	0	-1	-1	35.42	10.731	10.157		
9	0	0	0	34.37	7.307	3.434		
10	0	0	0	33.86	8.551	5.047		
11	0	0	0	33.33	8.117	4.533		
12	1	1	0	29.69	5.188	1.772		
13	1	0	1	26.04	5.995	4.111		
14	0	1	1	23.05	4.038	2.085		
15	0	0	0	33.61	8.491	4.915		

0

1

33.33

25.52

.

试验结果与分析

0

-1

4.1 显著性分析

16

17

采用 Design-Expert 8.0.6 对表 3 数据拟合并进行方差分析,得到显著性检验结果如表 4 所示,根据表 4 可知, R_1 模型显著性检验 F=4.50,P=0.030,模型显著, R_2 模型显著性检验 F=4.06,P=0.039, R_3 模型显著性检验 F=4.67,P=0.027,均达到显著。但 R_1 的失

0

拟项检验 F=99.04,P<0.01, R_2 的失拟项检验 F=10.74,P=0.022,2个指标的失拟项均显著,说明 试验范围内 2个指标模型拟合受到未知参数影响,结合试验过程分析,考虑可能是由于试验环境影响 因素较多所致,如树冠状态发生变化,梨园地面凹凸不平导致机具晃动等。但由于模型显著性较好,因此可以使用上述 2个模型对出风口风速、作业速

8.573

4.658

4.275

2.630

	衣 4 响应曲面亚者性位验结果
Table 4	Significance test results of response surface

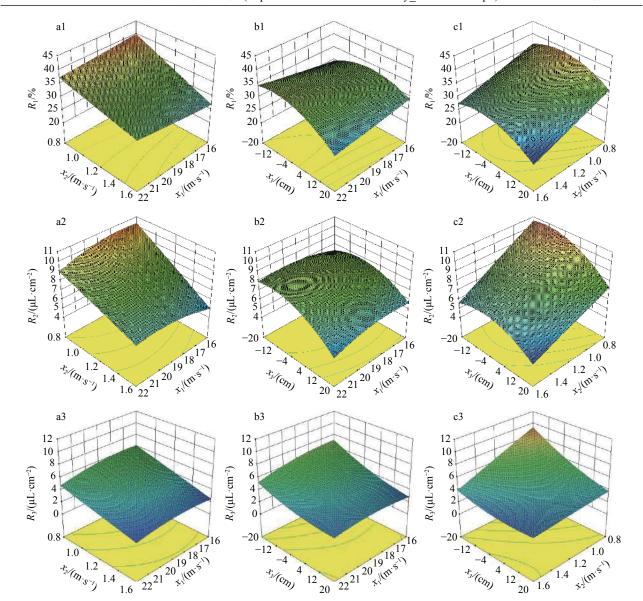
 靶标雾滴覆盖率				 靶标雾滴沉积量			 地面雾滴沉积量					
方差来源1)	Droplet coverage rate on target (R_1)			Droplet deposition on target (R_2)			Droplet deposition on ground (R_3)					
Soruce of	平方和	自由度			平方和	自由度			平方和	自由度		
variation	Square	Degree of	F	P	Square	Degree of	F	P	Square	Degree of	F	P
	sum	freedom			sum	freedom			sum	freedom		
模型 Model	329.46	9	4.500	0.030	54.34	9	4.060	0.039	51.69	9	4.670	0.027
x_1	0.79	1	0.100	0.760	0.02	1	0.010	0.908	1.71	1	1.390	0.276
x_2	183.74	1	22.590	< 0.01	32.52	1	21.840	< 0.01	19.53	1	15.880	0.005
x_3	43.34	1	5.330	0.054	11.12	1	7.470	0.029	21.76	1	17.700	0.004
x_1x_2	11.73	1	1.440	0.269	1.48	1	0.990	0.352	0.31	1	0.250	0.631
x_1x_3	17.35	1	2.130	0.188	0.49	1	0.330	0.583	0.93	1	0.750	0.414
x_2x_3	0.51	1	0.060	0.809	0.82	1	0.550	0.482	4.98	1	4.050	0.084
x_1^2	0.06	1	0.007	0.936	1.20	1	0.810	0.399	1.07	1	0.870	0.382
x_2^2	0.02	1	0.000	0.988	0.01	1	0.008	0.930	0.005	1	0.004	0.950
x_3^2	71.78	1	8.820	0.021	6.29	1	4.220	0.079	1.51	1	1.230	0.304
残差 Residual	56.94	7			10.42	7			8.61	7		
失拟 Lack of fit	56.19	3	99.04	< 0.01	9.27	3	10.74	0.022	6.97	3	5.66	0.064
误差 Error	0.76	4			1.15	4			1.64	4		
总和 Total	386.40	16			64.77	16			60.30	16		

