2. 红云红河集团 红河卷烟厂,云南 弥勒,652300;
3. 广东省烟草公司 南雄市公司,广东 南雄,512400;
4. 广东省烟草南雄科学研究所,广东 南雄,512400
2. Honghe Cigarette Factory, Hongyun Honghe Group, Mile 652300, China;
3. Nanxiong Tobacco Company of Guangdong Province, Nanxiong 512400, China;
4. Nanxiong Science Research Institute of Guangdong Province Tobacco, Nanxiong 512400, China
近年来浓香型烤烟Nicotiana tabacum L.风格弱化和特色优质烟叶供应不足已成为我国烟草行业的一个重大问题,直接制约品牌卷烟上升水平。有研究表明烤烟品质受品种、栽培技术、烘烤工艺和生态条件等多种因素影响,其中生态条件对烤烟质量的贡献率高达56%[1],是特色烟叶形成的重要基础[2-3]。气候和土壤是影响烤烟质量与风格特征的两大生态因子,但目前仍不清楚二者是如何影响烟叶风格特征的[4]。蔡永占等[5]指出,在不同的生态试验点,丽江的气候条件更利于烟叶碳水化合物的积累。赵福杨等[6]报道在不同类型土壤条件下种植的烤烟,其化学成分存在显著差异,其中沙质土种植的烤烟,其化学成分较为协调。王海涛[7]指出,河南烟区不同日照、降水和温湿度条件对烟叶化学成分存在不同的影响。国内其他烟区也有关于生态条件对烤烟质量影响的研究报道,但将气候因子和土壤因子结合起来的研究报道较少,结果也不一致[8-10]。
南雄烟区是我国著名的浓香型优质烟叶产区之一,所产烟叶以浓香型、高香气的调香为主[11]。现有文献虽然对南雄烟区的生态条件进行了全面的评价[12],但并未指出气候和土壤因子影响烟叶品质及风格特征形成的作用机理,因此开展相关的研究迫在眉睫。本文根据2个不同生态亚区帽子峰与古市生态条件和地域的微观差异,在两地互相置换相同质地土壤,研究土壤和气候条件对不同生育时期烟叶光合特性参数和烤后烟叶化学成分的影响,探讨影响浓香型烤烟风格特征的关键生态因子,为浓香型特色优质烟叶开发提供参考和依据。
1 材料与方法 1.1 试验材料供试烤烟品种为‘粤烟97’,浓香型,由广东省烟草南雄科学研究所提供。
1.2 试验点生态条件试验于2015—2016年连续2年在广东省南雄市帽子峰镇和古市镇同时进行,试验田块相对平坦,有代表性,排灌方便,前茬为水稻。供试土壤类型均为沙泥田,基本理化性质如表1所示。
![]() |
表 1 土壤基本理化性质1) Table 1 The basic physicochemical property of soil |
南雄属于中亚热带季风湿润气候,四季分明,年平均气温19.7 ℃,年降水量1 550 mm,年日照1 850 h,无霜期293 d[13]。2个试验点虽处于相同生态区,但地形和海拔有所差异,帽子峰山地环绕,海拔375 m,古市以平原为主,海拔121 m。2016年烤烟不同生育期的大田气象资料如表2所示,数据由广东省南雄市气象局提供。
![]() |
表 2 2016年烤烟不同生育期的大田气象资料 Table 2 Meteorological data during field growth period of tobacco in 2016 |
采用随机区组设计,以土壤和气候为试验因素,采用置换土壤的方法,设置4个处理。T1:将帽子峰沙泥田土壤置换到古市,在古市气候条件下种植烤烟;T2:在古市沙泥田土壤和古市气候条件下种植烤烟;T3:将古市沙泥田土壤置换到帽子峰,在帽子峰气候条件下种植烤烟;T4:在帽子峰沙泥田土壤和帽子峰气候条件下种植烤烟。每个处理重复3次,共12个小区,每个小区种植烤烟30株,小区四周设保护行。土壤置换方法是分别在帽子峰和古市选择相同土壤质地的沙泥田,各试验小区按长5.0 m、宽4.0 m、深0.3 m的规格挖坑,将2个试验点各小区土壤各取30 cm深,耕作层与犁底层分层挖出,2层土壤同时互换,在分层依序回填之前先铺黑色地膜,地膜底部钻洞便于排水。试验烟苗分别于2015、2016年的2月20日移栽,田间管理统一按当地优质烟叶生产技术标准进行,烟叶采烤按照烟叶成熟标准和密集烘烤工艺[14]操作。由于2015—2016年连续2年试验结果相似,本文以2016年试验结果为例。
