查询字段 检索词
  华南农业大学学报  2020, Vol. 41 Issue (3): 86-92  DOI: 10.7671/j.issn.1001-411X.201907018

引用本文  

郭梦晴, 杨颖, 许叶, 等. 高州油茶人工林碳储量分布特征[J]. 华南农业大学学报, 2020, 41(3): 86-92.
GUO Mengqing, YANG Ying, XU Ye, et al. Carbon storage and distribution characteristics of Camellia gauchowensis plantation [J]. Journal of South China Agricultural University, 2020, 41(3): 86-92.

基金项目

广东省科技计划(2015B020202002);广东省林业科技创新项目(2018KJCX008)

通信作者

奚如春(1963—),男,教授,博士,E-mail: xirc2003@126.com

作者简介

郭梦晴(1994—),女,硕士研究生,E-mail: 1595213833@qq.com

文章历史

收稿日期:2019-07-11
网络首发时间:2020-04-22 11:00:08
高州油茶人工林碳储量分布特征
郭梦晴1, 杨颖1, 许叶1, 奚如春1,2    
1. 华南农业大学 林学与风景园林学院,广东 广州 510642;
2. 广东省森林植物种质创新与利用重点实验室,广东 广州 510642
摘要:【目的】 探明高州油茶Camellia gauchowensi人工林碳储量及分布特征,并估算评价其固碳效应。【方法】 根据样地植株径级分布特征,选取不同径级样株各2~3株,取树叶、树干、树枝、树根、果实、花芽各器官测定生物量和碳含量,并建立各器官生物量模型;在标准地内按“S”形选取8个样点,沿土壤剖面分层采集0~20、20~40、40~60和60~100 cm土层的土壤样品,测定土壤容重与碳含量,计算碳储量。【结果】 高州油茶中龄林植株各器官生物量分配比例依次为树干>树根>树叶>树枝>果实>花芽,各器官生物量均随地径的增大而增大。试验林分总生物量为26.902 t·hm−2,树体平均碳质量分数为483.45 g·kg−1。同径级各器官的碳含量不同,其中,果实平均碳含量最高。林地100 cm深土层中,土壤碳含量随着土层深度的增加呈明显递减规律,其中,0~20 cm土层碳含量最高,碳质量分数为26.550 g·kg−1。高州油茶林地总碳储量为144.538 t·hm−2,其中,树体碳储量为12.857 t·hm−2,占总碳储量的8.90%;林地土壤碳储量为131.681 t·hm−2,占总碳储量的91.10%。根据中国生物多样性国情报告编写组数据,碳价格为260.90元·t−1,则本试验高州油茶林的碳汇经济效益约为3.8万元·hm−2。【结论】 高州油茶林分碳储量高于广东省经济林平均碳储量,林地土壤碳储量高于广东省平均土壤碳储量,林分总碳储量高于珠三角森林生态系统碳储量,具有较高的生态效益。高州油茶不仅有较好的生产效益,而且具有十分广阔的固碳前景。
关键词高州油茶    生物模型    碳储量    分布特征    
Carbon storage and distribution characteristics of Camellia gauchowensis plantation
GUO Mengqing1, YANG Ying1, XU Ye1, XI Ruchun1,2    
1. College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
2. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
Abstract: 【Objective】 To investigate carbon storage and distribution characteristics of Camellia gauchowensis plantation, estimate and evaluate the effect of carbon sequestration. 【Method】 Based on the distribution characteristics of basic diameter class in the sample plot, 2 to 3 sample trees were selected in each diameter class. The biomass and carbon content of various organs (leaves, trunks, branches, roots, fruits and flower buds) were measured and their biomass models were established. According to “S” shape in standard plot, eight sampling points were randomly selected to collect soil samples from 0−20, 20−40, 40−60 and 60−100 cm along the soil profile. The bulk density and carbon content of soil samples were determined and the carbon storage was calculated.【Result】 The order of biomass allocation ratio of the organs of middle-aged C. gauchowensis plantation was trunks> roots > leaves > branches > fruits > flower buds. All the biomass of various organs increased with the basal diameter. The total biomass of test stand was 26.902 t·hm−2. The average carbon content of the tree was 483.45 g·kg−1. The carbon contents were different from various organs in the same diameter class, with fruits being the highest. In the soil layers of 100 cm depth in C. gauchowensis forest land, the soil carbon content decreased with the increase of soil depth, with 0−20 cm soil layer being the highest (26.550 g·kg−1). The total carbon storage of C. gauchowensis plantation was 144.538 t·hm−2, which was 12.857 t·hm−2 (accounting for 8.90%) and 131.681 t·hm−2 (accounting for 91.10%) for plant and soil, respectively. According to the authorized data of China biodiversity national condition report, the carbon price is 260.90 CNY per ton, so the economic benefit of the carbon of C. gauchowensi plantation is about 38 000 CNY per hectare. 【Conclusion】 The carbon storage of C. gauchowensis plantation is higher than that of the average level of non-timber forests in Guangdong, the forest soil carbon storage is higher than the average level in Guangdong, and the total carbon storage of stand is higher than that of forest ecosystem in the Pearl River Delta. C. gauchowensi not only has a good production benefit, but also has a very broad prospect of carbon sequestration.
Key words: Camellia gauchowensis    biomass model    carbon storage    distribution characteristic    

