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Abstract: [Objective] The goal of this study is to analyze the protein structure of Medicago truncatula
MtTOCla, explore the biological function of MtTOCla in the circadian clock system, and compare its
similarities and differences in function with its ortholog 4tTOCI in Arabidopsis thaliana. [Method] The
orthologous genes of TOC! in Medicago were identified through bioinformatics analysis, the expression vector
of MtTOC1a gene was constructed and introduced into Arabidopsis wild-type Col and the corresponding loss-of-
function mutant focl-2 by Agrobacterium mediated method for genetic complementation analysis. Both

MtTOCla and MtTOCI1b have conserved functional domains and protein structures. The genetic analysis
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indicated that during early photomorphogenesis, exogenously transformed M:TOCla fully restored the

hypocotyl elongation phenotype of foc/-2, but had no significant effect on the premature flowering phenotype of

tocl-2. In the CAB::LUC reporter lines, MtTOC!a lengthened the period of the short period mutant toc/-2 under

continuous light conditions, yet the mutant could not fully recover to the wild-type level.

[ Conclusion]

MtTOCla and AtTOCI have similar functions, but their roles in drownstream pathways are still different. The

results provide a theoretical basis for further exploring the function of M¢tTOC1a gene and using MtTOCla gene

to modify the important traits in Medicago.
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Table 1 The primers used for cloning vector construction

e EIL/EA S SIS (5'—3")
Gene Primer name Primer sequence
MtTOCla MtTOCla-F CTGATCATGGAGAGTGAAGGGTTTGATTTG
MtTOCla-R TTGCTCACCATAGCATCCCTCGGAGAGTAATCTC
AtTOCI AtTOClpro-F CTCGGTACCCGGGGATCCGAGATCGCTCGGCTCAACAA

AtTOClpro-R

TTCACTCTCCATGATCAGATTAACAACTAAACCCACACA

Yy, UL R 7 DNA HBRE 3 4¢tTOCT W8 3+
JBL. PCR P44 10 o/L B IEREEERS FE K, F)
F DNA #t i s ik IR &t B i 217 14T D11
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Fig. 1 Phylogenetic tree analysis and domain prediction of PRR family genes in Arabidopsis thaliana and Medicago

truncatula
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The PR domain overlaps with the dark blue region with a confidence score of (pLDDT) =90, showing a barrel-like structure composed of multiple strands
of & helices and f folds; The CCT domain overlaps with the light blue/yellow region with 90> pLDDT =50, forming a scissor-like structure with two « helices
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Fig. 2 3D protein structures of MtTOC1a, MtTOC1b and AtTOCI1 predicted by the AlphaFold project
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Fig.3 Construction of MtTOC1a expression vector
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A: The hypocotyl length phenotypes of 7-day-old seedlings; B:The
flowering time phenotypes under short-day conditions
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Fig. 4 Phenotypes of transgenic plants with MtTOCla
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Fig.5 Quantification analysis of the phenotypes of
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A: The bioluminescence rhythm of transgenic Arabidopsis plants with MtTOCla under continuous light condition, n=16, all plants in the figure carried a
CAB:: LUC reporter gene, the daily rhythm cycle of corresponding plants was indicated in parentheses, light gray represents subjective night; B: Quantification
of the circadian rhythm period and relative amplitude error of plants in A, and the smaller the relative amplitude error value, the stronger the rhythmicity of the

plant
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Fig. 6 Circadian rhythm analysis of transgenic plants with MtTOCla
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