1.4 测定项目及方法 1.4.1 光合特性参数采用LI-6400便携式光合测定系统(LI-COR,美国)分别在移栽后30、40、50、60和70 d的10:00—12:00选取中部叶测定叶片气孔导度、蒸腾速率、胞间CO2浓度和净光合速率,每个处理重复3次。
1.4.2 常规化学成分每个处理分别选取烤后不同部位烟叶(上部叶、中部叶和下部叶)测定化学成分含量。烟碱含量采用分光光度法[15]测定;可溶性总糖和淀粉含量采用蒽酮比色法[16]测定;还原糖含量采用3,5−二硝基水杨酸(DNS)比色法[16]测定;钾含量采用火焰光度计法[16]测定;总氮含量采用凯氏自动定氮仪CID-310(Foss,瑞典)测定。
1.5 数据处理及分析采用Excel 2013整理数据,Origin Pro 9.1制图,使用SPSS 21.0进行数据统计分析。土壤、气候及二者互作的贡献效果检验采用主效应分析法,同时引入偏Eta平方值Pη2解释分析结果,0.01<Pη2≤0.06表示低度影响效应,0.06<Pη2≤0.16表示中度影响效应,Pη2>0.16表示高度影响效应[17]。为保证数据独立性的要求,对相同处理不同部位烟叶化学指标取算数平均值后再进行双因素方差分析,以显著水平P=0.05为自变量取舍的临界值。
2 结果与分析 2.1 不同生态亚区土壤和气候条件对烟叶光合特性的影响从图1可以看出,不同生态亚区土壤和气候条件对烟叶光合特性参数有显著影响。各处理气孔导度均呈先缓升再陡降后缓降的趋势,在移栽50 d左右达到峰值,整体来看,T1处理气孔导度最大,其次为T2、T3,T4最小。蒸腾速率均呈先缓升后陡降的趋势,移栽50 d之前T2处理高于T1,移栽50 d之后T2下降速率高于T1,最终T2的蒸腾速率低于T1。胞间CO2浓度均呈先降低后升高的趋势,在移栽50 d时达最小值,整体来看,在移栽50 d之后T1、T2、T3和T4处理的胞间CO2浓度依次升高。净光合速率变化趋势与胞间CO2浓度完全相反,呈陡升–缓升–缓降–陡降的趋势,各处理变化趋势的走向趋于平行,在移栽50 d时达最大值,T1处理净光合速率为21.80 μmol·m–2·s–1,T2为21.03 μmol·m–2·s–1,T3为19.16 μmol·m–2·s–1,T4为18.82 μmol·m–2·s–1。T1与T2、T3与T4处于相同气候条件不同土壤条件,移栽50 d时,T1处理的净光合速率比T2高3.66%,T3比T4高1.81%;T1与T4、T2与T3处于相同土壤条件不同气候条件,移栽50 d时,T1处理的净光合速率比T4高15.83%,T3比T2低8.89%。
![]() |
图 1 不同生态亚区土壤和气候条件对烤烟光合特性的影响 Fig. 1 Effects of soil and climate on photosynthetic traits of tobacco in different ecological subregions |
将土壤和气候条件作为分组因素进行主效应分析,结果见表3。不同土壤条件下烟叶光合特性参数(气孔导度、蒸腾速率、胞间CO2浓度和净光合速率)均差异不显著(P≥0.177),对应的Pη2均小于0.06,表明土壤条件对烟叶光合特性参数影响很弱;不同气候条件下烟叶光合特性参数差异均达到极显著水平(P<0.01),对应的Pη2均大于0.16,表明气候条件对光合特性参数具有高度影响;在土壤与气候互作条件下只有气孔导度的差异达极显著水平(P=0.001),Pη2=0.237,蒸腾速率、胞间CO2浓度和净光合速率的差异未达显著水平(P>0.05),Pη2≤0.065,表明土壤与气候互作对气孔导度影响较强,对蒸腾速率、胞间CO2浓度和净光合速率影响较弱。综上所述,影响烟叶光合特性参数的主要因素是气候,其次是土壤与气候互作,土壤因素相对较弱。