1)x1: 出口风速; x2: 作业速度; x3: 出风口高度

1) x_1 : Air outlet velocity; x_2 : Working speed; x_3 : Air outlet height

度、出风口高度这 3 个因素的影响效果进行分析及大致预测; R_3 的失拟项检验 F=5.66, P=0.064, 失拟项不显著, 说明不存在其他指标对此模型产生较大影响, 可以使用此模型对出风口风速(x_1)、作业速度(x_2)、出风口高度(x_3)这 3 个因素的影响效果进行分析及预测。对试验数据回归拟合得到的二次多项式回归模型为:

$$R_1 = 46.144 + 0.105x_1 - 11.981x_2 - 0.116x_3 - 0.01x_3^2,$$
(10)


$$R_2 = 14.321 - 0.017x_1 - 5.04x_2 - 0.059x_3 + 0.03x_3^2, (11)$$

$$R_3 = 12.087 - 0.154x_1 - 3.907x_2 - 0.25x_3 + 0.14x_2x_3.$$
(12)

4.2 响应曲面分析

图 10 为靶标雾滴覆盖率、靶标雾滴沉积量、地面雾滴沉积量的 3D 曲面图。从图 10 可以看出作业速度、出风口高度对靶标雾滴覆盖率的影响较为显著,而出口风速对靶标雾滴覆盖率影响较小。通过图 10b、10c 可直观地看出出风口高度对靶标雾滴覆盖率的影响较为稳定,无论作业速度及出风口速度如何变化,当出风口高度为-4~0 cm 时,靶标雾滴覆盖率均较大。由图 10d、10e、

10f 可直观地看出作业速度、出风口高度对靶标 雾滴沉积量影响均显著,其中作业速度的影响尤 为显著,响应曲面中靶标雾滴沉积量增长趋势与 靶标雾滴覆盖率增长趋势相似,但沉积量的峰值 较高,在图 10d、10f中尤为明显,这是因为部分 采样点雾滴附着量达到一定程度后,覆盖率趋近 于1且增长趋势大幅减弱,而沉积量此时仍持续 增加,甚至出现了冲洗现象。由图 10g、10h、10i 可直观看出,出口风速、作业速度和出风口高度 对地面雾滴沉积量均有一定影响,其中作业速度 的影响较为显著, 且作业速度小于 1.2 m/s 时, 出 风口位置对地面雾滴沉积量的影响极大, 当作业 速度为 1.0 m/s 时,地面雾滴沉积量随出风口高 度的降低显著增大,这是因为当出风口高度较低 时,很大一部分药液落在地面,而作业速度越 慢,单位时间内落在地面的药液越多。值得一提 的是,虽受未知因素的干扰,仍可看出风速对施 药效果有部分影响,与作业速度有一定耦合作 用; 当靶标雾滴覆盖率及沉积量均达到峰值时, 地面雾滴沉积量也达到峰值,故需进行平衡,确 定较为合适的参数。

a1~a3 中, 控制变量为 0; b1~b3 中, 控制变量为 1.2; c1~c3 中, 控制变量为 19; x_1 : 出口风速; x_2 : 作业速度; x_3 : 出风口高度; R_1 : 靶标雾滴覆盖率; R_2 : 靶标雾滴沉积量; R_3 : 地面雾滴沉积量