高州油茶Camellia gauchowensis为山茶科Theaceae山茶属Camellia常绿小乔木,又名华南油茶、越南油茶、陆川油茶,它是我国南缘主要油茶品种,单位面积产量高,果实硕大,油脂品质好,为一种优质油茶树种和生态经济型树种,具有良好的社会、经济和生态效益[1-2]。目前,广东省高州油茶人工林种植面积约1万hm2,且推广面积逐年增加,在经营高州油茶获得良好经济效益的同时,科学客观地评价其碳储量等生态经济效益,具有重要的科学价值和生产意义。

森林生物量约占全世界陆地植被生物量的85%~90%[3],准确估算森林生物量是森林碳储量和许多其他林业问题的研究基础[4],目前生物量测定最常用的方法之一是模型估计法[5]。人工林在森林固碳方面的作用已成共识,国内外研究者对各类人工林的生物量和碳储量做了大量研究,但多集中在树龄、林分经营管理措施的影响等方面[6-7]。经济林由于受周期性经营活动的影响,其生物量和碳储量的研究相对滞后。20世纪80年代初我国开始探讨油茶生物量问题[8],但多集中于经营方式和抚育措施对油茶生物量的影响等方面[9-11]。近年来已开始对油茶林生物量和固碳能力等的深入研究,如油茶不同器官生物量及其积累规律[12-13]

我国经济林碳储量研究起步时间晚且研究多集中于土壤含碳量,对植物本身碳储量研究则相对较少,方法大多采用平均生物量法来计算油茶幼林和成林的生物量。目前也有利用数字图像技术建立油茶生物量模型[14],但对油茶林生态系统或特定林分碳储量及分配特征的研究鲜见报道。本文以广东省揭阳市高州油茶人工林为研究对象,通过调查测定其林分生物量和碳含量,阐明其碳储量及分布特征,并估算评价其固碳效应,旨在为其高效利用提供理论依据和技术支撑。

1 材料与方法 1.1 研究区域概况

研究区域选择在广东省揭阳市揭东区高州油茶试验林。该区域地处116°17′E,23°41′N,属亚热带季风气候,年平均气温21.4 ℃,年平均降水量为1 720~2 100 mm。试验林总面积30 hm2,林龄11年,已进入投产期,是目前广东省内种植面积最大且管理规范的高州油茶人工林,初始种植密度为2.5 m×3.0 m,林地总体坡向西北,坡度15°~20°,土壤类型为山地黄红壤,pH 5.0~5.5。

