查询字段 检索词
  华南农业大学学报  2019, Vol. 40 Issue (5): 166-174  DOI: 10.7671/j.issn.1001-411X.201905078

引用本文  

孙仲享, 宋圆圆, 曾任森. 植物挥发物介导的种内与种间关系研究进展[J]. 华南农业大学学报, 2019, 40(5): 166-174.
SUN Zhongxiang, SONG Yuanyuan, ZENG Rensen. Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles[J]. Journal of South China Agricultural University, 2019, 40(5): 166-174.

基金项目

国家自然科学基金(31870361)
曾任森(1965—),男,教授,博士,E-mail: rszeng@fafu.edu.cn

作者简介

孙仲享(1986—),男,讲师,博士,E-mail: szx@fafu.edu.cn

文章历史

收稿日期:2019-05-31
网络首发时间:2019-07-24 14:36:20
植物挥发物介导的种内与种间关系研究进展
孙仲享 , 宋圆圆 , 曾任森     
福建农林大学 作物科学学院,福建 福州 350002
摘要:植物通过释放的挥发性有机化合物(Volatile organic compounds,VOCs)介导其与周围环境中同种和不同种生物的相互作用,从吸引传粉、种子传播媒介,到保护自己免受植食性动物、病原菌和寄生生物的侵害等。植物挥发物尤其是虫害诱导挥发物是近30年来化学生态学和植物保护领域的研究热点。本文综述了近年来植物挥发物介导的种内与种间关系的研究进展,主要概括了植物挥发物的基本特征,植物挥发物在调控植物种内及种间、植物与昆虫、植物–害虫–天敌三营养级关系、以及植物与微生物互作中的生态学功能,并对其在农业生产中的应用和前景进行分析,总结这一领域尚未解决和亟需深入研究的问题,为植物挥发物应用于有害生物的控制提供理论依据。
关键词植物挥发物    种内关系    种间关系    植物−害虫−天敌三营养级关系    生态学功能    有害生物防治    
Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles
SUN Zhongxiang , SONG Yuanyuan , ZENG Rensen     
College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Abstract: Plants release a variety of volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. VOCs are involved in attracting pollinators and seed dispersers, protecting plants from invasion by herbivores, pathogens and parasites and so on. The study of plant volatiles, especially herbivore-induced plant volatiles, has been a research hotspot in the fields of chemical ecology and plant protection for nearly three decades. In this paper, recent advances in the study of plant volatiles-mediated intra- and inter-species relationships are reviewed. We summarized the basic characteristics of plant volatiles and their ecological roles in regulating intra- and inter-species plants, plant-insect, plant-herbivore-natural enemy tritrophic interactions and plant-microbe interactions. We also analyzed the application and prospect of plant volatiles in agricultural production, summarized the unresolved issues in this field and discussed the issues for further research, so as to provide a theoretical basis for the application of plant volatiles in pest control.
Key words: plant volatile organic compounds    intraspecific relationship    interspecific relationship    plant-herbivore-natural enemy tritrophic interaction    ecological function    pest control    

植物不能运动,也没有声音语言,植物间以及植物与其他生物之间如何进行通信一直是个未解之谜。面对动物和病原微生物等天敌的侵袭,植物如何开展防御一直是科学家们非常感兴趣的问题。植物能够进行光合作用,擅长合成各种各样的有机化合物。截止2019年5月,从植物中分离鉴定出的天然有机化合物已超过20万种,这些化合物中有部分是挥发性有机化合物(Volatile organic compounds,VOCs),它们是一类相对分子质量小的亲脂性化合物,在常温下容易从植物中释放出来散发到周围环境中,介导植物与周围环境中同种和不同种生物间的相互作用,从吸引传粉和种子传播媒介,到保护自己免受植食性动物、病原菌和寄生生物的侵害。植物通过释放挥发物将植物与周围其他生物连接形成一个化学通信网络,调控着种内与种间关系,进而影响生态系统的结构与功能。近年来,植物挥发物介导的生态学功能又有很多新的发现与进展,本文重点对植物挥发物介导的种内与种间关系的研究进展进行综述。

1 植物挥发物的基本特征

植物在生长发育过程中能够源源不断地向环境中释放VOCs,特异性的VOCs不仅能表明植物的身份特征,还能反映出植物在不同生长发育时期和不同环境条件的生理状态,甚至能细化到不同器官[1]。目前已从超过90科的植物中分离出1 700种以上的VOCs[2],主要包括萜类化合物、脂肪酸衍生物、苯环型和苯丙素类化合物、C5-支链化合物、含氮和含硫化合物等[3]。健康植株未受侵害时合成的挥发物为基础性的,而在遭受外界环境胁迫,尤其是植食性昆虫攻击后,植物释放的挥发物无论是在种类上还是在数量上都会明显增加[4]。植物虫害诱导挥发物(Herbivore-induced plant volatiles,HIPVs)是植食性昆虫为害而促使植物产生一系列代谢和生理生化变化,诱导植物合成并有规律释放的挥发性化学信号物质,是植物与周围生物进行化学通信与信息交流的重要媒介[5-6]。HIPVs的化学组分因植物与植食性昆虫种类的不同而有很大差异,目前研究较为深入的主要包括萜类化合物、绿叶性挥发物和芳香族化合物[3, 7]。绿叶性挥发物是植物挥发物中含有6个碳原子的醛、醇和酯类。正常情况下植株不释放或仅释放少量的绿叶性挥发物,而当受到虫害胁迫后植株能在数秒内迅速诱导释放此类物质。