Control variable is 0 in a1–a3; Control variable is 1.2 in b1–b3; Control variable is 19 in c1–c3; x_1 : Air outlet velocity; x_2 : Working speed; x_3 : Air outlet height; x_1 : Droplet coverage rate on target; x_2 : Droplet deposition on target; x_3 : Droplet deposition on ground

图 10 不同参数对施药性能指标的影响

Fig. 10 Influence of different factors on indicators of pesticide spraying performance

4.3 参数优化

喷雾机施药时,根据《NYT 992—2006 风送式果园喷雾机作业质量》^[29]要求,靶标雾滴覆盖率不低于 33%,地面雾滴沉积量越低越好。利用 Design-Expert 进行优化,设置约束条件:

$$\max F_1(x_1, x_2, x_3) = R_1, \tag{13}$$

$$\max F_2(x_1, x_2, x_3) = R_2, \tag{14}$$

$$\min F_3(x_1, x_2, x_3) = R_3, \tag{15}$$

$$\begin{cases}
s.t.G(x_1, x_2, x_3) = 33 - R_1 \le 0 \\
16 \le x_1 \le 22 \\
0.8 \le x_2 \le 1.6 \\
-20 \le x_3 \le 20
\end{cases}$$
(16)

得出最优解及预测值为: x_1 =16 m/s, x_2 =0.8 m/s, x_3 =5.1 cm, R_1 =39.79%, R_2 =9.89 μ L/cm², R_3 =5.41 μ L/cm²。

考虑到完成试验并处理数据所需时间较长,果园情况变化较大,故在试验后进行多次不同参数组合试验并保留数据,其中一组影响因素数值为: 出风口风速为 $16\,\mathrm{m/s}$ 、作业速度为 $0.8\,\mathrm{m/s}$ 、出风口高度为 $0\,\mathrm{cm}$,其出风口高度与预测最优参数相差 $5.1\,\mathrm{cm}$,其影响较小,故可将其视为最优组,此时靶标雾滴覆盖率为 41.41%,靶标雾滴沉积量为 $11.27\,\mathrm{\mu L/cm^2}$,地面雾滴沉积量为 $6.59\,\mathrm{\mu L/cm^2}$ 。

4.4 有效施药量对比分析

除喷施效果外,喷雾机消耗资源水平是喷雾机主要指标之一,在满足施药要求的情况下,消耗资源越少,施药成本越低,其中人力成本、能源消耗以及农药的消耗需重点考虑^[30],农药减量增效更是现今研究重点,通过靶标雾滴沉积量占施药量比值可直观分析喷雾机有效施药量占比。

3WZ-300 型喷雾机试验后,使用梨园现有高 塔式喷雾机喷洒丽春红溶液进行作业,其布点方 案与"3.2"节相同,其试验结果如表 5 所示。记 录机具施药量,并根据试验结果计算棚架梨树药 液附着量,利用两者比值估算机具针对棚架梨树 的有效施药量,以有效施药量为指标对比 2 台机 具性能。

表 5 高塔式喷雾机田间试验结果

Table 5 Results of high tower sprayer in orchard

作业速度/(m·s ⁻¹) 靶标雾滴覆盖率/%		靶标雾滴沉积量/(μL·cm ⁻²)	地面雾滴沉积量/(μL·cm ⁻²)		
Working speed	Droplet coverage rate on target	Droplet deposition on target	Droplet deposition on ground		
1.0	43.16	16.192	14.511		
1.5	36.48	9.902	10.657		