1.2 试验材料与指标测定方法 1.2.1 样地设置及调查

于2018年10月下旬在上述试验区内,随机选取3块面积20 m×20 m的标准地。在标准地内进行每木调查。根据调查结果,在地径最大值与最小值之间,以2 cm为一个径级划分,3块标准地林分调查结果汇总见表1

表 1 高州油茶人工林标准地林分调查结果 Table 1 Result of survey in sample plots of Camellia gauchowensi plantation
1.2.2 样株选择

在上述研究区域内,选取1 hm2作为试验样地。在林分调查中发现不同径级植株数量大体成正态分布,4、6和12 cm径级植株较少,8和10 cm径级植株较多。选取与表1各径级的平均地径和树高相近的植株12株作为样株,其中,4、6和12 cm径级各2株;8和10 cm径级各3株。

1.2.3 植物生物量测定

分别对各样株进行全株生物量测定,具体方法是:样株树干部分运用“分层切割法”,从林木基部到1 m为一段锯断,1 m以上部分,按1.5 m为一段依次锯断;枝、叶部分用“标准枝法”采集;芽与果全株采集;地下部分采用全根挖掘法,取出后将土壤清除干净,全量收集。各器官全株测定鲜质量后各取样1 kg,带回实验室,105 ℃条件下烘干至恒质量,称质量并记录。根据生物量模型计算生物量(W):W=aDb,其中ab为回归参数,D为地径[15]

1.2.4 植物碳含量测定

将各器官样品烘干后磨碎成粉末状,用元素分析仪测定其碳质量分数(g·kg−1)作为碳含量。

1.2.5 土壤样品采集与测定

在林分样地内,按“S”形随机选取8个取样地点,挖开土壤剖面,使用环刀和小铝盒分层采集0~20、20~40、40~60和60~100 cm土层的土样,每土层重复3次,共采样192个,带回实验室,参照《土壤农业化学分析方法》测定土壤碳含量和含水量,并计算土壤容重[16]

1.3 碳储量计算方法 1.3.1 高州油茶单位面积生物量计算

高州油茶单位面积(hm2)生物量计算公式采用:

$\begin{split} \Sigma {Y_{\text{总}}} = &\left( {\Sigma {Y_{\text{叶}}} + {\rm{ }}\Sigma {Y_{\text{枝}}} + {\rm{ }}\Sigma {Y_{\text{干}}} + \Sigma {Y_{\text{果}}} + \Sigma {Y_{\text{芽}}} + \Sigma {Y_{\text{根}}}} \right) \times\\ &\quad \quad \quad \quad \quad {\rm{ }}10\;000/400, \end{split}$ (1)

式中:Y表示单位面积乔木层生物量,t·hm−2YYYYYY分别表示叶、枝、干、根、果、芽的生物量,t·hm−2

1.3.2 碳储量计算

植物单位面积碳储量(AP,t·hm−2)用下式计算:

$ A_{\rm{P}} = {\text{植物碳含量}} \times {\text{植物生物量}}/1\;000{\text{,}} $ (2)

土壤层单位面积有机碳储量用下式计算:

$ {A_{\rm{S}}} = {\rm{ }}0.1\Sigma {E_i}{D_i}{C_i}, $ (3)

式中:AS为土壤层单位面积有机碳储量,t·hm−2Ei为土层(i)厚度,cm,;Dii层土壤容重,g·cm−3Cii层土壤有机碳含量,g·kg−1;0.1为换算系数[17]

1.4 数据处理

采用Microsoft Excel 2010进行数据整理,并绘制表格和图;使用SPSS 22.0对试验数据进行相关性分析、回归分析及Duncan’s多重比较等。

2 结果与分析 2.1 高州油茶人工林生物量特征 2.1.1 按径级分配的生物量特征

表2可知,高州油茶各器官生物量回归模型均具有显著相关性(P<0.001),且回归方程拟合度较高,决定系数(R2)为0.758~0.972。但其花芽由于生物量总体较小,且数据波动性大,不具有显著性,因此不进行模型拟合。