植物挥发物在植物的繁衍以及防御病虫为害中具有多重生态学功能,农业生产实践中已经有一些利用植物挥发物进行田间害虫防治的案例[8-10]。尽管植物挥发物的田间应用在某些作物中获得了一定成效,但对植物挥发物在田间释放后的生态学效应还缺乏全面深入的了解。深入研究挥发物如何影响生态系统中生物种内和种间关系,尤其是对植食性害虫及其天敌的影响,对于植物挥发物的进一步应用非常重要。

2 植物挥发物的生态学功能

植物挥发物释放到环境中,如何对生态系统产生影响从而有益于植物的生长与繁衍,一直以来是备受关注的问题。

在植物繁殖方面,一般认为植物通过花朵和花蜜释放挥发物来吸引传粉昆虫[3, 11];通过植物果实释放挥发物来吸引种子传播媒介[12](图1)。这方面的研究很多,但是目前只鉴定出少数的能够吸引特定传粉昆虫的化合物[3]

图 1 植物挥发物介导的植物与周围环境相互作用的概述[12] Fig. 1 An overview of plant volatiles-mediated interactions between plants and their surroundings

在植物抗性方面,植物挥发物的生态学功能被广泛报道,植物组织释放的挥发物能够抑制病原菌分生孢子的萌发,能保护植物不受病原菌的侵染[13-14]。在植物防御昆虫方面,对于植物HIPVs的功能研究比较深入。在直接防御方面,HIPVs可以抑制鳞翅目昆虫的生长、使幼虫麻痹或导致昆虫中毒,从而减少昆虫取食植物或趋避害虫[15-17];间接防御方面,HIPVs不但可以作为互利素引诱捕食性或寄生性天敌来减轻害虫对植物的危害[18-20],而且在同一生态系统中,HIPVs可作为植物间通信信号,被同一植株的健康部位和邻近植株识别,诱发邻近植物增强对害虫的防御反应[21-23](图1)。

植物挥发物的释放对于植物来说也可能是一把双刃剑[24]。植物与植食性昆虫在长期的协同进化过程中形成了一系列防御与反防御的机制。随着植物–昆虫相互关系研究的深入以及昆虫分子生物学的发展,越来越多植食性昆虫适应宿主植物的反防御策略逐步被认识[25-28]。挥发物作为植物强大的防御武器,植食性昆虫自然也有相对应的反防御策略[29-32]。本文将结合最新的研究结果对以上几个方面进行综述。

2.1 植物挥发物介导植物与传粉媒介的关系

自然界中有超过87%的开花植物是通过昆虫媒介授粉的,这些植物产生花香和其他信号吸引传粉媒介[33]。在植物所有器官中,花释放的挥发物种类和数量最多,这些挥发物被用以吸引传粉媒介从而确保植物能成功授粉和繁殖[34]。花释放的挥发物具有物种特异性,能吸引相应的传粉者[35]。由鳞翅目蛾类昆虫授粉的植物通常释放出大量的苯类化合物,并且较少释放萜类化合物和含氮化合物[35],而蝙蝠授粉的花主要释放含硫挥发物[36]。另一方面,传粉者能够区分具有独特比例和浓度的复杂的多组分挥发性物质,并产生对特定混合物的偏好。这些偏好调节着传粉者的觅食行为,并促进花的恒定性(即反复访问具有特定挥发性特征的花的倾向),从而使得花粉向同种植物雌蕊转移增加并防止异种花粉堵塞柱头[37]。更有意思的是,已经授粉的花朵会改变释放的挥发物,驱逐传粉媒介的进一步访问,并将其引导至尚未授粉的花朵[38]

花释放的挥发物在植物生殖隔离中具有重要作用,特定物种的花吸引特定的传粉者。挥发性混合物的性质,包括浓度、成分比例和特异性的化合物等,可能有助于亲缘关系很近的植物物种间的生殖隔离。兰科一些属的每种兰花只吸引一种传粉动物协助传粉[39]。某些兰花花朵释放的挥发物与雌性传粉者的性信息素相似,从而欺骗性地吸引雄性传粉者[40]。一些植物花的挥发性具有抗菌活性,或对食花者具有威慑作用,从而保护植物的花器官[41]

此外,最近的研究表明食叶动物会改变花释放的挥发物,进而对吸引传粉昆虫产生负面影响[42]。夜间开花的野生烟草Nicotiana attenuata花中的倍半萜(E)−α−香柠檬烯的释放有助于烟草天蛾Manduca sexta成虫介导的授粉,而叶片中虫害诱导的相同化合物可以吸引烟草天蛾幼虫的天敌。这个化合物在花和叶片中的合成由同一个倍半萜合成酶基因(NaTPS38)控制,这个基因的组织和时间差异表达使烟草白天吸引害虫天敌,夜间吸引传粉者,有助于植物解决传粉昆虫也是食草害虫的困境[43]。苄基丙酮(Benzylacetone,BA)是野生烟草的主要花香成分,它吸引夜间传粉者,如烟草天蛾。对于这种传粉媒介,BA不仅对于同种植物之间的花粉运输至关重要,而且对于蛾在夜间对花的短距离处理中也是必不可少的。同时,BA又是植食性昆虫十一星黄瓜甲虫Diabrotica undecimpunctata的取食抑制剂,有重要的防御功能[42]。花香中关键成分β−反式−香柠檬烯决定了斑点沟酸浆Mimulus guttatus的传粉者大黄蜂Bombus impatiens的喜好,近亲繁殖的沟酸浆释放的香柠檬烯少,远缘杂交的沟酸浆释放的香柠檬烯多,对传粉者的吸引力强[44],远缘杂交品种通过释放更多挥发物提高繁殖能力。