梨园现有高塔式喷雾机作业速度为 1.0 m/s, 喷雾机工作压力 0.4 MPa, 单个喷头喷量约 2 L/min, 喷头数 20 个,即总喷量 40 L/min,棚架果园行距 5 m,单趟作业长度 100 m,通过计算可知其喷雾量为 1333 L/hm²,即施药量为 0.667 L/hm²,3WZ-300 喷雾机喷量为 433 L/hm²,施药量为 0.216 L/hm²,利用叶面积指数仪测得棚架梨树叶面积指数为 3.84,即梨树叶总面积与梨树投影地面面积之比为 3.84,将上述数值代入公式:

$$E = \frac{R_2 S_4 \text{LAI}}{3M},\tag{17}$$

式中:E 是靶标沉积总量占喷雾量百分比; R_2 是靶标雾滴沉积量; S_4 是梨树于地面投影面积;LAI 是叶面

积指数: M 是喷雾机作业单位长度施药量。

结果如表 6 所示,结合表 5 分析得出,高塔式喷雾机作业时,地面雾滴沉积量较大,当其以1.0 m/s 速度作业时,地面雾滴沉积量接近靶标雾滴沉积量,接近 3WZ-300 风送射流喷雾机地面雾滴沉积量的 3 倍,进一步说明了大流量施药时药液浪费较为严重,当高塔式机具以 1.5 m/s 速度作业时,2 台机具靶标施药效果相仿,此时 3WZ-300 风送喷雾机有效附着药液占比 60.1%,而高塔式喷雾机为 28.0%,受条件限制,无仿形喷雾机进行对照试验,但上述数据可较为直观地表明,3WZ-300 风送喷雾机施药效率较为理想,符合设计要求。

表 6 不同机具施药效果对比
Table 6 Comparison of spraying effect of different sprayers

施药机械	施药量/(L·hm ⁻²)	靶标雾滴沉积量占比/%
Spraying machine	Spray volume	Proportion of target droplet deposition
3WZ-300风送喷雾机 3WZ-300 type air-assisted sprayer	433	60.1
高塔式喷雾机 High tower sprayer	1333	28.0

5 结论

- 1)设计了一款针对Y型棚架梨树的3WZ-300风送喷雾机,多出口导风装置与棚架梨树的树冠形状契合,设计作业速度3~4km/h,药箱容积300L,喷雾机具结构简单,小巧轻便,通过果园试验数据可知,喷雾机针对棚架作业时,有效附着药液占比较高,性能满足要求。
- 2) 试验表明影响喷雾机施药效果的主要影响 变量有出风口风速、作业速度以及出风口高度,其 主要评价指标有靶标雾滴覆盖率、靶标雾滴沉积量
- 以及地面雾滴沉积量,分析试验数据并结合作业场景可知,由于果园施药时环境较为复杂,除上述主要因素外还存在其他未知因素,但可根据试验结果分析指标变化趋势。
- 3) 通过 Design-Expert 对机具作业参数进行优化,优化后最佳作业参数分别为: 出口风速为 16 m/s,机具作业速度为 0.8 m/s,出风口中心与树冠中部高度差为 5.1 mm,预测值分别为: 靶标雾滴覆盖率为 39.79%, 靶标雾滴沉积量为 9.89 μL/cm², 地面雾滴沉积量为 5.41 μL/cm²。

4)由于棚架梨树冠层形状较为特殊,与传统梨树之间的差异可能会影响设计及试验结果,需更多对棚架果树本身进行探究,如棚架梨树冠层特性、叶面积指数等。

参考文献:

