查询字段 检索词
  华南农业大学学报  2020, Vol. 41 Issue (3): 80-85  DOI: 10.7671/j.issn.1001-411X.201908024

引用本文  

张钰明, 向兴, 王学贵. 噻虫嗪对褐飞虱的毒力及解毒代谢酶活性的影响[J]. 华南农业大学学报, 2020, 41(3): 80-85.
ZHANG Yuming, XIANG Xing, WANG Xuegui. Effects of thiamethoxam on toxicity and detoxification metabolic enzyme activity of Nilaparvata lugens [J]. Journal of South China Agricultural University, 2020, 41(3): 80-85.

基金项目

国家重点研发计划(2018YFD0200300)

通信作者

王学贵(1976—),男,副教授,博士,E-mail: wangxuegui@sicau.edu.cn

作者简介

张钰明(1997—),女,硕士研究生,E-mail: m18408215896@163.com

文章历史

收稿日期:2019-08-19
网络首发时间:2020-04-22 11:01:00
噻虫嗪对褐飞虱的毒力及解毒代谢酶活性的影响
张钰明, 向兴, 王学贵    
四川农业大学 农学院/国家级作物学教学实验示范中心,四川 成都 611130
摘要:【目的】 明确噻虫嗪对褐飞虱Nilaparvata lugens的抗药性及解毒代谢酶活性的影响。【方法】 采用稻苗浸渍法测定褐飞虱温室种群对吡虫啉、噻虫嗪、噻嗪酮和毒死蜱的抗药性,以及对新型防控药剂氟啶虫胺腈和三氯苯嘧啶的敏感性;研究增效剂胡椒基丁醚 (PBO)、马来酸二乙酯 (DEM)和磷酸三苯酯 (TPP)对噻虫嗪的增效作用;测定了羧酸酯酶、谷胱甘肽S−转移酶和细胞色素 P450s 酶活性。【结果】 褐飞虱种群对噻虫嗪表现出高水平抗性,抗性倍数达到277.92倍,对氟啶虫胺腈和三氟苯嘧啶仍处于敏感水平,对三氟苯嘧啶无交互抗性。PBO对噻虫嗪的增效作用最强,增效倍数为1.99倍。温室抗性种群的细胞色素P450s活性达到4.70×10−3 IU/mg,为室内敏感品系的2.13倍。【结论】 细胞色素P450s活性的增强可能是褐飞虱对噻虫嗪产生代谢抗性的主要原因。氟啶虫胺腈和三氟苯嘧啶轮换使用可有效防控褐飞虱。
关键词褐飞虱    稻苗浸渍法    噻虫嗪    胡椒基丁醚    P450s    
Effects of thiamethoxam on toxicity and detoxification metabolic enzyme activity of Nilaparvata lugens
ZHANG Yuming, XIANG Xing, WANG Xuegui    
College of Agriculture, Sichuan Agricultural University/National Demonstration Center for Experimental Grop Science Education, Chengdu 611130, China
Abstract: 【Objective】 To clarify the effects of thiamethoxam on resistance and detoxification metabolic enzyme activity of Nilaparvata lugens. 【Method】 The resistance levels of N. lugens population in greenhouse against four insecticides (imidacloprid, thiamethoxam, buprofezin, chlopyrifos) and the sensitivities to two new types of insecticides (sulfoxaflor, triflumezopyrim) were measured using rice seedling immersion method. The synergistic effect of three synergists [piperonyl butoxide (PBO), diethyl maleate (DEM), triphenyl phosphate (TPP)] on thiamethoxazine, and three detoxification enzymes (carboxylesterase, qlutathione S-transferase, cytochrome P450s) activities were analyzed. 【Result】 N. lugens population showed high resistance to thiamethoxam with the resistance ratio of 277.92 folds, sensitive to sulfoxaflor and triflumezopyrim, and no cross resistance to triflumezopyrim. PBO had the strongest synergistic effect on thiamethoxam with the synergistic ratio of 1.99. Cytochrome P450s activity of greenhouse population reached 4.70×10−3 IU/ mg, which was 2.13 folds to that of susceptible strain. 【Conclusion】 The increased activity of cytochrome P450s could be the main factor resulting in the metabolic resistance of N. lugens to thiamethoxam. The alternate use of sulfoxaflor and triflumezopyrim can effectively control the occurrence of N. lugens.
Key words: Nilaparvata lugens    rice seedling immersion method    thiamethoxam    piperonyl butoxide    P450s    