![]() |
表 3 不同生态亚区土壤与气候及其互作对烟叶光合特性的主效应分析 Table 3 Analyses of main effects of soil, climate and their interaction on photosynthetic characteristics of tobacco leaves in different ecological subregions |
从表4可以看出,与T3、T4处理相比,T1、T2烤后烟叶的化学成分含量及其协调性更趋于浓香型优质烟叶的最适范围。在中部叶中,T1处理的总糖、还原糖和淀粉含量分别比T2低5.74%、4.77%和10.73%,差异均达到显著水平(P<0.05)。各处理的烟碱质量分数在1.83%~3.16%之间,其中T1处理上、中、下部叶的烟碱含量分别显著高于T2处理8.59%、6.49%、5.41%(P<0.05)。各处理K+质量分数在1.95%~2.81%范围内波动,T1处理中部叶的K+含量比T2高11.07%(P<0.05),上部叶和下部叶各处理间K+含量差异均不显著。各处理总氮质量分数在1.58%~2.47%之间,T1处理上部叶的总氮含量比T2低5.67%,中部叶的总氮含量比T2高11.34%,且差异显著(P<0.05)。各处理淀粉质量分数在3.65%~5.52%之间波动,除了T3、T4处理上部叶和T3处理中部叶的淀粉质量分数大于5%外,其他处理的淀粉质量分数均小于5%。各处理糖碱比和氮碱比分别在6.86~9.89和0.75~0.90范围内波动,均落在浓香型优质烟叶的最适范围,化学成分协调性较好。
![]() |
表 4 不同生态亚区土壤和气候条件对烤后烟叶化学成分含量及其协调性的影响1) Table 4 Effects of soil and climate on chemical constituent contents and coordinations of flue-cured tobacco leaves in different ecological subregions |
将土壤与气候条件作为分组因素进行主效应分析,结果如表5所示。在不同土壤条件下烤后烟叶K+和总氮含量以及糖碱比差异显著(P<0.05),Pη2均大于0.16,表明土壤对K+和总氮含量及糖碱比具有显著影响;其他指标均差异不显著(P>0.05),其中总糖的Pη2小于0.06,其余在0.06~0.16之间,表明土壤对总糖含量影响较小,对其他指标有一定影响。在不同气候条件下K+含量和糖碱比差异不显著(P>0.05),其他指标的差异均达到显著水平(P<0.05),从Pη2来看,气候对糖碱比影响较小,对K+含量有一定影响,对其他指标有显著影响。在土壤与气候互作条件下除总糖和K+含量以及糖碱比差异不显著(P>0.05)外,其他指标的差异均达到显著水平(P<0.05),根据Pη2来看,土壤与气候互作对还原糖、烟碱、总氮和淀粉含量及氮碱比有显著影响,对总糖和K+含量及糖碱比有一定影响。
![]() |
表 5 不同生态亚区土壤与气候条件及其互作对烤后烟叶化学成分含量及其协调性的主效应分析 Table 5 Analyses of main effects of soil, climate and their interaction on chemical constituent contents and coordinations of flue-cured tobacco leaves in different ecological subregions |
![]() |
将烤烟各生育期气候因子与烤后烟叶化学成分含量进行相关性分析,结果如表6所示。总糖含量与旺长期平均气温呈极显著负相关,还原糖含量与伸根期和旺长期降水量呈显著负相关,烟碱含量与伸根期降水量呈显著正相关,总氮含量与伸根期平均气温呈显著负相关,糖碱比与旺长期平均气温呈显著正相关,氮碱比与伸根期降水量呈显著正相关。上述相关性分析结果表明,影响烤后烟叶化学成分含量及协调性的主要气候因子是伸根期与旺长期的降水量和平均气温。