表 2 高州油茶人工林各器官生物量模型拟合 Table 2 Fitness of biomass models for each organ in Camellia gauchowensi plantation

表1可知,在高州油茶试验林分中,不同径级植株密度呈偏正态分布:8 cm径级最多,为556株·hm−2,株数占总林分的33.92%;6和10 cm径级的植株密度分别为389和309株·hm−2,其株数分别占总林分的23.74%和18.85%;4 cm径级植株密度为242株·hm−2,株数占总林分的14.76%;径级12 cm植株密度最小,仅为143株·hm−2,株数占总林分的8.73%。

表3可知,各径级油茶的生物量也呈现正态分布。10 cm径级油茶的生物量最大,为10.878 t·hm−2,占试验林总生物量的40.43%,其次是8 cm径级的生物量,为6.917 t·hm−2,占比25.71%,二者是林分生物量的主要部分,4 cm径级的生物量最小,只有1.231 t·hm−2,仅占比4.58%。由此表明:4 cm径级的油茶生物量对整个油茶林生物量贡献最小;12 cm径级油茶虽然数量最少,但由于其单株生物量远大于其他径级,所以生物量达到了4.809 t·hm−2,占比17.88%;而6 cm径级油茶因为数量较大,生物量也达到了3.069 t·hm−2,占比11.41%。

表 3 高州油茶人工林不同径级各器官生物量及其分配 Table 3 Biomass and distribution of each organ in different diameter classes of Camellia gauchowensi plantation
2.1.2 林分总生物量

表4可知,该试验区高州油茶林分的总生物量为26.902 t·hm−2。其中,树干和树根生物量分别为8.646和8.479 t·hm−2,分别占比32.14%和31.52%,二者对总生物量累积贡献率达到60%以上;树叶生物量为3.822 t·hm−2,树枝生物量为2.878 t·hm−2,果实生物量2.189 t·hm−2,花芽生物量最小,只有0.888 t·hm−2

表 4 高州油茶人工林各器官生物量及总生物量占比 Table 4 Biomass and its proportion of each organ in Camellia gauchowensi plantation
2.2 高州油茶人工林碳含量 2.2.1 林分碳含量

表5可知,高州油茶不同径级的林分碳含量不同。具体来讲,林分平均碳质量分数为483.45 g·kg−1,最大值(12 cm径级)为488.88 g·kg−1,最小值(8 cm径级)为476.51 g·kg−1

表 5 高州油茶人工林不同样株各器官碳含量 Table 5 Carbon contents of different organs in different sample plants of Camellia gauchowensi plantation

表 5还可知,高州油茶林分不同器官的碳含量不同,其平均碳质量分数变化范围为458.95~521.39 g·kg−1,平均碳含量排序为果实>树叶>花芽>树枝>树干>树根。其中,果实平均碳含量最高,质量分数为496.52 g·kg−1,树根最低,为466.04 g·kg−1,花芽和树干碳含量除与树枝碳含量差异不显著外,与其他器官的碳含量均有显著差异(P < 0.05)。

2.2.2 林地土壤有机碳含量

图1可见,在样地100 cm深的土层中,土壤有机碳含量随土层深度的增加而递减。0~20、20~40、40~60和60~100 cm土层土壤有机碳平均质量分数分别为26.550、11.017、6.678和4.706 g·kg−1,占土壤总有机碳含量的54.24%、22.51%、13.64%和9.61%。不同取样点的土壤有机碳含量也存在差异,这可能与取样点所处的坡位、坡度及其小气候条件有关。

图 1 高州油茶人工林土壤有机碳含量垂直分布 Fig. 1 Vertical distribution of soil organic carbon content in Camellia gauchowensi plantation
2.3 高州油茶人工林有机碳储量 2.3.1 林分碳储量