褐飞虱Nilaparvata lugens属同翅目Homoptera飞虱科Delphacidae,食性专一,只危害水稻、野生稻等稻类[1],具有迁飞性、发生量大、种群增长迅速、易暴发成灾、持续时间长、防治难度大等特点。常见的褐飞虱防治方法包括化学防治和生物防治,其中高效广谱的化学防治占据主要地位,但农药对害虫的天敌也同样存在致死作用。此外,长期、大量、不合理的农药使用已使褐飞虱对化学杀虫剂产生了广谱抗药性[2]。根据近几年来的抗性监测结果[3],褐飞虱已对有机磷、有机氯、氨基甲酸酯类、烟碱类、苯基吡唑类及新烟碱类等多种类型的杀虫剂产生了不同程度的抗性,且抗药性发展迅速。目前已知的稻飞虱对各类杀虫剂的抗性机制包括水解酶(酯酶)、谷胱甘肽、细胞色素P450s等解毒代谢酶活性提高,乙酰胆碱酯酶等靶标部位敏感度降低等[4-5]。因此,为延缓褐飞虱抗药性的发展,可选择无交互抗性的防控药剂和在杀虫剂中添加增效剂[6]

噻虫嗪是一种广谱的新烟碱类杀虫剂,能有效防治同翅目、鳞翅目、鞘翅目和缨翅目害虫,且对同翅目害虫有特效[7]。从1991年起,噻虫嗪被广泛运用于亚洲各稻区稻飞虱的防控。近年来,稻飞虱对噻虫嗪的田间抗性在抗性强度和地理分布上呈现出极大的增强趋势,肖汉祥等[8]发现广东田间褐飞虱种群对噻虫嗪已达高水平抗药性(61.0~517.8倍)。但因防治成本较低和对褐飞虱仍具有较好的防效,且褐飞虱抗噻虫嗪种群尚未对其他杀虫剂表现出明显的交互抗性,噻虫嗪仍为防控褐飞虱的重要药剂品种之一。为了解噻虫嗪对褐飞虱的解毒代谢酶活性的影响,本研究采用稻苗浸渍法,对四川农业大学水稻所温室褐飞虱种群和敏感种群进行增效剂试验及酶活性测定,以期为褐飞虱的抗性治理提供理论依据。

1 材料与方法 1.1 试验材料

褐飞虱室内敏感品系由华中农业大学李建洪教授课题组于2017年提供,褐飞虱田间种群2017年采集于四川农业大学水稻所温室。试验用水稻为感虫品种TN1。

实验室饲养温度为(27±1)℃,相对湿度为70%±10%,光周期为14 h光∶10 h暗。

1.2 试验药剂和试剂

φ为98%吡虫啉原药(江苏威耳化工有限公司);φ为98%噻虫嗪原药(河北德瑞化工有限公司);φ为98%噻嗪酮原药(山东华阳农药化工集团有限公司);φ为98%毒死蜱原药(湖北沙隆达股份有限公司);φ为10%三氟苯嘧啶乳油(美国杜邦公司);φ为95.9%氟啶虫胺腈原药(美国陶氏益农公司)。

胡椒基丁醚(PBO)、马来酸二乙酯(DEM)、磷酸三苯酯(TPP)、乙二胺四乙酸(EDTA)、二硫苏糖醇(DTT)、苯基硫脲(PTU)、α−苯基磺酰氟(PMSF)、考马斯亮蓝G250、牛血清蛋白、还原型辅酶II钠盐(NADPH)、2,4−二硝基氯苯(CDNB)、还原型谷胱甘肽(GSH)、α−乙酸萘酯(α-Na)、显色固蓝BB盐、对硝基苯酚、对硝基苯甲醚、磷酸二氢钠、磷酸氢二钠、毒扁豆碱、十二烷基硫酸钠(SDS)、β−乙酸奈酯(β-NA),均为分析纯。