2.2 植物挥发物对邻近植物的影响

植物挥发物在一株植物不同器官、同种植物不同个体以及不同种植物间的化学通信现象一直存在争议,但随着植物分子生物学及试验方法的发展与完善,越来越多的研究证明植物挥发物在植物间通信中发挥着重要的信号传递作用[45-47]

植物遭受植食性昆虫为害时,受害部位产生的挥发物可以作为系统损伤信号进行传递,引发植物系统免疫反应从而抵御昆虫为害[48]。玉米在遭受灰翅夜蛾Spodoptera littoralis侵害时可通过合成吲哚快速将防御信号传递到整株植物而提高对害虫的系统抗性,同时还可防御警备邻近玉米植株提高抗虫性[49]。植物挥发物介导同种植物间的通信功能已有大量相关研究。已经发现萜类化合物、顺−3−己烯醇、水杨酸甲酯、茉莉酸甲酯、顺式茉莉酮和吲哚等多种挥发物在同种植物间的信号传递中发挥着关键作用[47, 49-53]。健康番茄植株在察觉到邻近受虫害番茄释放的绿叶性挥发物顺−3−己烯醇后,在体内将挥发物转化成对昆虫有毒性的糖苷,从而提高自身的抗虫性[23]。植物在胁迫环境(如虫害)下产生的挥发物可通过两种主要的机制诱导提高邻近植株的抗性。第一种是直接启动防御,包括诱导防御害虫相关基因的表达[54],诱导合成防御性物质(如酚类、蛋白酶抑制剂)[55- 56]和防御酶(如苯丙氨酸解氨酶、多酚氧化酶和过氧化物酶等)[57],诱导分泌蜜露[58]或者释放HIPVs吸引昆虫的天敌[59]等。第二种机制是产生防御警备[60],接收到挥发物信号后,健康植株没有立即启动直接防御,而是进入防御警备状态,当受到类似胁迫(如虫害)时,受挥发物警备的植物会更快地产生更强烈的防御反应[12, 21, 55, 61](图1)。植物通过挥发物进行胁迫信号的传递现象也发生在不同种的植物之间[62-64],受害的山艾树Artemisia tridentata释放的挥发性物质能诱导附近烟草植株产生对蚱蜢和夜蛾的抗性[62-64]。即使在野外自然条件下,山艾树与烟草间的化学通信也能被检测到。

2.3 植物挥发物对植食性昆虫的影响

植物挥发物在植物与昆虫神奇的协同进化中扮演着重要角色,其介导的植物–昆虫互作是化学生态学与植物保护学研究的一个热点。植物在感受到植食性昆虫爬行、取食、产卵等多种信号时,都可被诱导合成并释放HIPVs,进而对昆虫的迁移、取食、交配和产卵等行为产生影响[7, 65-67]

从植物防御角度来看,HIPVs可以直接使昆虫中毒从而抑制其生长,这可能是HIPVs在最初的进化中主要的功能[15];HIPVs也可以通过趋避昆虫从而保护植物[17, 68],趋避效应的产生可能是HIPVs本身对于昆虫就具有忌避效应[68],也可能是植食性昆虫为了避开潜在的竞争者或者为了躲避天敌产生的结果[69-70]

从昆虫反防御角度来看,植食性昆虫可以巧妙地利用多营养级之间的化学通信与相互作用来提高自身对环境的适应。植食性昆虫可利用植物HIPVs寻找与定位寄主[71]。玉米蚜虫Rhopalosiphum maidis可通过感知植物HIPVs来寻找合适的食物资源[29];美洲烟草天蛾等可借助烟草植株的HIPVs选择宿主产卵[30-31];在侵害宿主植物时,豌豆蚜Adalia bipunctata体内的共生菌可以协助抑制植物HIPVs的释放,降低豌豆蚜被天敌寄生的危险,从而增强植食性昆虫的适应性[32]。近期研究发现灰翅夜蛾Spodoptera mauritia幼虫在接触寄主植物的HIPVs吲哚后,可以通过改变自身体味,降低寄生蜂对幼虫的定位与寄生能力[72]