表6可知,高州油茶林分总碳储量为12.857 t·hm−2。其中,树干、树根、树叶、树枝、果实和花芽的碳储量分别为4.127、3.950、1.868、1.393、1.088和0.431 t·hm−2,分别占林分总碳储量的32.10%、30.72%、14.53%、10.84%、8.47%和3.35%。从各器官碳储量分布来看,树干和树根占重要位置,贡献了林分60%以上的碳储量,然后依次是树叶>树枝>果实>花芽。

表 6 高州油茶人工林各器官碳储量分布 Table 6 Carbon storage distribution of various organs in Camellia gauchowensi plantation
2.3.2 土壤有机碳储量

表 7可知,各样地0~100 cm土层土壤有机碳储量平均为131.681 t·hm−2。总体来看,0~60 cm土层土壤有机碳储量为107.189 t·hm−2,占林地总有机碳储量的82.01%,其中,0~20 cm土层的土壤有机碳储量最多(62.833 t·hm−2),几乎占全部有机碳储量的一半(49.08%),明显高于其他各层土壤。

表 7 高州油茶人工林不同土层土壤有机碳储量 Table 7 Soil organic carbon storages of different soil layers in Camellia gauchowensi plantation
2.4 高州油茶人工林总有机碳储量及分配特征

表8可知,高州油茶林地总有机碳储量为144.538 t·hm−2。其中,林地土壤的有机碳储量为131.681 t·hm−2,占总有机碳储量的91.10%,是林地有机碳储量的主要组成部分;林分有机碳储量12.857 t·hm−2,占8.90%。可见,高州油茶林地的有机碳储量最主要的组成部分是土壤有机碳储量,林分有机碳储量相对较小。

表 8 高州油茶人工林总有机碳储量及分配 Table 8 Organic carbon storage and distribution of Camellia gauchowensi plantation
3 讨论与结论

本文以高州油茶地径为单变量的回归模型具有较高的精度,表明由地径和生物量建立的回归模型可用于计算单株油茶和油茶人工林的生物量,进而用于其碳汇研究。

高州油茶树体总生物量随着生长而不断累积,但各个器官的分配会随着环境和植物本身的生长状况不同而稍有改变,其分配规律与部分研究者对其他品种油茶的研究基本一致[9, 18]。总体来说,高州油茶人工林地上部分的生物量积累占绝对优势,且树叶略大于树枝,说明植物此时营养生长旺盛,这与其生长阶段(结果始期)吻合。谌小勇等[9]对不同产量水平的油茶林分生物量和生产力进行了研究,发现油茶产量水平越高,其林分的总生物量越大,林分积累的有机物质也越多。高州油茶作为油茶中产量较高的优良品种,其林分总生物量超过Cui等[18]研究的普通油茶。

高州油茶树体的果实碳含量最高,这可能是因为其种仁油脂含量高,碳水化合物含量很高,因此在往后的研究中可以对果皮和种仁分别测定碳含量;树叶叶绿体含丰富的有机物,因而碳含量较高;而植物的花含有较多的RNA、蛋白质和酶,以及对花粉粒的发育起到重要作用的脂类、胡萝卜素和孢粉素等,导致花芽的碳含量也很高。因此花芽和树叶碳含量差异不显著,且均高于树干和树根。可见,各器官的碳含量差异来自于它们的功能和生理特点。杨众养等[19]对海南经济林的研究表明,波罗蜜Artocarpus heterophyllus、荔枝Litchi chinensis、龙眼Dimocarpus longan的含碳率(w)分别为39%、41%和40%,王炳焱[20]研究发现栓皮栎Quercus variabilis中龄林含碳率(w)约为44%,与之相比,高州油茶的平均含碳率较高(w为48%)。

