肌肉生成抑制因子多克隆抗体的制备与鉴定

马现永, 曹永长, 马静云, 毕英佐 (华南农业大学 动物科学学院, 广东 广州510642)

摘要:运用纯化的肌肉生成抑制因子(myostatin, 简称 MSTN)蛋白为免疫原制备弗氏佐剂疫苗, 主动免疫健壮的雄性 青年家兔以制备抗血清,运用饱和硫酸胺沉淀法对所制备的抗血清成功地进行粗提. Western Blot 和 ELISA 检测结 果是: 当抗原质量浓度为 $20 \,\mu_{\text{g/mL}}$ 抗体稀释 800 倍时, 所测的 P/N 仍大于 2 证明抗体的制备是成功的, 抗体效价 为 1:12 800, 且特异性较高. 抗体稀释 400 倍时, 血清抗体 D450 mm值为 0. 624, P/N 值为 5. 552.

关键词: 肌肉生成抑制因子: 多克隆抗体: Western-Blot: ELISA

中图分类号: S856.65

文献标识码: A

文章编号: 1001-411X(2005)03-0089-04

Preparation and identification of polyclonal antiserum against myostatin

MA Xian-yong, CAO Yong-chang, MA Jing-yun, BI Ying-zuo (College of Animal Science, South China Agric. Univ., Guangzhou 510642, China)

Abstract: Oil-emulsion vaccines were prepared using purified MSTN protein, by which the rabbit was immunized four times to obtain MSTN-specifc antibody, which were then purified with ammonium sulfate salting-out procedure. Western-Blot and ELISA assay results showed that when the contentration of antigen was 20 \(\textit{\mathcal{P}}\)g/mL and the dilution factor was 800, the mensured P/N was larger than 2, indicating that preparation of MSTNspecific antibody was successful and the titer of antibody was 1 :12 800. The specificity of the antibody was very high. When the dilution factor of antibody was 400, $D_{450 \text{ nm}}$ was 0.624, P/N was 5.552.

Key words: myostatin; polyclonal antibody; Western-Blot; ELISA

肌肉生成抑制因子(MSTN)是控制骨骼肌生长发 育的重要细胞因子^[1]. 1997年, McPherion等^[2]研究 发现, 敲除此基因的小鼠的肌肉量是正常小鼠的 2~ 3 倍. MSTN 的确对肌肉的生长起负调控作用^{[3}, Bogdanovich 等[4] 通过对小鼠进行皮下注射 MSTN 抗 体,发现小鼠的肌肉营养不良的状况得到很好的改 善,同时也促进了小鼠的生长发育.鉴于此,本研究 运用纯化的 MSTN 蛋白制备多克降抗体, 为检测动物 组织体内的 MSTN 的定量定位研究以及动物的被动 免疫等创造前提条件.

材料与方法

1.1 材料

雄性青年家兔 3只(1.5~2.0 kg), 购自广州第 一军医大学: 纯化的 MSTN 蛋白、重组噬菌体 T- MSTN-O、SOC-MSTN-B 融合蛋白,均为华南农业大学 动物科学学院基因工程实验室制备[5] 并保存.

大肠杆菌裂解液、牛血清白蛋白、瘦素(leptin)蛋 白均为华南农业大学动物科学学院基因工程实验室 保存; 酶标二抗: 辣根过氧化物酶(HRP)标记的羊抗 兔二抗购自鼎国生物科技有限公司: 弗氏佐剂(完 全、不完全)为 Sigma 公司产品; 底物 TMB 购自华美 生物工程公司.

1.2 方法

1.2.1 MSTN 纯化蛋白浓度的测定及其乳化 仪器说明书用分光光度计测定蛋白含量. 疫苗的制 备参照曹永长[6] 所述方法进行: 将纯化的免疫原用 生理盐水稀释至所需浓度,与完全弗氏佐剂(1:2;体 积比)混合,充分乳化.

1.2.2 免疫家兔 免疫程序如下: 背部皮内多点作

收稿日期: 2004-07-28

基础免疫,每间隔 2 周进行加强免疫,共 3 次,最后一次耳静脉注射不加佐剂的 MSTN 纯化蛋白, 2 周后进行心脏采血,分离血清,-20 $^{\circ}$ 保存备用.

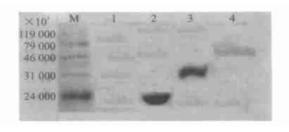
1.2.3 免疫血清抗体的粗提 参照巴德年等⁷的方法,运用饱和硫酸胺沉淀法进行粗提,然后透析除盐.