![]() |
表 6 不同生态亚区气候因子与烤后烟叶化学成分含量的相关性分析1) Table 6 Correlation analyses between climate factors and chemical constituent contents of flue-cured tobacco leaves in different ecological subregions |
光合作用是物质同化作用的主要过程,是植物生理代谢过程中重要有机物质的来源,净光合速率是衡量植物光合作用强弱的重要指标[18]。金云峰等[19]在烟草不同生育期叶片光合作用的研究中发现,移栽后至团棵期,烟叶的净光合速率逐渐升高,团棵期至现蕾期,净光合速率趋于平稳,成熟期急剧下降。柯学等[20-21]提出烟叶净光合速率变化曲线呈“抛物线”型。本研究发现,浓香型烟区大田生育期烤烟叶片的净光合速率呈“陡升–缓升–缓降–陡降”的趋势,这与前人[19-21]有关研究结果相似。有研究指出种植措施、光照、品种、肥料和温度等因素都会影响植物光合作用的强弱[22-23],将气候和土壤结合起来研究其对光合作用影响的报道比较少见。本研究发现影响烤烟光合特性的主要生态因子是气候,将帽子峰土壤置换到古市(T1处理)后种植的烟叶的净光合速率比在帽子峰当地土壤和气候条件(T4处理)下种植的烟叶高15.83%,将古市土壤置换到帽子峰(T3处理)后种植的烟叶的净光合速率比在古市当地土壤和气候条件(T2处理)下种植的烟叶低8.89%,即在相同土壤和不同气候条件下,古市生态亚区烟叶的净光合速率高于帽子峰烟叶,说明古市的气候条件可能更适合浓香型优质烟叶的生产。与帽子峰相比,移栽期古市降水丰富,月平均气温略高1~2 ℃,大田生育期日照时数接近500 h,成熟期在300 h以上,气候条件的微观差异可能是古市烟叶光合特性优于帽子峰烟叶的主要原因。将帽子峰沙泥田土壤置换到古市种植烟草,能够提高烟草光合作用水平,为后期有机物的积累奠定基础。
化学成分是影响烟叶内在品质的物质基础。一般认为,浓香型优质烟叶化学成分含量的适宜范围是总糖质量分数16%~23%,还原糖质量分数14%~18%,淀粉质量分数≤5%,总氮质量分数1.5%~2.3%,烟碱质量分数1.5%~3.5%,K+质量分数≥2.0%,糖碱比6~10,氮碱比<1[4, 24]。本研究2个试验点烤后烟叶的化学成分含量及其协调性接近浓香型优质烟叶范围,在古市种植的烟叶化学品质特征优于在帽子峰种植的烟叶。王行等[25]指出南雄产区烟叶浓香型风格特征弱化主要表现为中部叶含糖量大幅提升,烟碱含量下降。本研究发现,对中部叶来说,将帽子峰沙泥田土壤置换到古市(T1处理)后种植的烟叶与古市当地(T2处理)种植的烟叶相比,总糖和还原糖含量分别降低了5.74%和4.77%,烟碱含量提高了6.49%,达到了降糖升碱的效果,符合低糖、中烟碱的优质浓香型烟叶质量特征。因此,将帽子峰沙泥田土壤置换到古市种植烟叶能够改善烟叶化学成分及协调性,彰显浓香型风格特征。
国内外研究发现,土壤、气候及耕作条件对烟叶化学品质特征有显著影响[26-27],本研究在耕作条件一致的前提下发现,气候对总糖、还原糖、淀粉、烟碱和总氮含量及氮碱比有高度影响;土壤与气候互作对还原糖、淀粉、烟碱和总氮含量及氮碱比有高度影响,对总糖和K+含量及糖碱比有中度影响;土壤仅对K+和总氮含量及糖碱比有高度影响。这与黄爱缨等[26]和彭新辉等[28]研究结果相近。综上所述,影响烟叶化学品质的主要生态因子是气候条件,其次是土壤与气候互作。本研究将气候因子与烤后烟叶化学成分含量及协调性进行相关性分析发现,影响烟叶内在化学品质的主要气候因子是伸根期与旺长期的降水量和平均气温,这与王育军等[29]和李琦等[30]的研究结果有相似之处。