林地土壤各层平均碳含量与彭映赫等[21]研究中的中林龄油茶土壤相似。本试验样地尽量选取人为因素干扰很低的地块,不同取样点的土壤有机碳含量存在差异,这可能与不同取样点坡位、坡向以及人工管理等外部条件有关。该问题还有待于进一步试验验证。土壤表层(0~20 cm)含碳量最高,可见表层土可防止地表水土流失,有效保持土壤对碳的吸存能力。在实际生产中,人们对高州油茶林的管理会减少地被杂草和枯落物,从而一定程度干扰表层土对碳的吸存,今后的生产上可以通过间种、套作等方式来增加其固碳量,从而提高高州油茶林的碳汇能力。

广东省2012年经济林的平均碳储量为11.21 t·hm−2[22],高州油茶林碳储量(12.857 t·hm−2)高于经济林平均碳储量,因此具有较高的生态效益。高州油茶林地土壤有机碳储量(131.681 t·hm−2)远高于广东省土壤平均碳密度(100.31 t·hm−2)[23],高州油茶林总碳储量(144.538 t·hm−2)也高于珠三角森林生态系统碳密度(136.35 t·hm−2)[24]。根据中国生物多样性国情报告编写组的数据,碳价格为260.90元·t−1[25],本试验高州油茶林的碳汇经济效益约为3.8万元·hm−2,因此高州油茶不仅有较好的生产效益,而且具十分广阔的固碳前景。高州油茶是研究者选育本地良种的重要地理品种,但本研究只是重点对揭阳地区中龄林高州油茶进行了碳汇潜力研究,往后可以在其分布区域开展更深入与更全面的研究,尤其是林分土壤碳储量,它是生态系统碳汇的主要部分,其影响因素复杂,固碳潜力相对更大。而结合GPS、GIS卫星遥感等现代先进技术与其生长机理的动态预估模型、生态系统碳动态变化规律的研究则是下一步的研究趋势。

总之,高州油茶植株各器官平均生物量分配比例为树干>树根>树叶>树枝>果实>花芽,生物量均随着地径的增大而增大,单株生物量由4 cm径级的5.086 kg增大至12 cm径级的33.630 kg,增幅近7倍。树叶生物量稍有波动,但总体趋势是不断增大,果实和花芽的生物量波动较大。试验地高州油茶林分的总生物量为26.902 t·hm−2,树干和树根是林分生物量最主要的部分,其次是树叶和树枝。

不同径级植株的碳含量不同,平均碳质量分数为483.45 g·kg−1。果实平均碳含量最高,树根最低,树叶、树枝和花芽三者碳含量差异不显著;相同器官在不同径级中的碳含量也有差异。在林地100 cm深土层中,土壤平均有机碳质量分数由0~20 cm的26.550 g·kg−1递减到60~100 cm的4.706 g·kg−1。本试验高州油茶林总碳储量为144.538 t·hm−2,其中,林分碳储量为12.857 t·hm−2,占总碳储量的8.90%;林地土壤碳储量为131.681 t·hm−2,占91.10%。