2.4 植物挥发物对植食性昆虫天敌的影响

植物、植食性昆虫及其天敌相互之间的营养作用是所有陆地生态系统的组成部分,HIPVs在三者相互作用中起关键作用,因为它们可以吸引捕食者和寄生性天敌到植食性昆虫入侵的植株上。植食性昆虫的天敌可以利用寄主植物和植食性昆虫释放的化学信息物质对寄主进行定位[73]。大量的研究表明,许多植食性昆虫的天敌能够被HIPVs吸引并能有效利用植物HIPVs对为害昆虫进行更迅速和准确的捕食或寄生[7]。目前的研究表明,HIPVs中发挥引诱天敌作用的组分主要包括萜类化合物、绿叶性挥发物、酚类化合物(如水杨酸甲酯)和吲哚等[7, 74]。通过遗传改良技术在拟南芥Arabidopsis thaliana中引入的倍半萜合酶,可以产生2种新的萜烯挥发物,使植物吸引捕食性天敌智利小植绥螨Phytoseiulus persimilis来控制害虫为害[75]。利用气相色谱–触角电位技术可以对HIPVs混合物中引诱天敌的主要有效成分进行筛选鉴定。有意思的是,含量最多的挥发物组分不一定主要起到引诱天敌的功能[18]。很多含量很低的挥发物在植物–昆虫互作中却起关键作用[76]

2.5 植物挥发物对微生物的影响

植物挥发物除了介导植物–害虫–天敌三营养级间的关系外,近年来发现植物挥发物也参与和微生物的互作,包括植物病原菌、昆虫病原真菌和菌根真菌等[10, 13-14, 77]。很多植物花朵释放的挥发物具有抗菌或抗真菌活性,从而保护植物生殖器官免受病原菌的侵害[78-80](图1)。在拟南芥中沉默绿叶性挥发物合成途径中的脂氢过氧化物裂解酶基因(HPL),可导致拟南芥对灰霉病病原菌Botrytis Cinerea的敏感度提高,而过表达HPL可显著提高拟南芥对病原菌的抗性[13]。在对利马豆Phaseolus lunatus的研究中发现,经过抗性诱导挥发物处理过的利马豆健康植株,可提前进入防御警备状态,从而在不影响其正常生长发育的情况下增强对植物病原菌的抗性[81]。拟南芥释放的绿叶性挥发物中的(Z)−3−己烯醇、(E)−2−己烯醛和(Z)−3−己烯醛等能诱导植物中多个抗性基因的表达,从而提高拟南芥对灰霉病菌的抗性[82]。植物在遭受虫害后,还能通过释放挥发物促进昆虫病原真菌的菌丝蔓延、孢子萌发、致病、毒力作用等过程,帮助植物提高对昆虫的防御能力[83-84]

3 植物挥发物在生产实践中应用的进展与挑战

在农业生产中,农作物与害虫之间的相互关系研究是植物保护学家关注的焦点。在认识植物挥发物,尤其是HIPVs在植物与昆虫互作以及植物防御中重要的生态学功能的同时,植物挥发物在田间害虫控制中的应用也从以下几个方面展开:直接利用人工合成的挥发物作为天敌或害虫的引诱剂,或害虫趋避剂[9, 85]。中国农业科学院郭予元院士团队在棉田应用挥发物引诱天敌,发现(Z)−3−乙酸叶醇酯对七星瓢虫Coccinella septempunctata等天敌有显著引诱作用,水杨酸甲酯(Methyl salicylate,MeSA)能显著引诱草间小黑蛛Hylyphantes graminicola和食蚜蝇[86];诱导植物合成与释放更多挥发物控制害虫[87-88],经茉莉酸处理后的冬小麦,不但能显著排斥4 种蚜虫,还吸引到更多的七星瓢虫和蚜茧蜂[87];将植物挥发物应用在“推–拉”策略(Push-pull strategy)中[8, 10, 89],获得巨大成效的是在肯尼亚对玉米螟Ostrinia nubilalis和玉米茎蛀褐夜蛾Helotropha leucostigma的防治[90];应用挥发物突变体植物或基因改良植物[77, 91],例如,将草莓萜烯合成酶在拟南芥中过表达,使转基因植株释放大量的芳樟醇趋避蚜虫[92]

尽管挥发物的田间应用在某些作物中已获得一定成效,但是,对于植物挥发物在田间释放后的生态学效应还缺乏深入、全面的了解[93]。比如,通过挥发物引诱天敌数量增加能否有效控制害虫的种群数量仍然存在疑问;对目标天敌有吸引作用的往往是几种挥发物在特定比例下的共同作用,当前应用主要是挥发物单组分,而对混合组分的研究明显不足;另外,更加重要的是,除天敌外,植食性昆虫也可以利用挥发物寻找合适的食物资源和产卵宿主,现有的研究主要关注天敌,而忽略了其对害虫的潜在影响[69]。以上问题使得将挥发物应用于调控昆虫种群依然存在无法预测和难以控制的结果。

4 植物挥发物的研究前景

过去30年,对植物挥发物,尤其是HIPVs的研究不断深入,我们对于植物挥发物介导的生物种内和种间关系有了许多新的认识。农业工作者也积极尝试将植物挥发物应用到田间病虫害等有害生物的防治中。但植物释放挥发物是一个复杂的生理生化过程,在田间环境中同时受到多重因素的制约与影响。人们对植物挥发物的生态学功能了解仍然有限,利用植物挥发物进行农业害虫和病原菌的防治仍然存在很大争议。今后应该加强以下几个方面的研究:在野外自然条件下研究植物挥发物的生态学功能,目前关于挥发物介导种内与种间关系的分子机制研究大多是在实验室条件下进行的,其生态学意义有待进一步验证;植物挥发物受体蛋白的鉴定,植物挥发物介导的化学通信最直接的分子证据就是受体蛋白的存在,除了乙烯受体蛋白外,还没有鉴定到其他植物挥发物的受体蛋白[94],鉴定受体蛋白可为植物挥发物在植物体内或者在物种间信号转导的研究奠定基础[95];阐明植物挥发物的合成与释放机制;评估植物挥发物在田间环境中对整体生态系统的影响以及植食性昆虫演化的各种反防御机制。