蔡雪娇等[31]和母少东等[32]在对相同生态区域烤烟品质的研究中指出,土壤对烟叶浓香型风格特征的形成有显著影响。本研究发现,气候是影响烤后烟叶品质及浓香型风格特征的主要因子,土壤的作用相对较弱。上述文献[31-32]的试验点均选在相同海拔和气候条件下,本研究的2个试验点只在相同生态区域,海拔不同,气候条件也存在微观差异,通过主效应分析和相关性分析得出,影响烤烟品质的主要生态因素是气候因子,尤其是伸根期与旺长期的降水量和平均气温。古市生态亚区降水呈“前中期多、后期少”的特点,这种独特的降水分布正是影响烟叶品质的重要因素。南雄烟区烟苗移栽时间一般在2月底3月初,降水充足,土壤底墒高,有利于烟苗成活。成熟后期(6月)降水适量减少,烟叶能够正常成熟落黄,有利于干物质及油分的积累。
本研究根据不同生态亚区土壤与气候条件的微观差异展开对烤烟品质及浓香型风格特征形成的探讨,运用主效应分析、Pη2和相关性分析等科学统计方法解释分析结果,得出了相关结论。本试验仅选取了降水量、平均气温和日照时数这3个代表性指标作为气候因子,后续研究中还需考虑相对湿度、蒸发量和海拔等因子的影响。总之构建浓香型特色烟叶生产技术体系时要综合考虑气候、土壤和地理等多方面因素的影响。
[1] |
周越, 周冀衡, 范幸龙, 等. 云南保山高海拔地区不同烤烟品种适宜性分析[J]. 中国农学通报, 2014, 30(1): 254-257. ( ![]() |
[2] |
邵丽, 晋艳, 杨宇虹, 等. 生态条件对不同烤烟品种烟叶产质量的影响[J]. 烟草科技, 2002(10): 40-45. DOI:10.3969/j.issn.1002-0861.2002.10.010 ( ![]() |
[3] |
许自成, 刘国顺, 刘金海, 等. 铜山烟区生态因素和烟叶质量特点[J]. 生态学报, 2005, 25(7): 1748-1753. DOI:10.3321/j.issn:1000-0933.2005.07.031 ( ![]() |
[4] |
李旭华, 何传国, 陈建军, 等. 广东浓香型特色烟叶关键生产技术理论与应用[M]. 广州: 华南理工大学出版社, 2011.
( ![]() |
[5] |
蔡永占, 周普雄, 张柳, 等. 不同气候条件对" 云烟87”旺长期叶片光合速率及蛋白表达的影响[J]. 中国烟草学报, 2015, 21(1): 39-48. ( ![]() |
[6] |
赵福杨, 张耸, 钱宇, 等. 不同土壤类型对烤烟化学成分及其协调性的影响[J]. 安徽农业科学, 2016, 44(20): 38-41. DOI:10.3969/j.issn.0517-6611.2016.20.013 ( ![]() |
[7] |
王海涛. 河南烟区气候因素特征及对烟叶化学成分的影响与调控[D]. 郑州: 河南农业大学, 2013.
( ![]() |
[8] |
郭治兴, 陈泽鹏, 王静, 等. 广东省烟草土壤生态适宜性评价[J]. 中国烟草科学, 2011, 32(4): 75-80. DOI:10.3969/j.issn.1007-5119.2011.04.017 ( ![]() |
[9] |
邓明军, 石媛媛, 高华军, 等. 广西靖西烟区烤烟种植生态适宜性分析[J]. 江西农业学报, 2017, 29(8): 86-90. ( ![]() |
[10] |
胡蓉花, 付宗仁, 凡中良, 等. 吉安烟区生态因素及植烟应对措施分析[J]. 安徽农业科学, 2015, 43(27): 61-63. DOI:10.3969/j.issn.0517-6611.2015.27.024 ( ![]() |
[11] |
刘丽, 文俊, 林锐锋, 等. 浓香型烟叶特征及影响因素研究进展[J]. 安徽农业科学, 2010, 38(18): 9504-9506. DOI:10.3969/j.issn.0517-6611.2010.18.048 ( ![]() |
[12] |
谢晓斌, 陈永明, 王军, 等. 南雄烟区生态条件分析[J]. 中国烟草科学, 2014, 35(4): 75-78. ( ![]() |
[13] |
刘国敏. 种植密度和施氮量对烟叶组织结构发育、化学成分及产质量的影响[D]. 广州: 华南农业大学, 2016.