1.2.6 抗体的特异性检测 用大肠杆菌裂解液、牛血清白蛋白、瘦素(leptin)蛋白、MSTN-Q蛋白等作为包被抗原进行 ELISA 检测(所用抗体稀释 400 倍).

参考高民等[9]的方法进行阻断试验.

1.2.7 不同孵育时间对ELISA 反应的影响 以最适浓度抗原包被酶标板,加入所制备的抗体和阴性血清反应,按ELISA 步骤,采用不同的反应时间[(抗原与一抗,一抗与二抗):(30 min, 30 min),(45 min, 45 min),(45 min, 60 min),(60 min, 60 min),(120 min, 120 min)] 进行试验,选择合适的反应时间.

1.2.8 不同的封闭液对 ELISA 反应的影响 分别用 0.05 g/mL 脱脂奶粉、0.05 g/mL BSA、0.01 g/mL 明胶作 为封闭液, 对比 ELISA 试验结果, 选择最适的封闭液.


2 结果与分析

2.1 抗原浓度的测定

经测定,MSTN 纯化蛋白的质量浓度约为 4.14 mg/ mL.

2.2 多克隆抗体的 Western-Blot 检测

应用 SOC-MSTN-B 融合蛋白、MSTN 纯化蛋白、重组噬菌体 T-MSTN-Q 等不同表达形式的 MSTN 蛋白和空载体 pSOC 的表达产物为对照来制备样品进行 Western-Blot 检测,结果见图 1.

M: 预染色的蛋白质相对分子质量标准 1: pSOC 对照; 2: SOC-MSIN-B 融合蛋白; 3: MSTN 纯化蛋白; 4: 噬菌体 T-MSTN-Q M: prestained relative molecular mass marker; 1: control; 2: SOC-MSIN-B recombinant protein; 3: MSTN purified protein; 4: phage T-MSIN-O

图 1 多克隆抗体的 Western-Blot 检测

Fig. 1 Western-Blot analysis of poly-clonal antibodies

从图 1 中可看出,除空载体 pSOC 转化的细菌表达产物外,其余 3 种不同表达形式的 MSTN 蛋白的抗原均能与抗体进行特异性结合.

2.3 ELISA 反应条件的建立

表 1 MSTN 纯化蛋白与抗体反应的 ELISA 测定(P/N)

Tab. 1 ELISA mensuration of MSTN purified protein and antibody reaction (P/N)

抗原稀释倍数	抗体稀释倍数 dilution factor of antibody									
dilution factor - of antigen	1 :50	1:100	1 :200	1:400	1 :800	1:1 600	1:3 200	1 6 400	1:12 800	1 :25 600
1:5	3. 32	3.65	4. 96	5.18	5. 45	4. 19	3. 55	2.62	2.35	1.82
1:10	3. 44	3.73	4. 77	6.00	6. 26	5.50	4. 13	3.36	3.02	1.57
1:50	4. 19	3.53	4. 66	6.88	7. 22	6.81	4. 90	4. 16	2.75	1.54
1:100	4. 50	3.91	5. 58	7.80	6.71	6.73	4. 54	4.51	2.46	1.31
1:200	4. 15	4.89	5. 81	7.34	7. 99	6.24	2. 98	2.90	2.45	1.26
1:400	3. 45	4.06	4.06	5.36	5. 85	4.88	2. 58	3.25	1.80	1.37
1:800	4. 32	4.00	4. 64	4.94	4. 98	3.59	2. 40	1.82	1.43	1.43
1:1 600	3. 07	4.34	4. 26	4.36	4. 32	3.22	2. 37	1.91	1.30	1.12

用 T-MSTN-Q 作为抗原进行 ELISA 测定, 结果见表 2. 从表 2 中可看出, 当抗体稀释 12 800倍, 抗原稀释 100 倍时, P/N 仍大于 2 1, 抗血清的效价为 1 ·12 800. 当抗原稀释 100 倍, 抗体稀释 400 倍时, P/N 值最大为 8. 41, 所以本试验在上述条件下抗原抗体最适工作浓度为抗体稀释 400 倍, 抗原滴度 $3.6 \times 10^9 \, \mathrm{mL}^{-1}$.

2.3.2 抗体的特异性检测 应用 *E. wli* 裂解液、牛血清白蛋白、瘦素蛋白、T-MSTN-Q 4 种不同的抗原进行 ELISA 测定, 结果见表 3. 从表 3 中可看出, 4 种蛋白中以重组噬菌体 T-MSTN-Q 与抗血清反应所测的

 $D_{450 \text{ mm}}$ 值最高,为 0.624,P/N 值为 5.522, $E. \infty li$ 裂解液、牛血清白蛋白与瘦素蛋白与抗血清反应所测的 P/N 值分别为 1.115、0.962、1.110. 说明所制备的 MSTN 抗体特异地与 MSTN 蛋白结合,与其他物质无交叉反应.

