基于调制荧光检测技术的柑橘黄龙病诊断
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金青年基金(31201129); 广东省科技计划项目(2015B050501009); 江苏省现代农业装备与技术协同创新项目(NZXT01201403); 华南农业大学人才引进项目(K14018)


Citrus Huanglongbing detection based on modulation chlorophyll fluorescence measurement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    【目的】实现柑橘黄龙病的及时诊断,防止病情扩散、保障柑橘生产。【方法】运用基于调制荧光检测技术的超便携式调制叶绿素荧光仪MINI-PAM获取柑橘 Citrus reticulata 叶片荧光参数,通过概率神经网络对荧光数据进行建模及分类处理,以鉴定并区分健康的、非黄龙病黄化的以及黄龙病的柑橘植株。【结果】该方法对所有类别的诊断准确率均高于76.93%,有些类别分类准确率甚至可达100%。【结论】基于概率神经网络的柑橘黄龙病调制荧光检测技术用于鉴别柑橘黄龙病病情具有一定的可行性和推广性。

    Abstract:

    【Objective】 To diagnose citrus Huanglongbing(HLB) timely to prevent citrus production from the spread of the disease. 【Method】 A detection method of citrus HLB based on modulation chlorophyll fluorescence measurements was investigated. Fluorescence parameters were extracted from MINI-PAM, and analyzed by probability neural network (PNN) model and classification to distinguish among healthy citrus, HLB-infected citrus and etiolated citrus due to non-HLB problems. 【Result】 The average detection accuracy for different classes of citrus symptoms was above 76.93%, and that for some classes even reached 100%. 【Conclusion】 It is feasible to use the modulation chlorophyll fluorescence measurement combined with PNN model to detect citrus HLB.

    参考文献
    相似文献
    引证文献
引用本文

邓小玲,林亮生,兰玉彬.基于调制荧光检测技术的柑橘黄龙病诊断[J].华南农业大学学报,2016,37(2):113-116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2015-06-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-02-02