参考文献
[1]
杨颖, 张鹏, 奚如春, 等. 高州油茶不同产区果实含油率及脂肪酸组成的变异特征[J]. 经济林研究, 2018, 36(4): 104-108. (0)
[2]
戚嘉敏, 张鹏, 奚如春. 油茶树体氮磷钾养分的年动态变化[J]. 经济林研究, 2017, 35(3): 121-126. (0)
[3]
方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508. (0)
[4]
RODRÍGUEZ-VEIGA P, QUEGAN S, CARREIRAS J, et al. Forest biomass retrieval approaches from earth observation in different biomes[J]. Int J Appl Earth Obs Geoinformation, 2019, 77: 53-68. DOI:10.1016/j.jag.2018.12.008 (0)
[5]
唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(S1): 19-27. (0)
[6]
DANGAL S P, DAS A K, PAUDEL S K. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal[J]. J Environ Manag, 2017, 196: 511-517. DOI:10.1016/j.jenvman.2017.03.056 (0)
[7]
JONKER J G G, VAN DER HILST F, MARKEWITZ D, et al. Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States[J]. Biomass Bioenergy, 2018, 117: 44-55. DOI:10.1016/j.biombioe.2018.06.017 (0)
[8]
谭云峰, 张西西, 陈新媛. 不同经营措施的油茶林生物量和生产力的初步研究[J]. 农业现代化研究, 1982, 3(3): 31-36. (0)
[9]
谌小勇, 彭元英, 郭照光, 等. 油茶林分生物量及生产力的研究[J]. 经济林研究, 1996, 14(1): 4-6. (0)
[10]
付达夫, 王永安. 湖南油茶林不同经营措施对生物产量的影响[J]. 林业调查规划, 2004, 29(1): 21-23. DOI:10.3969/j.issn.1671-3168.2004.01.006 (0)
[11]
奚如春, 邓小梅. 我国油茶产业化发展中的现状、要素及其优化[J]. 经济林研究, 2005, 23(1): 83-87. DOI:10.3969/j.issn.1003-8981.2005.01.025 (0)
[12]
唐健, 李娜, 欧阳洁英, 等. 油茶苗期生物量积累及营养分配规律研究[J]. 南方农业学报, 2011, 42(8): 964-967. DOI:10.3969/j.issn.2095-1191.2011.08.034 (0)
[13]
宋贤冲, 唐健, 覃其云, 等. 油茶成熟林生物量积累及营养分配规律[J]. 南方农业学报, 2014, 45(2): 255-258. DOI:10.3969/j:issn.2095-1191.2014.2.255 (0)
[14]
高越. 基于数字图像处理的油茶生物量估测模型研究[D]. 长沙: 湖南农业大学, 2016. (0)
[15]
汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462-4472. (0)
[16]
鲁如坤.土壤农业化学分析方法[M].北京: 中国农业科技出版社,2000:123-125 (0)
[17]
程先富, 史学正, 于东升, 等. 江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J]. 应用与环境生物学报, 2004, 10(1): 64-67. DOI:10.3321/j.issn:1006-687X.2004.01.015 (0)
[18]
CUI Z Y, DENG X M, XI R C, et al. Organic carbon storage and its allocation characteristics in the oil tree Camellia oleifera ecosystem in Longchuan, Guangdong, China [J]. Fresenius Environ Bull, 2016, 25(6): 2166-2173. (0)
[19]
杨众养, 陈宗铸, 陈小花, 等. 海南岛北部3种经济林树种的生物量、碳储量及其分配特征[J]. 经济林研究, 2018, 36(3): 62-68. (0)
[20]
王炳焱. 伏牛山北坡栓皮栎天然次生林不同生长阶段生物量和碳储量研究[D]. 郑州: 河南农业大学, 2015. (0)
[21]
彭映赫, 许彦明, 王瑞, 等. 不同林龄油茶林土壤有机碳和氮储量特征[J]. 湖南林业科技, 2018, 45(1): 65-70. DOI:10.3969/j.issn.1003-5710.2018.01.013 (0)
[22]
王璟睿, 仵宏基, 孙昕, 等. 广东省森林碳储量与动态变化[J]. 东北林业大学学报, 2016, 44(1): 18-22. DOI:10.3969/j.issn.1000-5382.2016.01.004 (0)
[23]
文雅, 黄宁生, 匡耀求, 等. 广东省山区土壤有机碳密度特征及空间格局[J]. 应用基础与工程科学学报, 2010, 18(S1): 10-18. (0)
[24]
张修玉, 许振成, 曾凡棠, 等. 珠江三角洲森林生态系统碳密度分配及其储量动态特征[J]. 中国环境科学, 2011, 31(S1): 69-77. (0)
[25]
谢元贵, 廖小锋, 赵晓朋, 等. 喀斯特峰丛洼地不同适生植物配置模式固碳能力及效益评价[J]. 广东农业科学, 2015, 42(20): 134-139. DOI:10.3969/j.issn.1004-874X.2015.20.026 (0)