参考文献
[1]
MARCO D A, TURLINGS T C J. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods[J]. Analyst, 2005, 131(1): 24-32. (0)
[2]
DUDAREVA N, PICHERSKY E, DUDAREVA N, et al. Biology of floral scent[M]. CRC press online, 2006. (0)
[3]
DUDAREVA N, PICHERSKY E, GERSHENZON J. Biochemistry of plant volatiles[J]. Plant Physiol, 2004, 135(4): 1893-1902. DOI:10.1104/pp.104.049981 (0)
[4]
TURLINGS T C, TUMLINSON J H, LEWIS W J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J]. Science, 1990, 30(250): 1251-1253. (0)
[5]
宋晓君, 唐超, 覃伟权, 等. 虫害诱导植物挥发物的释放机制及应用[J]. 中国农学通报, 2009, 25(13): 161-165. (0)
[6]
娄永根, 程家安. 虫害诱导的植物挥发物: 基本特性、生态学功能及释放机制[J]. 生态学报, 2000, 20(6): 1097-1106. DOI:10.3321/j.issn:1000-0933.2000.06.031 (0)
[7]
郝娅, 娄永根. 虫害诱导植物挥发物的研究进展[J]. 长江大学学报(自然科学版), 2013, 11: 12-15. DOI:10.3969/j.issn.1673-1409.2013.03.006 (0)
[8]
KHAN Z R, AMPONGNYARKO K, CHILISWA P, et al. Intercropping increases parasitism of pests[J]. Nature, 1997, 388: 631-632. (0)
[9]
RASMANN S, KÖLLNER T G, DEGENHARDT J, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 2005, 434(7034): 732-737. DOI:10.1038/nature03451 (0)
[10]
PICKETT J A, KHAN Z R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges[J]. New Phytol, 2016, 212(4): 856-870. DOI:10.1111/nph.14274 (0)
[11]
REINHARD J, SRINIVASAN M V, ZHANG S. Olfaction: Scent-triggered navigation in honeybees[J]. Nature, 2004, 427: 411. (0)
[12]
DUDAREVA N, NEGRE F, NAGEGOWDA D A, et al. Plant volatiles: Recent advances and future perspectives[J]. Crit Rev Plant Sci, 2006, 25(5): 417-440. DOI:10.1080/07352680600899973 (0)
[13]
KAORI S, KYUTARO K, RIKA O, et al. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens[J]. Proc Natl Acad Sci USA, 2006, 103(45): 16672-16676. DOI:10.1073/pnas.0607780103 (0)
[14]
YI H S, HEIL M, ADAME-ÁLVAREZ R M, et al. Airborne Induction and priming of plant defenses against a bacterial pathogen[J]. Plant Physiol, 2010, 151(5): 2152-2161. (0)
[15]
VEYRAT N, ROBERT C A M, TURLINGS T C J, et al. Herbivore intoxication as a potential primary function of an inducible volatile plant signal[J]. J Ecol, 2016, 104(2): 591-600. DOI:10.1111/1365-2745.12526 (0)
[16]
VON MÉREY G E, VEYRAT N, D'ALESSANDRO M, et al. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars [J]. Front Plant Sci, 2013, 4: 209. (0)
[17]
IRMISCH S, CLAVIJO MCCORMICK A, GÜNTHER J, et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar[J]. Plant J, 2014, 80(6): 1095-1107. DOI:10.1111/tpj.12711 (0)
[18]
VET L E, DICKE M. Ecology of infochemical use by natural enemies in a tritrophic context[J]. Annu Rev Entomol, 1992, 37(1): 141-172. DOI:10.1146/annurev.en.37.010192.001041 (0)
[19]
DANNER H, DESURMONT G A, CRISTESCU S M, et al. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores[J]. New Phytol, 2018, 220: 726-738. DOI:10.1111/nph.14428 (0)
[20]
XU H, DESURMONT G, DEGEN T, et al. Combined use of herbivore ‐ induced plant volatiles and sex pheromones for mate location in braconid parasitoids[J]. Plant Cell Environ, 2017, 40(3): 330-339. DOI:10.1111/pce.12818 (0)
[21]
ENGELBERTH J, ALBORN H T, SCHMELZ E A, et al. Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004, 101(6): 1781-1785. DOI:10.1073/pnas.0308037100 (0)
[22]
ERB M, VEYRAT N, ROBERT C A, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J]. Nat Commun, 2015, 6: 6273. DOI:10.1038/ncomms7273 (0)
[23]
SUGIMOTO K, MATSUI K, IIJIMA Y, et al. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense [J]. Proc Natl Acad Sci USA, 2014, 111(19): 7144-7149. DOI:10.1073/pnas.1320660111 (0)
[24]
DICKE M, BALDWIN I T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’[J]. Trends Plant Sci, 2010, 15(3): 167-175. DOI:10.1016/j.tplants.2009.12.002 (0)
[25]
ZHU-SALZMAN K, ZENG R. Insect response to plant defensive protease inhibitors[J]. Annu Rev Entomol, 2015, 60: 233-252. DOI:10.1146/annurev-ento-010814-020816 (0)
[26]
BASS C, ZIMMER C T, RIVERON J M, et al. Gene amplification and microsatellite polymorphism underlie a recent insect host shift[J]. Proc Natl Acad Sci USA, 2013, 110(48): 19460-19465. DOI:10.1073/pnas.1314122110 (0)