1.3 方法 1.3.1 毒力测定

采用稻苗浸渍法进行毒力测定,方法参照文献[9-10]。将杀虫剂原药用丙酮溶解作为母液,然后用0.1% (φ)Triton X-100水溶液将母液稀释成5个浓度梯度的药液;选取室内培养的TN1水稻幼苗,每组15株,在阴凉处干燥至表面无水痕,将稻苗按药液质量浓度由低到高的顺序浸泡30 s,以0.1% (φ) Triton X-100水溶液为对照组;取出后晾干30 min至稻茎上无明水,以浸湿的脱脂棉包住稻株根部放入培养杯中;挑取龄期一致的3龄若虫放入培养杯中,每杯15头,剔除机械死伤供试虫,每处理重复3次,处理96 h后检查死亡虫数。采用SAS软件计算褐飞虱抗性种群及敏感种群3龄若虫对2种新型杀虫剂的毒力。常规药剂抗性倍数参照文献[11]中所提出的褐飞虱敏感基线计算,对2种新型杀虫剂的抗性倍数(Resistance ratio,RR)参照褐飞虱室内敏感品系毒力测定结果计算得出。

RR=田间种群LC50/敏感品系LC50

抗性水平分级标准为:敏感(RR≤5.0);低水平抗性(5.0<RR≤10.0);中等水平抗性(10.0<RR≤100.0);高水平抗性(RR>100.0)。

1.3.2 增效剂测定

参照文献[10]的方法,采用稻苗浸渍法。首先用DEM 200 μg/mL、PBO 20 μg/mL和TPP 80 μg/mL与噻虫嗪复配后处理稻苗。取生长一致的褐飞虱3龄若虫置于处理后的稻苗上,每杯15头试虫,每个处理3次重复,以单独使用杀虫剂处理为对照组。根据1.3.1确定的调查时间,统计各处理的死亡虫数,并按照公式计算增效倍数或增效系数(Synergism ratio,SR)。

SR=单剂对试虫的LC50/单剂+增效剂对试虫的LC50

1.3.3 解毒代谢酶活性的测定

羧酸酯酶测定参照Wang等[12]的方法。取不同处理的褐飞虱成虫各20头,加入1 mL预先冷却的0.04 mol/L磷酸盐缓冲液(pH 7.0)中,将混合物在冰浴下充分匀浆,10 400 r/min、4 ℃离心15 min,取上清液作为粗酶,冰浴备用。在每个试管中依次加入450 µL磷酸缓冲液、1.8 mL 3×10−4 mol/L的α-NA溶液(含有3×10−4 mol/ L毒扁豆碱)和50 µL稀释后的酶液。混匀后于30 ℃恒温水浴中反应15 min,然后立即加入900 µL显色液(ρ为1%的固蓝BB盐溶液和ρ为5% SDS溶液体积比为2∶5,现配现用),终止反应后再向对照组溶液中加入酶液50 µL,摇匀后静置2 min,于600 nm(α-NA)/555 nm(β-NA)下测吸光度。试验各处理设3次重复,每次重复平行测定3次。按照公式计算羧酸酯酶的活性。

谷胱甘肽S−转移酶活性测定参照Wang等[12]的方法。加入预冷的0.1 mol/L、pH 6.5的磷酸盐缓冲液[含1.0 mmol/L乙二胺四乙酸(EDTA)],将混合物在冰浴下充分匀浆,10 400 r/min、4 ℃离心15 min,取上清液作为粗酶,冰浴备用。以2,4−二硝基氯苯(CDNB)为底物,在酶催化下形成谷胱甘肽S−芳基复合体,在340 nm处出现最大吸收峰。比色皿中依次加入790 µL 0.1 mol/L pH 6.5磷酸缓冲液、30 µL 15 mmol/L CDNB、50 µL粗酶液和30 µL 30 mmol/L GSH(还原型谷胱甘肽),反应总体积为0.9 mL,迅速混匀后,在340 nm下用时间驱动程序监测其吸光度在2 min内的变化,计算反应速度。每个处理设3次重复,每重复平行测定3次。按照公式计算谷胱甘肽S−转移酶的活性。