将 MSTN 纯化蛋白抗原进行处理后,进行血清阻断试验,结果见表 4. 从表 4 中可以看出,抗血清在1 800~1:12 800稀释范围内,抗原处理血清的阻断值高于 50%,证明包被的抗原与抗血清之间的结合是特异的.

表 2 以 T-MSIN-Q为包被抗原与抗体进行反应的 ELISA 测定(P/N)

Tab. 2	ELISA	mensuration	of T	-MSTN-Q	and	antibody	reaction	(P /	N)
--------	-------	-------------	------	---------	-----	----------	----------	--------------	---	---

抗原稀释倍数	抗体稀释倍数 dilution factor of antibody								
dilution factor of antigen	1:50	1 :100	1 *200	1:400	1 :800	1:1 600	1 :3 200	1 6 400	1:12 800
1:10	4.63	4. 40	5. 76	6.73	4. 65	6. 84	4. 93	4.49	2. 14
1:100	5.92	6. 56	7. 05	8.41	6.03	4. 68	5. 12	3.86	3. 19
1:1 000	5.33	5. 61	6. 18	6.79	7.08	5. 33	4. 06	4.47	1. 87
1:10 000	6.61	4. 04	5. 14	6.66	4. 76	4. 11	3. 42	2.58	1. 33

表 3 抗体的特异性检测

Tab. 3 Specific detection of antibody

抗原种类	阴性对照组 D _{450 nm} 值	试验组 D _{450 m} 值	P/N	
variety of antigen	control $D_{ m 450~mm}$	experimental $D_{450~\mathrm{m}}$		
E. coli 裂解液 lysate of E. coli	0. 104	0. 116	1. 115	
牛血清白蛋白 bovine serum albumin	0. 106	0. 102	0. 962	
瘦素蛋白 leptin protein	0. 082	0. 091	1. 110	
T-MSTN-Q	0. 113	0. 624	5. 522	

表 4 血清阻断试验

Tab. 4 Interdiction experiment of sera

血清种类	抗原处理	原处理 血清稀释度 dilution of senum					
variety of serum	treated antigen	1:800	1:1 600	1:3 200	1:6 400	1:12 800	
免疫 immunized	未经抗原处理血清	1.023	0.754	0. 582	0. 310	0. 273	
	抗原处理血清	0.423	0.348	0. 194	0. 162	0.095	
对照 control		0. 148	0. 121	0. 120	0. 094	0. 072	

2.3.3 不同孵育时间对抗原抗体反应的影响 采用不同的抗原与抗体反应的时间、不同的抗原抗体复合物与酶标二抗反应的时间结果表明,从缩短整个操作过程和获得较好的效果两方面来考虑,对 MSTN 纯化蛋白采用 (60 min, 60 min)反应时间,对 T-MSTN-0 则采用 (90 min, 90 min)反应时间较好.

2. 3. 4 不同封闭液对抗原抗体反应的影响 分别用 0. 05 g/mL 脱脂奶粉/PBS、0. 01 g/mL BSA/PBS、0. 01 g/mL 的明胶作为封闭液,进行 ELISA 试验,结果以 0. 05 g/L 脱脂奶粉/PBS 封闭效果最好,所以本试验

选择 0.05 g/L 脱脂奶粉/PBS 作为封闭液.

3 讨论

3.1 免疫动物的选择及抗体的制备

免疫对象的合理选择对抗体的制备起非常重要的作用.由于家兔对抗原的反应性好,容易产生高亲和力的抗体,且价格便宜,大小适中,易于饲养,易于采血,故本试验选用年龄为3~4个月、体质量1.5 kg 左右的健康青年公兔作为免疫对象制备抗血清.本试验以在大肠杆菌中表达的,MSTN,融合蛋白的纯化

产物为免疫原制备疫苗免疫家兔,初次免疫是采用多点皮内注射,第2次免疫则采用多点皮下注射,第3次采用多点肌肉注射,第4次采用耳静脉注射的方式,结果成功地获得了高滴度的多克隆抗体.至于应用的抗原量,在一定范围内,抗原剂量越大产生的免疫应答越强,免疫效果也越好,一般为0.5~2.0 mg/kg.但也因不同物质有不同的应用范围,本试验的免疫剂量为1.0 mg/kg.