[27]
DESPRÉS L, DAVID J-P, GALLET C. The evolutionary ecology of insect resistance to plant chemicals[J]. Trends Ecol Evol, 2007, 22(6): 298-307. DOI:10.1016/j.tree.2007.02.010 (0)
[28]
HEIDEL-FISCHER H M, VOGEL H. Molecular mechanisms of insect adaptation to plant secondary compounds[J]. Curr Opin Insect Sci, 2015, 8: 8-14. DOI:10.1016/j.cois.2015.02.004 (0)
[29]
BERNASCONI M L, TCJ T, AMBROSETTI L, et al. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis [J]. Entomol Exp Appl, 1998, 87(2): 133-142. DOI:10.1046/j.1570-7458.1998.00315.x (0)
[30]
DE MORAES C M, MESCHER M C, TUMLINSON J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females[J]. Nature, 2001, 410: 577-580. DOI:10.1038/35069058 (0)
[31]
ANASTASAKI E, DRIZOU F, MILONAS P G. Electrophysiological and oviposition responses of tuta absoluta females to herbivore-induced volatiles in tomato plants[J]. J Chem Ecol, 2018, 44(3): 1-11. (0)
[32]
FRAGO E, MALA M, WELDEGERGIS B T, et al. Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles[J]. Nat Commun, 2017, 8: 1860. DOI:10.1038/s41467-017-01935-0 (0)
[33]
OLLERTON J, WINFREE R, TARRANT S. How many flowering plants are pollinated by animals?[J]. Oikos, 2011, 120(3): 321-326. DOI:10.1111/more.2010.120.issue-3 (0)
[34]
KNUDSEN J, ERIKSSON R, GERSHENZON J, et al. Diversity and distribution of floral scent[J]. Bot Rev, 2006, 72(1): 1-120. DOI:10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 (0)
[35]
DOBSON H E M. Relationship between floral fragrance composition and type of pollinator[M]//DUDAREVA N, PICHERSKY E, DVDAREVA N, et al. Biology of floral scent. CRC press online. 2006: 161-212. (0)
[36]
VON H O, BESTMANN H W L. Sulphur-containing " perfumes” attract flower-visiting bats[J]. J Comp Physiol A, 2000, 186(2): 143-153. (0)
[37]
GRÜTER C, RATNIEKS F L W. Flower constancy in insect pollinators: Adaptive foraging behaviour or cognitive limitation?[J]. Commun Integr Biol, 2011, 4(6): 633-636. DOI:10.4161/cib.16972 (0)
[38]
NATALIA D, ANTJE K, MUHLEMANN J L K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytol, 2013, 198(1): 16-32. DOI:10.1111/nph.12145 (0)
[39]
AYASSE M, STÖKL J, FRANCKE W. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids[J]. Phytochemistry, 2011, 72(13): 1667-1677. DOI:10.1016/j.phytochem.2011.03.023 (0)
[40]
SCHIESTL F P. On the success of a swindle: Pollination by deception in orchids[J]. Naturwissenschaften, 2005, 92(6): 255-264. DOI:10.1007/s00114-005-0636-y (0)
[41]
JUNKER R R, GERSHENZON J, UNSICKER S B. Floral odor bouquetloses its ant repellent properties after inhibition of terpene biosynthesis[J]. J Chem Ecol, 2011, 37(12): 1323-1331. DOI:10.1007/s10886-011-0043-0 (0)
[42]
KESSLER D, BING J, HAVERKAMP A, et al. The defensive function of a pollinator ‐ attracting floral volatile[J]. Funct Ecol, 2019. doi: 10.1111/1365-2435.13332. (0)
[43]
ZHOU W, KÜGLER A, MCGALE E, et al. Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores [J]. Curr Biol, 2017, 27(9): 1336-1341. DOI:10.1016/j.cub.2017.03.017 (0)
[44]
HABER A I, SIMS J W, MESCHER M C, et al. A key floral scent component (β ‐ trans ‐ bergamotene) drives pollinator preferences independently of pollen rewards in seep monkey flower [J]. Funct Ecol, 2019, 33(2): 218-228. DOI:10.1111/fec.2019.33.issue-2 (0)
[45]
BALDWIN I T, HALITSCHKE R A, VON DAHL C C, et al. Volatile signaling in plant-plant interactions: " Talking trees” in the genomics era[J]. Science, 2006, 311(5762): 812-815. DOI:10.1126/science.1118446 (0)
[46]
MARTIN H, RICHARD K. Explaining evolution of plant communication by airborne signals[J]. Trends Ecol Evol, 2010, 25(3): 137-144. DOI:10.1016/j.tree.2009.09.010 (0)
[47]
BRUCE T J A, MATTHES M C, KEITH C, et al. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids[J]. Proc Natl Acad Sci USA, 2008, 105(12): 4553-4558. DOI:10.1073/pnas.0710305105 (0)
[48]
FROST C J, APPEL H M, CARLSON J E, et al. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores[J]. Ecol Lett, 2010, 10(6): 490-498. (0)