细胞色素P450s酶活性测定参照Rose等[13]的方法。取不同处理的褐飞虱成虫各40头,加2 mL预冷的磷酸盐缓冲液[0.11 mol/L,pH 7.6,含0.11 mmol/L DTT、0.11 mmol/L EDTA、0.11 mmol/L PMSF、0.11 mmol/L PTU和20% (φ)甘油]冰上匀浆,匀浆液于4 ℃10 000 r/min离心10 min,取上清液为酶液低温储存备用;在酶标板中加入100 μL对硝基苯甲醚(2×10−3 mol/L)和90 μL酶液,27 ℃条件下振荡温育3 min,再加入10 μL NADPH(9.6×10−3 mol/L)开始反应,测定D405 nm,每20 s读取数据1次,持续2 min,根据公式计算细胞色素P450s酶活性。

2 结果与分析 2.1 褐飞虱的解毒酶对噻虫嗪抗性的影响

结果(图1)表明,温室种群的P450s酶比活力最高,4.70×10−3 IU/mg,是敏感种群的2.13倍,而经PBO处理后P450s活性被明显著抑制,仅为1.25×10−3 IU/mg(图1C)。室内敏感品系和温室抗性种群经TPP和DEM处理后,其羧酸酯酶(图1A)和谷胱甘肽S−转移酶(图1B)活性变化不大。因此,P450s活性增强对褐飞虱温室种群的抗药性形成起着较为重要的作用。

图 1 不同增效剂处理下褐飞虱的解毒代谢酶活力 Fig. 1 Detoxification enzyme activities of Nilaparvata lugens under different synergists 图中S、G分别为敏感和温室种群;TPP、DEM、PBO分别为磷酸三苯酯、马来酸二乙酯和胡椒基丁醚 S: Sensitive population, G: Greenhouse population; TPP: Triphenyl  phosphate; DEM: Diethyl  maleate; PBO: Piperonyl  butoxide
2.2 褐飞虱种群的毒力测定

结果(表1)表明,温室种群对新烟碱类杀虫剂吡虫啉、噻虫嗪、噻嗪酮均达到高抗水平,分别为1 902.55、277.92和856.06倍;对毒死蜱的抗性为低水平,为9.65倍,对三氟苯嘧啶及氟啶虫胺腈都表现为敏感。三氟苯嘧啶与吡虫啉、噻虫嗪、噻嗪酮无交互抗性(敏感品系和温室种群的毒力LC50的95%置信区间有重叠,差异不显著),与氟啶虫胺腈则表现出交互抗性(敏感种群和温室种群的毒力LC50的95%置信区间无重叠,差异显著)。

表 1 6种杀虫剂对褐飞虱的毒力 Table 1 The toxicities of six insecticides on Nilaparvata lugens
2.3 增效剂作用测定

结果(表2)表明,增效剂DEM、PBO和TPP作用于敏感品系对噻虫嗪的增效倍数分别为1.07、1.14和1.04倍,对温室种群的增效倍数分别为1.40、1.99和1.28倍,因此PBO作用于温室种群对噻虫嗪的增效最明显。

表 2 3种增效剂对噻虫嗪的增效作用 Table 2 Synergistic effects of three synergists on thiamethoxam
3 结论与讨论

近年来已有大量关于褐飞虱对各类杀虫剂产生抗药性的报道,Zhang等[14]采用稻茎浸渍法测定了8个褐飞虱稻田种群的抗药性,结果表明种群对吡虫啉和噻嗪酮均表现为高水平抗性,抗性倍数分别为233.3~2 029.0和147.0~1 222.0倍,对噻虫嗪为中、高水平抗性(25.9~159.2倍),对毒死蜱仍处于低、中等水平抗性(7.4~30.7倍)。本研究结果表明,吡虫啉、噻虫嗪、噻嗪酮对温室褐飞虱种群均达到高抗水平,对毒死蜱仍处于低水平抗性,与肖汉祥等[8]对田间褐飞虱种群的抗性监测结果较为接近,但新型防控药剂氟啶虫胺腈与三氟苯嘧啶均表现敏感。因此,新型防控药剂氟啶虫胺腈和三氟苯嘧啶轮换使用,可有效防控褐飞虱的发生。