3.2 多克隆抗体的检测

本文首先采用 Western-Blot 方法对所制备的抗体进行 Western-Blot 检测. 检测结果表明,除空载体pSOC 转化的细菌表达产物外,其余 3 种不同融合形式的 MSTN 蛋白均与抗体进行特异性结合,证明了对MSTN 具有良好的识别能力. 应用 MSTN 纯化蛋白和重组噬菌体 T-MSTN-Q 两种抗原 ELISA 检测抗体的滴度,结果表明当抗体稀释 $1:12\:800$ 时,抗原抗体仍具有较强的反应, P/N > 0.2,由此判断本试验制备的多克隆抗体的效价为 $1:12\:800$.

抗体的特异性检测参考李凤英等^[1] 的试验方法,用不同的蛋白如大肠杆菌裂解液、牛血清白蛋白、瘦素蛋白、重组噬菌体 T-MSTN-Q 等作为抗原进行 ELISA 检测,结果是所制备的抗体与重组噬菌体 T-MSTN-Q 有特异性结合,与其他蛋白无反应.参照高民等⁹ 的方法对抗原进行处理后进行血清阻断试验,结果表明血清阻断值均高于 50%,进一步说明所包被的抗原与抗血清之间的结合是特异的.

3.3 多克隆抗体的应用

理论上,多克隆抗体与抗原反应的特异性可能不如单克隆抗体,但从试验结果看,本文制得的抗MSTN 多克隆抗体特异性很好,完全能够满足基因工程 MSTN 融合蛋白检测的需要.与单克隆抗体相比。多克隆抗体在制备技术及制备周期等方面相对较简便.另一方面,由于多克隆抗体包含了多种作用于MSTN 分子上不同抗原表位的抗体成分,因而与抗原的结合能力强,在MSTN 与载体部分蛋白融合表达的情况下,即使所融合的蛋白覆盖了部分MSTN 的抗原表位,多克隆抗体仍能与另一些暴露的抗原表位结合,因而多抗的适用性往往比单抗强.本研究用纯化

的MSTN 融合蛋白制备多克隆抗体,为MSTN 的机制研究以及进一步的 MSTN 抑制药物的研发提供了重要的试验材料,为临床研究和基础研究提供了重要的检测工具.另外,MSTN 抗体还可以用来制备免疫亲和层析柱,还可应用于 Western-Blot、免疫荧光、免疫组化等试验检测手段 ¹²,具有广阔的应用前景.

参考文献:

- [1] McPHERRON A C. LEE S J. Doube muscling in cattle due to mutations in the myostatin gené J. Proc Nati A cad Sci USA, 94(23): 12 457—12 461.
- [2] McPHERRON A G. LAWLER A M, LEE S J, et al. Regulation of skeletal muscle mass in mice by a new TGF β superfamily member J]. Nature, 1997, 387: 83–90.
- [3] THOMAS M, LANGLEY B, BERRY C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation [J]. J Biol Chem, 2000, 275 (51): 40 235-40 243.
- [4] BOGDANOVICH S, KRAG T O, BARTON E R, et al. Functional improvement of dystrophic muscle by myostatin blockade
 [J]. Nature, 2002, 420 (6 914): 418—421.
- [5] 马现永. 肌肉生长抑制素基因的克隆、表达及免疫原性研究 Dj. 广州. 华南农业大学动物科学学院, 2004.
- [6] 曹永长. IBDV 结构蛋白在 T4 噬菌体 SOC 位点的展示 [D]. 广州: 华南农业大学动物科学学院, 2002.
- [7] 巴德年. 当代免疫学技术与应用[M]. 北京: 北京医科大学中国协和医科大学联合出版社, 1998. 56—70.
- [8] 汪家政,范 明. 蛋白质技术手册[M]. 北京: 科学出版 社, 2000. 166—183.
- [9] 高 民,刘晓松,杨玉莹,等. 牛重组型生长激素抗独特型抗体的产生与鉴定[1]. 内蒙古畜牧科学,1999,1:1—
- [10] 吕文发,赵 静,卢广林,等.猪肌肉生长抑制素 C 端 88 氨基酸肽抗体制备[J]. 吉林农业大学学报,2003,25 (3):332—334,342.
- [11] 李凤英, 陈名道, 顾卫琼, 等. 人瘦素单克隆抗体的制备及初步应用[J]. 放射免疫学杂志, 2000, 13(1): 14—
- [12] 顾志良, 朱大海, 李 宁, 等. 鸡 myostatin 基因单核苷酸多态性与骨骼肌和脂肪生长的关系[J]. 中国科学(C辑), 2003, 33(3); 273—280.

【责任编辑 柴 焰】