[49]
ERB M, VEYRAT N, ROBERT C A, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J]. Nat Commun, 2015, 6(6273): 6273. (0)
[50]
HUI C, A DANIEL J, HOWE G A. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato[J]. FEBS Lett, 2006, 580(11): 2540-2546. DOI:10.1016/j.febslet.2006.03.070 (0)
[51]
SHULAEV V, SILVERMAN P, RASKIN I. Airborne signalling by methyl salicylate in plant pathogen resistance[J]. Nature, 1997, 385(6618): 718-721. DOI:10.1038/385718a0 (0)
[52]
YAN Z G, WANG C Z. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize[J]. Phytochemistry, 2006, 67(1): 34-42. DOI:10.1016/j.phytochem.2005.10.005 (0)
[53]
RUTHER J, KLEIER S. Plant–plant signaling: Ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol [J]. J Chem Ecol, 2005, 31(9): 2217-2222. DOI:10.1007/s10886-005-6413-8 (0)
[54]
ARIMURA G, OZAWA R, SHIMODA T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406(6795): 512-515. DOI:10.1038/35020072 (0)
[55]
ANDRÉ K, RAYKO H, CELIA D, et al. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata [J]. Oecologia, 2006, 148(2): 280-292. DOI:10.1007/s00442-006-0365-8 (0)
[56]
BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants[J]. Science, 1983, 221(4607): 277-279. DOI:10.1126/science.221.4607.277 (0)
[57]
FANG T, ZHAO W L, GAO X W. Communication between plants: Induced resistance in poplar seedlings following herbivore infestation, mechanical wounding, and volatile treatment of the neighbors[J]. Entomol Exp Appl, 2013, 149(2): 110-117. (0)
[58]
CHOH Y, KUGIMIYA S, TAKABAYASHI J. Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites[J]. Oecologia, 2006, 147(3): 455-460. DOI:10.1007/s00442-005-0289-8 (0)
[59]
BRUIN J, DICKE M, SABELIS M W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics[J]. Experientia, 1992, 48(5): 525-529. DOI:10.1007/BF01928181 (0)
[60]
王杰, 宋圆圆, 胡林, 等. 植物抗虫" 防御警备”: 概念、机理与应用[J]. 应用生态学报, 2018, 29(6): 2068-2078. (0)
[61]
FROST C J, MESCHER M C, CARLSON J E, et al. Plant defense priming against herbivores: Getting ready for a different battle[J]. Plant Physiol, 2008, 146(3): 818-824. DOI:10.1104/pp.107.113027 (0)
[62]
FARMER E E, RYAN C A. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves[J]. Proc Natl Acad Sci USA, 1990, 87(19): 7713-7716. DOI:10.1073/pnas.87.19.7713 (0)
[63]
KARBAN R, BALDWIN I T, BAXTER K J. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush[J]. Oecologia, 2000, 125(1): 66-71. DOI:10.1007/PL00008892 (0)
[64]
KARBAN R, MARON J. The fitness consequences of interspecific eavesdropping between plants[J]. Ecology, 2002, 83(5): 1209-1213. DOI:10.1890/0012-9658(2002)083[1209:TFCOIE]2.0.CO;2 (0)
[65]
APPEL H M, COCROFT R B. Plants respond to leaf vibrations caused by insect herbivore chewing[J]. Oecologia, 2014, 175(4): 1257-1266. DOI:10.1007/s00442-014-2995-6 (0)
[66]
HALL D E, MACGREGOR K B, NIJSSE J, et al. Footsteps from insect larvae damage leaf surfaces and initiate rapid responses[J]. Eur J Plant Pathol, 2004, 110(4): 441-447. DOI:10.1023/B:EJPP.0000021072.89968.de (0)
[67]
HILKER M, FATOUROS N E. Plant responses to insect egg deposition[J]. Annu Rev Entomol, 2015, 60(1): 493-515. DOI:10.1146/annurev-ento-010814-020620 (0)
[68]
KESSLER A, BALDWIN I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 291(5511): 2141-2144. DOI:10.1126/science.291.5511.2141 (0)
[69]
王国昌, 孙晓玲, 董文霞, 等. 虫害诱导挥发物的生态调控功能[J]. 生态学报, 2010, 30(24): 7016-7028. (0)
[70]
严善春, 徐伟, 袁红娥, 等. 不同诱导因子对落叶松毛虫嗅觉和产卵选择的影响[J]. 应用生态学报, 2007, 18(7): 1583-1588. DOI:10.3321/j.issn:1001-9332.2007.07.029 (0)
[71]
CARROLL M J, SCHMELZ E A, TEAL P E. The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin [J]. J Chem Ecol, 2008, 34(3): 291-300. DOI:10.1007/s10886-007-9414-y (0)
[72]
YE M, VEYRAT N, XU H, et al. An herbivore-induced plant volatile reduces parasitoid attraction by changing the smell of caterpillars[J]. Sci Adv, 2018, 4(5): 4767. DOI:10.1126/sciadv.aar4767 (0)
[73]
STEINBERG S, DICKE M, VET L E. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoidCotesia glomerata [J]. J Chem Ecol, 1993, 19(1): 47-59. DOI:10.1007/BF00987470 (0)
