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Abstract: [ Objective] Eukaryotes use autophagy pathway to recycle nutrients by degrading misfolded
proteins or damaged organelles. This study aims to analyze the function of Medicago autophagy genes in plant
response to nutritional stress, and provide a reference for the breeding and improvement of Medicago.

[ Method] We focused on the ATG7 gene (Autophagy-related gene 7), which serves as the rate-limiting gene in
the autophagy pathway, and investigated the similarities of ATG7 amino acid sequences among different plant

species. The overexpression vector of Medicago truncatula MtATG7 gene was transformed to Arabidopsis
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thaliana, to generate the heterologous overexpression lines 35S::MtATG7 and the complementary lines

atg7/35S::MtATG7. The plant resistance to stress and autophagic activity were analyzed. [Result] Under

carbon starvation, azg7/35S::MtATG?7 rescued the phenotype of premature leaf senescence of azg7 mutant, and

the survival rates of 35S::MtATG?7 and atg7/35S::MtATG7 plants were significantly higher than that of wildtype.

GFP-ATG8e cleavage assay suggested that atg7/35S::MtATG?7 restored the deficiency of autophagic degradation

activity in atg7 mutants. Under nitrogen starvation, overexpression of MtATG7 also slowed down the senescence

rate of 4. thaliana leaves. [ Conclusion] Heterologous overexpression of MtATG7 can enhance the resistance of

A. thaliana under carbon and nitrogen starvation, which provides a theoretical basis for further improving

Medicago agronomic traits by using MtATG7 gene.

Key words: Autophagy; MtATG?7; Carbon starvation; Nitrogen starvation; Medicago truncatula; Arabidopsis

thaliana; Heterologous overexpression
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Table 1 Specific primers used for PCR

Elk =i EIEZEA FFHI(5'—3")
Primer type Primer name Primer sequence
H 519 MtATG7-F  gaacacgggggactGGATCCATGGCTTTGCTCCAATTTAT
Target gene primer MtATG7-R AATGTTTGAACGATCTGCAGTCATATTTCAAAACAATCTT
[ W SRARAR K E 51 W) atg7-F TCTCTTGTTGGTCAAGCCTC
Autophagy mutant identification primer atg7-R CATTGTTGGTCTAGAGTTCG
LBl GCCTTTTCAGAAATGGATAAATAGCCTTGCTT
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Fig. 1 Phylogenetic tree analysis and domain prediction of A7G7 gene from different species
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A: Cloning of MtATG?7 gene in Medicago; B: Colony PCR results of 35S::MtATG7 overexpression vector, M: Trans2KPlus II DNA Marker, 1-10: Colony;

The target band size is about 2097 bp
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Fig.2 Construction of MtATG?7 overexpression vector
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A Col MtATG7-OX#1 MtATG7-OX#2
atg7 atg7/ atg7/
MATG7#1  MtATG7#2
atg7/
B Col atg7 MATG7#1

Col MtATG7-OX#1 MtATG7-OX#2

atg? atg7/ atg7/
MIATG7#1  MIATG7#2

atg7/

MATG7#2  MtATG7-OX#1 MtATG7-OX#2

A: Phenotypes for 11-day-old wild-type Col, autophagy mutant atg7, and transgenic atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, MtATG7-OX#2
Arabidopsis seedlings after transferred to sugar-free 1/2MS medium and cultured under dark conditions for 9 days; B: After 9 days of carbon starvation stress,

two seedlings from each line were photographed; Scale bar = 5 mm
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Fig. 3 MtATG?7 promotes resistance to carbon starvation in transgenic Arabidopsis

mm Col mm qrg7 wm atg7/MIATG7#1 w= atg7/MtATG7#2
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1.0

N g 4
e N o]

w (M4 (mg-g)
Chlorophyll content

e
o

0
AbHE R Mg 9d
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Kb Treatment

B TR AEZE, n=8; MR BAE T 05 AR /NS T BER R
Bk R0 275 (P<0.05, LSD %)

Data are means + SDs, n=8; Different lowercase letters on bars of the
same treatment indicate significant differences among strains (P<0.05, LSD
test)
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Fig.4 Chlorophyll content of Arabidopsis seedling before
and after carbon stress
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Bl b g B 0 3 BT AE B Col B MR R ALK arg7 LA K 5 A
atg7/MtATG7#1. atg7/MtATGH2. MIATG7-OX#1. MtATG7-OX#2 i 7%
TR B AL 7 d, KSR 8 d 5 IR TS HfR=1 cm

3-week-old Arabidopsis seedlings of wild type Col, autophagy mutant
atg7, and transgenic lines atg7/MtATG7#1, atg7/MtATGH#2, MtATG7-OX#l1,
and MtATG7-OX#2 were treated in the dark for 7 days, and the phenotypes
after 8 days of recovery under light are shown in the figure; Scale bar =
1cm
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Fig.5 MtATG7 promotes survival of transgenic
Arabidopsis under carbon starvation
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The survival rate of each strain after 8 days of light recovery are
calculated; Different lowercase letters on bars indicate significant
differences among strains (P<0.05, LSD test)
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Fig. 6 Survival of Arabidopsis seedlings after carbon stress
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Yo 1) Rubisco 25 H

Western blot was used to detect the GFP cleavage activities of GFP-
ATG8e, atg7-3/ ATGSe and MtATG7/atg7-3/ATG8e; Rubisco protein with
ponceau staining was used as the loading control

El7 MATG7 EHETT atg7 RN BRI RE
Fig.7 MtATG?7 restores autophagy activity of azg7 mutant

in Arabidopsis

2.6 TRIE MIATG7 MFIRINESBMItRTE

B 11 d B MIATG7 i Rk ER 2
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(Kl 8. 9). 1 HAMEFE atg7/MtATG7 M4 R &8
R A= RUAHGE, VLB MATG7 GERS IR arg7 37844k
FIokb R (K 9). Hd arg7/MtATG7#1 F
MtATG7-OX#1 MR REGRELB G, LA

Col MIATG7-OX#1 MtATG7-OX#2

atg7 atg7/ atg7/
MIATG7#1  MtATG7#2

atg7/

MATG7#2  MtATG7-OX#1 MtATG7-OX#2

AR 11 d METARY Colv FWRRAZAAE atg7 VAR FEHER atg7/MIATG7#1. atg7/MtATG#2 MtATG7-OX#1. MtATG7-OX#2 ) FE T+ %t # N

1/2MS £ 3r 31595 7 d JG IR A, B: £ 2UMHa

A: Phenotypes for 11-day-old wild-type Col, autophagy mutant azg7, and transgenic atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, MtATG7-OX#2
Arabidopsis seedlings after transferred to nitrogen-deficient 1/2MS medium and cultured for 7 days; B: After 7 days of nitrogen starvation stress, two seedlings

from each line were photographed; Scale bar = 5 mm
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Fig. 8 MtATG7 promotes resistance to nitrogen starvation in transgenic Arabidopsis
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Data are means + SDs, n=8; Different lowercase letters on bars of the
same treatment indicate significant differences among strains (P<0.05, LSD
test)
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and after N stress
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