昆虫对农药产生抗药性主要体现在杀虫剂作用靶标敏感性降低以及昆虫解毒酶代谢能力增强2个方面[15]。范银君等[16]研究发现细胞色素P450s在昆虫对新烟碱类杀虫剂的抗药性中起主要作用。庄安祥[17]通过qRT- PCR测定了吡虫啉LD50剂量处理对褐飞虱P450s基因表达量的影响,认为褐飞虱抗新烟碱类杀虫剂主要与P450s活性增强有关,其次与乙酰胆碱酯酶的敏感度降低有关。张平艳等[18]研究发现,室内选育建立的桃蚜Myzus persicae抗噻虫嗪种群的羧酸酯酶及多功能氧化酶(MFO)O−脱甲基的比活力分别是敏感品系的6.12和2.03倍。Gao等[19]采用PBO和TPP处理抗噻虫嗪的西花蓟马Frankliniella occidentalis种群后,对噻虫嗪有很高的增效作用,DEM对噻虫嗪没有协同作用,说明西花蓟马对噻虫嗪的抗药性主要与羧酸酯酶以及细胞色素P450s酶活性增强有关。本研究通过对褐飞虱增效剂及3种解毒代谢酶活力测定发现,PBO表现出明显的增效作用和对细胞色素P450s活性显著的抑制作用,说明细胞色素P450s酶参与了褐飞虱对噻虫嗪的抗药性机理,该结果与毛旭连[20]就灰飞虱Laodelphax striatellus对噻虫嗪及噻嗪酮抗药性机理作出的研究结果相近。Sun等[21]研究表明,P450s基因CYP6ER1参与了褐飞虱对噻虫嗪的解毒代谢,但是也发现有另外6个未明确作用的调控P450s的基因(CYP408A1V2CYP427A1CYP6CS1CYP4C76CYP4DD1CYP417A1V2)高度表达。Pang等[22]的研究表明CYP6ER1基因也涉及褐飞虱对吡虫啉的抗药性机理,此外Zhang等[23]研究发现有其他的P450s基因,如CYP6AY1CYP4CE1CYP6CW1等也参与褐飞虱对吡虫啉的抗药性发展。以上研究说明细胞色素P450s在褐飞虱对新烟碱类杀虫剂抗药性机理中的作用值得进一步研究。

本试验采用稻苗浸渍法,通过对褐飞虱敏感品系和温室种群的毒力及酶活性测定,初步明确了褐飞虱对噻虫嗪的代谢抗药性主要受细胞色素P450s活性增强影响,使用该杀虫剂时可添加增效剂PBO从而抑制P450s酶活性。由于本研究仅在生物化学水平初步探究了噻虫嗪对褐飞虱的毒力及解毒代谢酶活性的影响,其抗药性是否与靶标突变及体壁穿透下降等有关还需进行深入研究。