- [1] 金松南,崔东根,李勃,等.密植梨树采用"Y"字树形的整形技术[J].落叶果树,2005,37(6):36-37.
- [2] 边文莹. 梨树棚架栽培的优势及其在我国的应用前景[J]. 农业开发与装备, 2018(11): 59.
- [3] 程云, 冯立娟, 王杰军. 晚熟梨改良密植 'Y'字树形 关键整形修剪技术[J]. 北方园艺, 2017, 41(12): 64-65.
- [4] 徐春明, 戴惠忠, 仲嘉, 等. 苏南观光梨园 Y 形棚架栽培效果与配套技术[J]. 中国南方果树, 2011, 40(6): 84-85.
- [5] 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72.
- [6] 郑永军, 陈炳太, 吕昊暾, 等. 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36(20): 110-124.
- [7] JEON H Y, ZHU H, DERKSEN R, et al. Evaluation of ultrasonic sensor for variable-rate spray applications[J]. Computers and Electronics in Agriculture, 2011, 75(1): 213-221.
- [8] 周良富, 薛新宇, 周立新, 等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报, 2017, 33(23): 80-92.
- [9] 翟长远, 赵春江, WANG N, 等. 果园风送喷雾精准控制方法研究进展[J]. 农业工程学报, 2018, 34(10): 1-15.
- [10] 姜红花, 白鹏, 刘理民, 等. 履带自走式果园自动对靶风 送喷雾机研究[J]. 农业机械学报, 2016, 47(S1): 189-195.
- [11] 姜红花, 刘理民, 柳平增, 等. 面向精准喷雾的果树冠层体积在线计算方法[J]. 农业机械学报, 2019, 50(7): 120-129
- [12] MÉNDEZ V, ROSELL J R, SANZ R, et al. Deciduous tree reconstruction algorithm based on cylinder fitting from mobile terrestrial laser scanned point clouds[J]. Biosystems Engineering, 2014, 124: 78-88.
- [13] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动 仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1): 70-76.
- [14] 周良富, 张玲, 薛新宇, 等. 3WQ-400 型双气流辅助静电果园喷雾机设计与试验[J]. 农业工程学报, 2016, 32(16): 45-53.
- [15] YAO W X, LAN Y B, WEN S, et al. Evaluation of droplet deposition and effect of variable-rate application by a manned helicopter with AG-NAV Guía system[J].

- International Journal of Agricultural and Biological Engineering, 2019, 12(1): 172-178.
- [16] LLORENS J, GIL E, LLOP J, et al. Ultrasonic and LID-AR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods[J]. Sensors, 2011, 11(2): 2177-2194.
- [17] NEEDHAM D L, HOLTZ A J, GILES D K. Actuator system for individual nozzle control of flow rate and spray droplet size[J]. Transactions of the ASABE, 2012, 55(2): 379-386.
- [18] 孙诚达, 邱威, 丁为民, 等. 梨树风送喷雾关键作业参数 优化与试验[J]. 农业工程学报, 2015, 31(24): 30-38.
- [19] DUGA A T, DELELE M A, RUYSEN K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2017, 154: 76-91.
- [20] FERGUSON J C, CHECHETTO R G, HEWITT A J, et al. Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (*Avena* sativa L.) canopy[J]. Crop Protection, 2016, 81: 14-19.
- [21] 吕晓兰, 傅锡敏, 吴萍, 等. 喷雾技术参数对雾滴沉积分布影响试验[J]. 农业机械学报, 2011, 42(6): 70-75.
- [22] 陈盛德, 兰玉彬, BRADLEY K F, 等. 多旋翼无人机旋翼下方风场对航空喷施雾滴沉积的影响[J]. 农业机械学报, 2017, 48(8): 105-113.
- [23] 马畅, 刘新刚, 吴小虎, 等. 农田土壤中的农药残留对农产品安全的影响研究进展[J]. 植物保护, 2020, 46(2): 6-11
- [24] 赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策[J]. 土壤, 2017, 49(3): 417-427.
- [25] 戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008, 34(6): 124-127.
- [26] 陈玲莉, 谢壮宁. 渐扩管内流动特性的理论分析与试验研究[J]. 风机技术, 1994, 36(2): 13-17.
- [27] 全国农业机械标准化技术委员会. GB/T 17997—2008 农药喷雾机 (器) 田间操作规程及喷洒质量评定[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2008.
- [28] 邱威. 自走式果园风送定向喷雾机的研制与试验[D]. 南京: 南京农业大学, 2012.
- [29] 全国农业机械标准化技术委员会农业机械化分技术委员会、NY/T 992—2006 风送式果园喷雾机作业质量[S]. 北京: 中华人民共和国农业部, 2006.
- [30] 陈炳太,郑永军,江世界,等. 果园施药机械资源消耗水平评价模型研究[J]. 农业机械学报, 2020, 51(S2): 289-297.

【责任编辑 庄 延】