基于全卷积神经网络的荔枝表皮缺陷提取
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2018YFD0101001);国家自然科学基金(31571568);广东省科技计划(2015A020209120,2015A020209111)


Extraction of litchi fruit pericarp defect based on a fully convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    【目的】增强荔枝表皮缺陷提取效果,满足其品质检测分级准确性要求。【方法】采用Tensorflow框架构建基于AlexNet的全卷积神经网络AlexNet-FCN,以ReLU为激活函数,Max-pooling为下采样方法,Softmax回归分类器的损失函数作为优化目标,建立荔枝表皮缺陷提取的全卷积神经网络模型,并用批量随机梯度下降法对模型进行优化。【结果】模型收敛后在验证集上裂果交并比(IoUd)为0.83,褐变交并比(IoUb)为0.60,褐变与裂果的总体交并比(IoUa)为0.68;与利用线性SVM、朴素贝叶斯分类器缺陷提取效果相比,该模型的特征提取能力显著提高。【结论】全卷积神经网络在水果表面缺陷提取中具有良好的应用前景。

    Abstract:

    【Objective】To enhance the effects of litchi fruit pericarp defect extraction and satisfy the accuracy requirements of quality detection and classification.【Method】A fully convolutional neural network was built up based on AlexNet (AlexNet-FCN) using Tensorflow framework, with ReLU as the activation function, Max-pooling as the down-sampling method and loss function of Softmax regression classifier as the optimization target. Mini-batch stochastic gradient descent (Mini-batch SGD) was used to optimize the model.【Result】When the model was converged, the intersection-over-union of dehiscent area (IoUd) of litchi fruit cracking was 0.83 for the validation set, the intersection-over-union of brown area (IoUb) was 0.60, and the intersection-over-union of both dehiscent and brown area (IoUa) was 0.68. Compared with linear-support vector machine (SVM) and Naïve Bayes classifier, AlexNet-FCN had a stronger defect extraction ability.【Conclusion】Fully convolutional networks (FCN) have a good prospect for application of fruit pericarp defect extraction.

    参考文献
    相似文献
    引证文献
引用本文

王佳盛,陈燕,曾泽钦,李嘉威,刘威威,邹湘军.基于全卷积神经网络的荔枝表皮缺陷提取[J].华南农业大学学报,2018,39(6):104-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-03-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-01