参考文献
[1]
洪晓月,丁锦华. 农业昆虫学[M]. 北京: 中国农业出版社, 2007: 87-93. (0)
[2]
董必琴. 褐飞虱田间种群的抗药性逆转及其对水稻品种的适应性[D]. 金华: 浙江师范大学, 2013. (0)
[3]
王鹏, 甯佐苹, 张帅, 等. 我国主要稻区褐飞虱对常用杀虫剂的抗性监测[J]. 中国水稻科学, 2013, 27(2): 191-197. DOI:10.3969/j.issn.1001-7216.2013.02.012 (0)
[4]
王彦华, 王强, 沈晋良, 等. 褐飞虱抗药性研究现状[J]. 应用昆虫学报, 2009, 46(4): 518-524. DOI:10.3969/j.issn.0452-8255.2009.04.004 (0)
[5]
徐鹿, 赵均, 赵春青, 等. 灰飞虱对杀虫剂的抗性分子机制研究进展[J]. 农药学学报, 2018, 20(2): 135-145. (0)
[6]
邹啸文. 褐飞虱防治药剂增效技术及其机理研究[D]. 南宁: 广西大学, 2010. (0)
[7]
王彦华, 王鸣华. 害虫对噻虫嗪抗药性及其治理[J]. 世界农药, 2008, 30(4): 42-45. DOI:10.3969/j.issn.1009-6485.2008.04.010 (0)
[8]
肖汉祥, 李燕芳, 凌善锋, 等. 广东褐飞虱种群对4种杀虫剂的抗药性[J]. 华南农业大学学报, 2018, 39(2): 70-74. DOI:10.7671/j.issn.1001-411X.2018.02.011 (0)
[9]
刘磊磊, 杨洪, 金道超. 白背飞虱对稻田常用杀虫剂的敏感性测定[J]. 农药, 2015, 54(3): 227-230. (0)
[10]
MU X C, ZHANG W, WANG L X, et al. Resistance monitoring and cross-resistance patterns of three rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus to dinotefuran in China [J]. Pestic Biochem Physiol, 2016, 134: 8-13. DOI:10.1016/j.pestbp.2016.05.004 (0)
[11]
中华人民共和国农业部. 水稻褐飞虱抗药性监测技术规程: NY/T1708—2009[S]. 北京: 中国农业出版社, 2009. (0)
[12]
WANG X, XIANG X, YU H, et al. Monitoring and biochemical characterization of beta-cypermethrin resistance in Spodoptera exigua, (Lepidoptera: Noctuidae) in Sichuan Province, China [J]. Pestic Biochem Physiol, 2018, 146: 71-79. DOI:10.1016/j.pestbp.2018.02.008 (0)
[13]
ROSE R L, BARBHAIYA L, ROE R M, et al. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens [J]. Pestic Biochem Physiol, 1995, 51(3): 178-191. DOI:10.1006/pest.1995.1018 (0)
[14]
ZHANG X, LIAO X, MAO K, et al. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens(Stål) in China 2012-2014 [J]. Pestic Biochem Physiol, 2016, 132: 13-20. DOI:10.1016/j.pestbp.2015.10.003 (0)
[15]
DAWKAR V V, CHIKATE Y R, LOMATE P R, et al. Molecular in-sights into resistance mechanisms of Lepidopteran insect pests against toxicants[J]. J Proteome Res, 2013, 12(11): 4727-4737. DOI:10.1021/pr400642p (0)
[16]
范银君, 史雪岩, 高希武. 新烟碱类杀虫剂吡虫啉和噻虫嗪的代谢研究进展[J]. 农药学学报, 2012, 14(6): 587-596. DOI:10.3969/j.issn.1008-7303.2012.06.01 (0)
[17]
庄安祥. 新烟碱类杀虫剂及其类似物的毒力分析与毒理特性研究[D]. 南京: 南京农业大学, 2015. (0)
[18]
张平艳, 周小毛. 桃蚜对噻虫嗪代谢抗性机制研究[J]. 植物保护, 2015, 41(1): 39-44. DOI:10.3969/j.issn.0529-1542.2015.01.007 (0)
[19]
GAO C F, MA S Z, SHAN C H, et al. Thiamethoxam resistance selected in the western flower thrips Frankliniella occidentalis(Thysanoptera: Thripidae): Cross-resistance patterns, possible biochemical mechanisms and fitness costs analysis [J]. Pestic Biochem Physiol, 2014, 114: 90-96. DOI:10.1016/j.pestbp.2014.06.009 (0)
[20]
毛旭连. 灰飞虱对噻嗪酮和噻虫嗪的抗性风险、交互抗性及生化抗性机理[D]. 泰安: 山东农业大学. 2015. (0)
[21]
SUN X Q, GONG Y H, HOU M L, et al. Mechanisms of resistance to thiamethoxam and dinotefuran compared to imidacloprid in the brown planthopper: Roles of cytochrome P450 monooxygenase and a P450 gene CYP6ER1 [J]. Pestic Biochem Physiol, 2018, 150: 17-26. DOI:10.1016/j.pestbp.2018.06.014 (0)
[22]
PANG R, CHEN M, LIANG Z K, et al. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens [J]. Sci Rep, 2016, 6: 34992. DOI:10.1038/srep34992 (0)
[23]
ZHANG Y X, YANG Y X, SUN H H, et al. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes [J]. Insect Biochem Molec, 2016, 79: 50-56. DOI:10.1016/j.ibmb.2016.10.009 (0)