( ![]() |
[14] |
全国烟草标准化技术委员会. 烤烟基本烘烤技术规程: YC/T42-1996[S]. 北京: 中国标准出版社, 1996.
( ![]() |
[15] |
王瑞新. 烟草化学[M]. 北京: 中国农业出版社, 2003.
( ![]() |
[16] |
邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.
( ![]() |
[17] |
易建华, 彭新辉, 邓小华, 等. 气候和土壤及其互作对湖南烤烟还原糖、烟碱和总氮含量的影响[J]. 生态学报, 2010, 30(16): 4467-4475. ( ![]() |
[18] |
雷利琴. 基于冠层反射光谱的油菜光合及生长监测[D]. 长沙: 湖南农业大学, 2012.
( ![]() |
[19] |
金云峰, 王莎莎, 张建波, 等. 生长温度对不同生育期烟草叶片光合作用及质体色素代谢的影响[J]. 中国农学通报, 2015, 31(22): 57-74. DOI:10.11924/j.issn.1000-6850.casb15020075 ( ![]() |
[20] |
柯学, 李军营, 李向阳, 等. 不同光质对烟草叶片生长及光合作用的影响[J]. 植物生理学报, 2011, 47(5): 512-520. ( ![]() |
[21] |
柯学, 李军营, 徐超华, 等. 不同光质对烟草叶片组织结构及Rubisco羧化酶活性和rbc、rca基因表达的影响
[J]. 植物生理学报, 2012, 48(3): 251-259. ( ![]() |
[22] |
COVARELLI L. Effect of nitrogen fertilization on the photosynthetic activity, growth and yield of Virginia tobacco (Nicotiana tabacum L.)
[J]. Beiträge Zur Tabakforschung, 2015, 18(6): 245-254. ( ![]() |
[23] |
郑璞帆, 崔志燕, 陈富彩, 等. 喷施硅肥对烤烟圆顶期光合特性、氮钾含量及产质量的影响[J]. 中国土壤与肥料, 2017(4): 124-128. ( ![]() |
[24] |
刘国顺. 烟草栽培学[M]. 北京: 中国农业出版社, 2003.
( ![]() |
[25] |
王行, 郑荣豪, 柯油松, 等. 广东浓香型优质烟叶开发密集烘烤关键技术研究方向[J]. 江西农业学报, 2012, 24(9): 101-105. DOI:10.3969/j.issn.1001-8581.2012.09.028 ( ![]() |
[26] |
黄爱缨, 木志坚, 蒋珍茂, 等. 土壤–气候和烟草品种及其互作对云南昭通烟叶化学品质的影响[J]. 西南大学学报(自然科学版), 2014, 36(10): 55-63. ( ![]() |
[27] |
BOZHINOVA R. Effect of long-term potassium fertilization on the chemical composition of Oriental tobacco[J]. J Central European Agric, 2012, 13(3): 510-518. DOI:10.5513/JCEA01/13.3.1078 ( ![]() |
[28] |
彭新辉, 易建华, 周清明, 等. 土壤与气候及其互作对湖南烤烟还原糖与总植物碱含量的影响[J]. 中国烟草学报, 2010, 16(1): 11-15. ( ![]() |
[29] |
王育军, 周冀衡, 张一扬, 等. 云南保山烟区气象因子与烤烟化学成分的相关性分析[J]. 中国农业科技导报, 2014, 16(2): 109-115. ( ![]() |
[30] |
李琦, 王勇军, 蔡凤梅. 气候因子与烤烟常规化学成分相关性分析[J]. 湖南农业科学, 2014(4): 27-30. DOI:10.3969/j.issn.1006-060X.2014.04.008 ( ![]() |
[31] |
蔡雪姣, 陈建军, 吕永华, 等. 不同土壤类型烟叶组织结构及化学成分的差异比较[J]. 浙江农业学报, 2013, 25(6): 1177-1182. ( ![]() |
[32] |
母少东, 蒋光华, 李浩, 等. 不同植烟区土壤对烟叶碳氮代谢品质相关指标的影响[J]. 南京农业大学学报, 2014, 37(4): 109-116. ( ![]() |