[74]
DEGENHARDT J, GERSHENZON J, BALDWIN I T, et al. Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Curr Opin Biotechnol, 2003, 14(2): 169-176. DOI:10.1016/S0958-1669(03)00025-9 (0)
[75]
KAPPERS I F, ASAPH A, HERPEN T W J M, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J]. Science, 2005, 309: 2070-2072. DOI:10.1126/science.1116232 (0)
[76]
CLAVIJO MCCORMICK A, GERSHENZON J, UNSICKER S B. Little peaks with big effects: Establishing the role of minor plant volatiles in plant-insect interactions[J]. Plant Cell Environ, 2014, 37(8): 1836-1844. DOI:10.1111/pce.12357 (0)
[77]
BROWN G C, PROCHASKA G L, HILDEBRAND D F, et al. Green leaf volatiles inhibit conidial germination of the entomopathogen Pandora neoaphidis (Entomopthorales: Entomophthoraceae) [J]. Environ Entomol, 1995, 24(6): 1637-1643. DOI:10.1093/ee/24.6.1637 (0)
[78]
FRIEDMAN M, HENIKA P R, MANDRELL R E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica [J]. J Food Prot, 2002, 65(10): 1545-1560. DOI:10.4315/0362-028X-65.10.1545 (0)
[79]
HAMMER K, CARSON C, RILEY T. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil [J]. J Appl Microbiol, 2003, 95(4): 853-860. DOI:10.1046/j.1365-2672.2003.02059.x (0)
[80]
HUANG M, SANCHEZ ‐ MOREIRAS A M, ABEL C, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E) ‐ β ‐ caryophyllene, is a defense against a bacterial pathogen [J]. New Phytol, 2012, 193(4): 997-1008. DOI:10.1111/j.1469-8137.2011.04001.x (0)
[81]
YI H S, RYU C M, HEIL M. Sweet smells prepare plants for future stress: Airborne induction of plant disease immunity[J]. Plant Signal Behav, 2010, 5(5): 528-531. DOI:10.4161/psb.10984 (0)
[82]
KISHIMOTO K, MATSUI K, OZAWA R, et al. Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana [J]. Plant Cell Physiol, 2005, 46(7): 1093-1102. DOI:10.1093/pcp/pci122 (0)
[83]
LIN Y, QASIM M, HUSSAIN M, et al. The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi[J]. Sci Rep, 2017, 7: 40494. DOI:10.1038/srep40494 (0)
[84]
LIN Y, HUSSAIN M, AVERY P B, et al. Volatiles from plants induced by multiple aphid attacks promote conidial performance of Lecanicillium lecanii [J]. PLoS One, 2016, 11(3): e0151844. DOI:10.1371/journal.pone.0151844 (0)
[85]
JAMES D G. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects[J]. Environ Entomol, 2003, 32(5): 977-982. DOI:10.1603/0046-225X-32.5.977 (0)
[86]
YU H, ZHANG Y, WU K, et al. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects[J]. Environ Entomol, 2008, 37(6): 1410-1415. DOI:10.1603/0046-225X-37.6.1410 (0)
[87]
MA B, CA C, K C, et al. New roles for cis-jasmone as an insect semiochemical and in plant defense[J]. Proc Natl Acad Sci USA, 2000, 97(16): 9329-9334. DOI:10.1073/pnas.160241697 (0)
[88]
DICKE M, GOLS R, LUDEKING D, et al. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants[J]. J Chem Ecol, 1999, 25(8): 1907-1922. DOI:10.1023/A:1020942102181 (0)
[89]
PICKETT J A, WOODCOCK C M, MIDEGA C A, et al. Push-pull farming systems[J]. Curr Opin Biotechnol, 2014, 26(4): 125-132. (0)
[90]
KHAN Z R, PICKETT J A, WADHAMS L, et al. Habitat management strategies for the control of cereal stemborers and striga in maize in Kenya[J]. Int J Trop Insect Sci, 2001, 21(4): 375-380. DOI:10.1017/S1742758400008481 (0)
[91]
WANG E , WANG R, DEPARASLS J, et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance[J]. Nat Biotechnol, 2001, 19(4): 371-374. DOI:10.1038/86770 (0)
[92]
ASAPH A, GIRI A P, STEPHAN D, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. Plant Cell, 2003, 15(12): 2866-2884. DOI:10.1105/tpc.016253 (0)
[93]
AARTSMA Y, BIANCHI F J, VAN D W W, et al. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales[J]. New Phytol, 2017, 216(4): 1054-1063. DOI:10.1111/nph.14475 (0)
[94]
ENGELBERTH J. Plant resistance to insect herbivory[J]. Biocommunication Plants, 2012, 14: 303-326. DOI:10.1007/978-3-642-23524-5 (0)
[95]
黄安平. 虫害诱导植物挥发物介导的植物种内化学通信研究[J]. 湖南农业科学, 2014, 8: 6-7. DOI:10.3969/j.issn.1006-060X.2014.04.002 (0)